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Filter Implementation

In this section...
“Convolution and Filtering” on page 1-2
“Filters and Transfer Functions” on page 1-2
“Filtering with the filter Function” on page 1-3

Convolution and Filtering
The mathematical foundation of filtering is convolution. For a finite impulse response (FIR) filter, the
output y(k) of a filtering operation is the convolution of the input signal x(k) with the impulse
response h(k):

y(k) = ∑
l = −∞

∞
h(l) x(k− l) .

If the input signal is also of finite length, you can implement the filtering operation using the
MATLAB® conv function. For example, to filter a five-sample random vector with a third-order
averaging filter, you can store x(k) in a vector x, h(k) in a vector h, and convolve the two:

x = randn(5,1);
h = [1 1 1 1]/4;   % A third-order filter has length 4
y = conv(h,x)

y =
   -0.3375
    0.4213
    0.6026
    0.5868
    1.1030
    0.3443
    0.1629
    0.1787

The length of y is one less than the sum of the lengths of x and h.

Filters and Transfer Functions
The transfer function of a filter is the Z-transform of its impulse response. For an FIR filter, the Z-
transform of the output y, Y(z), is the product of the transfer function and X(z), the Z-transform of the
input x:

Y(z) = H(z)X(z) = h(1) + h(2)z−1 +⋯+ h(n + 1)z−n X(z) .

The polynomial coefficients h(1), h(2), …, h(n + 1) correspond to the coefficients of the impulse
response of an nth-order filter.

Note The filter coefficient indices run from 1 to (n + 1), rather than from 0 to n. This reflects the
standard indexing scheme used for MATLAB vectors.

1 Filtering, Linear Systems and Transforms Overview

1-2



FIR filters are also called all-zero, nonrecursive, or moving-average (MA) filters.

For an infinite impulse response (IIR) filter, the transfer function is not a polynomial, but a rational
function. The Z-transforms of the input and output signals are related by

Y(z) = H(z)X(z) = b(1) + b(2)z−1 + ... + b(n + 1)z−n

a(1) + a(2)z−1 + ... + a(m + 1)z−m X(z),

where b(i) and a(i) are the filter coefficients. In this case, the order of the filter is the maximum of n
and m. IIR filters with n = 0 are also called all-pole, recursive, or autoregressive (AR) filters. IIR
filters with both n and m greater than zero are also called pole-zero, recursive, or autoregressive
moving-average (ARMA) filters. The acronyms AR, MA, and ARMA are usually applied to filters
associated with filtered stochastic processes.

Filtering with the filter Function
For IIR filters, the filtering operation is described not by a simple convolution, but by a difference
equation that can be found from the transfer-function relation. Assume that a(1) = 1, move the
denominator to the left side, and take the inverse Z-transform to obtain

y(k) + a(2) y(k− 1) + … + a(m + 1) y(k−m) = b(1) x(k) + b(2) x(k− 1) +⋯+ b(n + 1) x(k− n) .

In terms of current and past inputs, and past outputs, y(k) is

y(k) = b(1) x(k) + b(2) x(k− 1) +⋯+ b(n + 1) x(k− n) − a(2) y(k− 1) −⋯− a(m + 1) y(k−m),

which is the standard time-domain representation of a digital filter. Starting with y(1) and assuming a
causal system with zero initial conditions, the representation is equivalent to

y(1) = b(1) x(1)
y(2) = b(1) x(2) + b(2) x(1) − a(2) y(1)
y(3) = b(1) x(3) + b(2) x(2) + b(3) x(1) − a(2) y(2) − a(3) y(1)

⋮
y(n) = b(1) x(n) +⋯+ b(n) x(1) − a(2) y(n− 1) −⋯− a(n) y(1) .

To implement this filtering operation, you can use the MATLAB filter function. filter stores the
coefficients in two row vectors, one for the numerator and one for the denominator. For example, to
solve the difference equation

y(n) − 0.9y(n− 1) = x(n) Y(z) = 1
1 − 0.9 z−1 X(z) = H(z) X(z),

you can use

b = 1;
a = [1 -0.9];
y = filter(b,a,x);

filter gives you as many output samples as there are input samples, that is, the length of y is the
same as the length of x. If the first element of a is not 1, then filter divides the coefficients by a(1)
before implementing the difference equation.
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The filter Function
filter is implemented as the transposed direct-form II structure, where n–1 is the filter order. This
is a canonical form that has the minimum number of delay elements.

At sample m, filter computes the difference equations

y(m) = b(1)x(m) + z1(m− 1)
z1(m) = b(2)x(m) + z2(m− 1) − a(2)y(m)

⋮ = ⋮
zn− 2(m) = b(n− 1)x(m) + zn− 1(m− 1) − a(n− 1)y(m)

zn− 1(m) = b(n)x(m) − a(n)y(m)

In its most basic form, filter initializes the delay outputs zi(1), i = 1, ..., n-1 to 0. This is equivalent
to assuming both past inputs and outputs are zero. Set the initial delay outputs using a fourth input
parameter to filter, or access the final delay outputs using a second output parameter:

[y,zf] = filter(b,a,x,zi)

Access to initial and final conditions is useful for filtering data in sections, especially if memory
limitations are a consideration. Suppose you have collected data in two segments of 5000 points each:

x1 = randn(5000,1);  % Generate two random data sequences.
x2 = randn(5000,1); 

Perhaps the first sequence, x1, corresponds to the first 10 minutes of data and the second, x2, to an
additional 10 minutes. The whole sequence is x = [x1;x2]. If there is not sufficient memory to hold
the combined sequence, filter the subsequences x1 and x2 one at a time. To ensure continuity of the
filtered sequences, use the final conditions from x1 as initial conditions to filter x2:

[y1,zf] = filter(b,a,x1);
y2 = filter(b,a,x2,zf);

The filtic function generates initial conditions for filter. filtic computes the delay vector to
make the behavior of the filter reflect past inputs and outputs that you specify. To obtain the same
output delay values zf as above using filtic, use

zf = filtic(b,a,flipud(y1),flipud(x1));

This can be useful when filtering short data sequences, as appropriate initial conditions help reduce
transient startup effects.

 The filter Function
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Multirate Filter Bank Implementation
The upfirdn function alters the sampling rate of a signal by an integer ratio P/Q. It computes the
result of a cascade of three systems that performs the following tasks:

• Upsampling (zero insertion) by integer factor p
• Filtering by FIR filter h
• Downsampling by integer factor q

For example, to change the sample rate of a signal from 44.1 kHz to 48 kHz, we first find the smallest
integer conversion ratio p/q. Set

d = gcd(48000,44100);
p = 48000/d;
q = 44100/d;

In this example, p = 160 and q = 147. Sample rate conversion is then accomplished by typing

y = upfirdn(x,h,p,q)

This cascade of operations is implemented in an efficient manner using polyphase filtering
techniques, and it is a central concept of multirate filtering. Note that the quality of the resampling
result relies on the quality of the FIR filter h.

Filter banks may be implemented using upfirdn by allowing the filter h to be a matrix, with one FIR
filter per column. A signal vector is passed independently through each FIR filter, resulting in a
matrix of output signals.

Other functions that perform multirate filtering (with fixed filter) include resample, interp, and
decimate.
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Frequency Domain Filter Implementation
Duality between the time domain and the frequency domain makes it possible to perform any
operation in either domain. Usually one domain or the other is more convenient for a particular
operation, but you can always accomplish a given operation in either domain.

To implement general IIR filtering in the frequency domain, multiply the discrete Fourier transform
(DFT) of the input sequence with the quotient of the DFT of the filter:

n = length(x);
y = ifft(fft(x).*fft(b,n)./fft(a,n));

This computes results that are identical to filter, but with different startup transients (edge
effects). For long sequences, this computation is very inefficient because of the large zero-padded
FFT operations on the filter coefficients, and because the FFT algorithm becomes less efficient as the
number of points n increases.

For FIR filters, however, it is possible to break longer sequences into shorter, computationally
efficient FFT lengths. The function

y = fftfilt(b,x)

uses the overlap add method to filter a long sequence with multiple medium-length FFTs. Its output is
equivalent to filter(b,1,x).
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Anti-Causal, Zero-Phase Filter Implementation
In the case of FIR filters, it is possible to design linear phase filters that, when applied to data (using
filter or conv), simply delay the output by a fixed number of samples. For IIR filters, however, the
phase distortion is usually highly nonlinear. The filtfilt function uses the information in the signal
at points before and after the current point, in essence "looking into the future," to eliminate phase
distortion.

To see how filtfilt does this, recall that if the Z-transform of a real sequence x(n) is X(z), then the
Z-transform of the time-reversed sequence x( − n) is X(z−1). Consider the following processing
scheme:

When z = 1, that is z = e jω, the output reduces to X(e jω) H(e jω) 2. Given all the samples of the
sequence x(n), a doubly filtered version of x that has zero-phase distortion is possible.

For example, a 1-second duration signal sampled at 100 Hz, composed of two sinusoidal components
at 3 Hz and 40 Hz, is

fs = 100;
t = 0:1/fs:1;
x = sin(2*pi*t*3)+.25*sin(2*pi*t*40);

Now create a 6th-order Butterworth lowpass filter to filter out the high-frequency sinusoid. Filter x
using both filter and filtfilt for comparison:

[b,a] = butter(6,20/(fs/2));

y = filtfilt(b,a,x);
yy = filter(b,a,x);

plot(t,x,t,y,t,yy)
legend('Original','filtfilt','filter')

1 Filtering, Linear Systems and Transforms Overview

1-8



Both filtered versions eliminate the 40 Hz sinusoid evident in the original signal. The plot also shows
how filter and filtfilt differ. The filtfilt line is in phase with the original 3 Hz sinusoid,
while the filter line is delayed. The filter line shows a transient at early times. filtfilt
reduces filter startup transients by carefully choosing initial conditions, and by prepending onto the
input sequence a short, reflected piece of the input sequence.

For best results, make sure the sequence you are filtering has length at least three times the filter
order and tapers to zero on both edges.

See Also
conv | filter | filtfilt
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Impulse Response
The impulse response of a digital filter is the output arising from the unit impulse sequence defined
as

δ(n) = 1, n = 0,
0, n ≠ 0 .

You can generate an impulse sequence a number of ways; one straightforward way is

imp = [1; zeros(49,1)];

The impulse response of the simple filter with b = 1 and a = [1−0 . 9] is h(n) = 0 . 9n, which decays
exponentially.

b = 1;
a = [1 -0.9];

h = filter(b,a,imp);

stem(0:49,h)

A simple way to display the impulse response is with the Filter Visualization Tool, fvtool.

fvtool(b,a)
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Click the Impulse Response button, [ ], on the toolbar, select Analysis > Impulse Response
from the menu, or type the following code to obtain the exponential decay of the single-pole system.

fvtool(b,a,'Analysis','impulse')

 Impulse Response

1-11



1 Filtering, Linear Systems and Transforms Overview

1-12



Frequency Response

In this section...
“Digital Domain” on page 1-13
“Analog Domain” on page 1-18

Digital Domain
freqz uses an FFT-based algorithm to calculate the Z-transform frequency response of a digital filter.
Specifically, the statement

[h,w] = freqz(b,a,p)

returns the p-point complex frequency response, H(ejω), of the digital filter.

H(e jω) = b(1) + b(2)e− jω + ... + b(n + 1)e− jωn

a(1) + a(2)e− jω + ... + a(m + 1)e− jωm

In its simplest form, freqz accepts the filter coefficient vectors b and a, and an integer p specifying
the number of points at which to calculate the frequency response. freqz returns the complex
frequency response in vector h, and the actual frequency points in vector w in rad/s.

freqz can accept other parameters, such as a sampling frequency or a vector of arbitrary frequency
points. The example below finds the 256-point frequency response for a 12th-order Chebyshev Type I
filter. The call to freqz specifies a sampling frequency fs of 1000 Hz:

[b,a] = cheby1(12,0.5,200/500);
[h,f] = freqz(b,a,256,1000);

Because the parameter list includes a sampling frequency, freqz returns a vector f that contains the
256 frequency points between 0 and fs/2 used in the frequency response calculation.

Note This toolbox uses the convention that unit frequency is the Nyquist frequency, defined as half
the sampling frequency. The cutoff frequency parameter for all basic filter design functions is
normalized by the Nyquist frequency. For a system with a 1000 Hz sampling frequency, for example,
300 Hz is 300/500 = 0.6. To convert normalized frequency to angular frequency around the unit
circle, multiply by π. To convert normalized frequency back to hertz, multiply by half the sample
frequency.

If you call freqz with no output arguments, it plots both magnitude versus frequency and phase
versus frequency. For example, a ninth-order Butterworth lowpass filter with a cutoff frequency of
400 Hz, based on a 2000 Hz sampling frequency, is

[b,a] = butter(9,400/1000);

To calculate the 256-point complex frequency response for this filter, and plot the magnitude and
phase with freqz, use

freqz(b,a,256,2000)
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freqz can also accept a vector of arbitrary frequency points for use in the frequency response
calculation. For example,

w = linspace(0,pi);
h = freqz(b,a,w);

calculates the complex frequency response at the frequency points in w for the filter defined by
vectors b and a. The frequency points can range from 0 to 2π. To specify a frequency vector that
ranges from zero to your sampling frequency, include both the frequency vector and the sampling
frequency value in the parameter list.

These examples show how to compute and display digital frequency responses.

Frequency Response from Transfer Function

Compute and display the magnitude response of the third-order IIR lowpass filter described by the
following transfer function:

H(z) = 0 . 05634(1 + z−1)(1 − 1 . 0166z−1 + z−2)
(1 − 0 . 683z−1)(1 − 1 . 4461z−1 + 0 . 7957z−2)

.

Express the numerator and denominator as polynomial convolutions. Find the frequency response at
2001 points spanning the complete unit circle.

b0 = 0.05634;
b1 = [1  1];
b2 = [1 -1.0166 1];
a1 = [1 -0.683];
a2 = [1 -1.4461 0.7957];

b = b0*conv(b1,b2);
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a = conv(a1,a2);

[h,w] = freqz(b,a,'whole',2001);

Plot the magnitude response expressed in decibels.

plot(w/pi,20*log10(abs(h)))
ax = gca;
ax.YLim = [-100 20];
ax.XTick = 0:.5:2;
xlabel('Normalized Frequency (\times\pi rad/sample)')
ylabel('Magnitude (dB)')

Frequency Response of an FIR Bandpass Filter

Design an FIR bandpass filter with passband between 0 . 35π and 0 . 8π rad/sample and 3 dB of ripple.
The first stopband goes from 0 to 0 . 1π rad/sample and has an attenuation of 40 dB. The second
stopband goes from 0 . 9π rad/sample to the Nyquist frequency and has an attenuation of 30 dB.
Compute the frequency response. Plot its magnitude in both linear units and decibels. Highlight the
passband.

sf1 = 0.1;
pf1 = 0.35;
pf2 = 0.8;
sf2 = 0.9;
pb = linspace(pf1,pf2,1e3)*pi;
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bp = designfilt('bandpassfir', ...
    'StopbandAttenuation1',40, 'StopbandFrequency1',sf1,...
    'PassbandFrequency1',pf1,'PassbandRipple',3,'PassbandFrequency2',pf2, ...
    'StopbandFrequency2',sf2,'StopbandAttenuation2',30);

[h,w] = freqz(bp,1024);
hpb = freqz(bp,pb);

subplot(2,1,1)
plot(w/pi,abs(h),pb/pi,abs(hpb),'.-')
axis([0 1 -1 2])
legend('Response','Passband','Location','South')
ylabel('Magnitude')

subplot(2,1,2)
plot(w/pi,db(h),pb/pi,db(hpb),'.-')
axis([0 1 -60 10])
xlabel('Normalized Frequency (\times\pi rad/sample)')
ylabel('Magnitude (dB)')

Magnitude Response of a Highpass Filter

Design a 3rd-order highpass Butterworth filter having a normalized 3-dB frequency of 0 . 5π rad/
sample. Compute its frequency response. Express the magnitude response in decibels and plot it.

[b,a] = butter(3,0.5,'high');
[h,w] = freqz(b,a);
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dB = mag2db(abs(h));

plot(w/pi,dB)
xlabel('\omega / \pi')
ylabel('Magnitude (dB)')
ylim([-82 5])

Repeat the computation using fvtool.

fvtool(b,a)
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Analog Domain
freqs evaluates frequency response for an analog filter defined by two input coefficient vectors, b
and a. Its operation is similar to that of freqz; you can specify a number of frequency points to use,
supply a vector of arbitrary frequency points, and plot the magnitude and phase response of the filter.
This example shows how to compute and display analog frequency responses.

Comparison of Analog IIR Lowpass Filters

Design a 5th-order analog Butterworth lowpass filter with a cutoff frequency of 2 GHz. Multiply by 2π
to convert the frequency to radians per second. Compute the frequency response of the filter at 4096
points.

n = 5;
f = 2e9;

[zb,pb,kb] = butter(n,2*pi*f,'s');
[bb,ab] = zp2tf(zb,pb,kb);
[hb,wb] = freqs(bb,ab,4096);

Design a 5th-order Chebyshev Type I filter with the same edge frequency and 3 dB of passband
ripple. Compute its frequency response.

[z1,p1,k1] = cheby1(n,3,2*pi*f,'s');
[b1,a1] = zp2tf(z1,p1,k1);
[h1,w1] = freqs(b1,a1,4096);
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Design a 5th-order Chebyshev Type II filter with the same edge frequency and 30 dB of stopband
attenuation. Compute its frequency response.

[z2,p2,k2] = cheby2(n,30,2*pi*f,'s');
[b2,a2] = zp2tf(z2,p2,k2);
[h2,w2] = freqs(b2,a2,4096);

Design a 5th-order elliptic filter with the same edge frequency, 3 dB of passband ripple, and 30 dB of
stopband attenuation. Compute its frequency response.

[ze,pe,ke] = ellip(n,3,30,2*pi*f,'s');
[be,ae] = zp2tf(ze,pe,ke);
[he,we] = freqs(be,ae,4096);

Plot the attenuation in decibels. Express the frequency in gigahertz. Compare the filters.

plot(wb/(2e9*pi),mag2db(abs(hb)))
hold on
plot(w1/(2e9*pi),mag2db(abs(h1)))
plot(w2/(2e9*pi),mag2db(abs(h2)))
plot(we/(2e9*pi),mag2db(abs(he)))
axis([0 4 -40 5])
grid
xlabel('Frequency (GHz)')
ylabel('Attenuation (dB)')
legend('butter','cheby1','cheby2','ellip')
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The Butterworth and Chebyshev Type II filters have flat passbands and wide transition bands. The
Chebyshev Type I and elliptic filters roll off faster but have passband ripple. The frequency input to
the Chebyshev Type II design function sets the beginning of the stopband rather than the end of the
passband.
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Phase Response
MATLAB® functions are available to extract the phase response of a filter. Given a frequency
response, the function abs returns the magnitude and angle returns the phase angle in radians. To
view the magnitude and phase of a Butterworth filter using fvtool:

d = designfilt('lowpassiir','FilterOrder',9, ...
    'HalfPowerFrequency',400,'SampleRate',2000);
fvtool(d,'Analysis','freq')

You can also click the Magnitude and Phase Response button on the toolbar or select Analysis >
Magnitude and Phase Response to display the plot.

The unwrap function is also useful in frequency analysis. unwrap unwraps the phase to make it
continuous across 360° phase discontinuities by adding multiples of ±360°, as needed. To see how
unwrap is useful, design a 25th-order lowpass FIR filter:

h = fir1(25,0.4);

Obtain the frequency response with freqz and plot the phase in degrees:

[H,f] = freqz(h,1,512,2);
plot(f,angle(H)*180/pi)
grid
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It is difficult to distinguish the 360° jumps (an artifact of the arctangent function inside angle) from
the 180° jumps that signify zeros in the frequency response.

unwrap eliminates the 360° jumps:

plot(f,unwrap(angle(H))*180/pi)
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Alternatively, you can use phasez to see the unwrapped phase:

phasez(h,1)
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See Also
FVTool | abs | angle | freqz | phasez | unwrap
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Group Delay and Phase Delay
The group delay of a filter is a measure of the average time delay of the filter as a function of
frequency. The group delay is defined as the negative first derivative of the filter's phase response. If
the complex frequency response of a filter is H e jω , then the group delay is

τg ω = − dθ ω
dω ,

where θ ω  is the phase, or argument, of H e jω . Use the grpdelay function to compute group delay
of a filter. For example, verify that, for a linear-phase FIR filter, the group delay is one-half the filter
order.

d = designfilt('lowpassfir','FilterOrder',20,'CutoffFrequency',200,'SampleRate',2000);
islinphase(d)

ans = logical
   1

grpdelay(d)

The phase delay of a filter is defined as the negative of the phase divided by the frequency:

τp ω = − θ ω
ω .
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Use the phasedelay function to compute the phase delay of a filter. For the linear-phase FIR filter of
the previous example, the phase delay is equal to the group delay.

phasedelay(d)

Use FVTool to plot both the group delay and the phase delay of a system on the same graph. For
example, plot the delays of a fifth-order Butterworth lowpass filter.

d = designfilt('lowpassiir','FilterOrder',5,'HalfPowerFrequency',200,'SampleRate',2000);

fvtool(d,'Analysis','grpdelay','OverlayedAnalysis','phasedelay','Legend','on')
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See Also
FVTool | grpdelay | phasedelay
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Zero-Pole Analysis
The zplane function plots poles and zeros of a linear system. For example, a simple filter with a zero
at -1/2 and a complex pole pair at 0 . 9e− j2π0 . 3 and 0 . 9e j2π0 . 3 is

zer = -0.5; 
pol = 0.9*exp(j*2*pi*[-0.3 0.3]');

To view the pole-zero plot for this filter you can use zplane. Supply column vector arguments when
the system is in pole-zero form.

zplane(zer,pol)

For access to additional tools, use fvtool. First convert the poles and zeros to transfer function
form, then call fvtool.

[b,a] = zp2tf(zer,pol,1);
fvtool(b,a)
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Click the Pole/Zero Plot toolbar button, select Analysis > Pole/Zero Plot from the menu, or type
the following code to see the plot.

fvtool(b,a,'Analysis','polezero')
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To use zplane for a system in transfer function form, supply row vector arguments. In this case,
zplane finds the roots of the numerator and denominator using the roots function and plots the
resulting zeros and poles.

zplane(b,a)
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See “Discrete-Time System Models” on page 1-32 for details on zero-pole and transfer function
representation of systems.

See Also
FVTool | zp2tf | zplane
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Discrete-Time System Models
The discrete-time system models are representational schemes for digital filters. The MATLAB
technical computing environment supports several discrete-time system models, which are described
in the following sections:

• “Transfer Function” on page 1-32
• “Zero-Pole-Gain” on page 1-32
• “State Space” on page 1-33
• “Partial Fraction Expansion (Residue Form)” on page 1-33
• “Second-Order Sections (SOS)” on page 1-34
• “Lattice Structure” on page 1-35
• “Convolution Matrix” on page 1-36

Transfer Function
The transfer function is a basic Z-domain representation of a digital filter, expressing the filter as a
ratio of two polynomials. It is the principal discrete-time model for this toolbox. The transfer function
model description for the Z-transform of a digital filter's difference equation is

Y(z) = b(1) + b(2)z−1 + … + b(n + 1)z−n

a(1) + a(2)z−1 + … + a(m + 1)z−m X(z) .

Here, the constants b(i) and a(i) are the filter coefficients, and the order of the filter is the maximum
of n and m. In the MATLAB environment, you store these coefficients in two vectors (row vectors by
convention), one row vector for the numerator and one for the denominator. See “Filters and Transfer
Functions” on page 1-2 for more details on the transfer function form.

Zero-Pole-Gain
The factored or zero-pole-gain form of a transfer function is

H(z) = q(z)
p(z) = k (z − q(1))(z − q(2))...(z − q(n))

(z − p(1))(z − p(2))...(z − p(n)) .

By convention, polynomial coefficients are stored in row vectors and polynomial roots in column
vectors. In zero-pole-gain form, therefore, the zero and pole locations for the numerator and
denominator of a transfer function reside in column vectors. The factored transfer function gain k is a
MATLAB scalar.

The poly and roots functions convert between polynomial and zero-pole-gain representations. For
example, a simple IIR filter is

b = [2 3 4];
a = [1 3 3 1];

The zeros and poles of this filter are

q = roots(b)
p = roots(a)
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% Gain factor
k = b(1)/a(1)

Returning to the original polynomials,

bb = k*poly(q)
aa = poly(p)

Note that b and a in this case represent the transfer function:

H(z) = 2 + 3z−1 + 4z−2

1 + 3z−1 + 3z−2 + z−3 = z (2z2 + 3z + 4)
z3 + 3z2 + 3z + 1

.

For b = [2 3 4], the roots function misses the zero for z equal to 0. In fact, the function misses
poles and zeros for z equal to 0 whenever the input transfer function has more poles than zeros, or
vice versa. This is acceptable in most cases. To circumvent the problem, however, simply append
zeros to make the vectors the same length before using the roots function; for example, b = [b 0].

State Space
It is always possible to represent a digital filter, or a system of difference equations, as a set of first-
order difference equations. In matrix or state-space form, you can write the equations as

x(n + 1) = Ax(n) + Bu(n)
y(n) = Cx(n) + Du(n),

where u is the input, x is the state vector, and y is the output. For single-channel systems, A is an m-
by-m matrix where m is the order of the filter, B is a column vector, C is a row vector, and D is a scalar.
State-space notation is especially convenient for multichannel systems where input u and output y
become vectors, and B, C, and D become matrices.

State-space representation extends easily to the MATLAB environment. A, B, C, and D are rectangular
arrays; MATLAB functions treat them as individual variables.

Taking the Z-transform of the state-space equations and combining them shows the equivalence of
state-space and transfer function forms:

Y(z) = H(z)U(z), where H(z) = C(zI − A)−1B + D

Don't be concerned if you are not familiar with the state-space representation of linear systems. Some
of the filter design algorithms use state-space form internally but do not require any knowledge of
state-space concepts to use them successfully. If your applications use state-space based signal
processing extensively, however, see the Control System Toolbox™ product for a comprehensive
library of state-space tools.

Partial Fraction Expansion (Residue Form)
Each transfer function also has a corresponding partial fraction expansion or residue form
representation, given by

b(z)
a(z) = r(1)

1 − p(1)z−1 + ... + r(n)
1 − p(n)z−1 + k(1) + k(2)z−1 + ... + k(m− n + 1)z−(m− n)
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provided H(z) has no repeated poles. Here, n is the degree of the denominator polynomial of the
rational transfer function b(z)/a(z). If r is a pole of multiplicity sr, then H(z) has terms of the form:

r( j)
1 − p( j)z−1 + r( j + 1)

(1 − p( j)z−1)2
... +

r( j + sr − 1)

(1 − p( j)z−1)
sr

The Signal Processing Toolbox residuez function in converts transfer functions to and from the
partial fraction expansion form. The “z” on the end of residuez stands for z-domain, or discrete
domain. residuez returns the poles in a column vector p, the residues corresponding to the poles in
a column vector r, and any improper part of the original transfer function in a row vector k.
residuez determines that two poles are the same if the magnitude of their difference is smaller than
0.1 percent of either of the poles' magnitudes.

Partial fraction expansion arises in signal processing as one method of finding the inverse Z-
transform of a transfer function. For example, the partial fraction expansion of

H(z) = −4 + 8z−1

1 + 6z−1 + 8z−2

is

b = [-4 8];
a = [1 6 8];
[r,p,k] = residuez(b,a)

which corresponds to

H(z) = −12
1 + 4z−1 + 8

1 + 2z−1

To find the inverse Z-transform of H(z), find the sum of the inverse Z-transforms of the two addends of
H(z), giving the causal impulse response:

h(n) = − 12( − 4)n + 8( − 2)n, n = 0, 1, 2, …

To verify this in the MATLAB environment, type

imp = [1 0 0 0 0];
resptf = filter(b,a,imp)
respres = filter(r(1),[1 -p(1)],imp)+...
  filter(r(2),[1 -p(2)],imp)

Second-Order Sections (SOS)
Any transfer function H(z) has a second-order sections representation

H(z) = ∏
k = 1

L
Hk(z) = ∏

k = 1

L b0k + b1kz−1 + b2kz−2

a0k + a1kz−1 + a2kz−2

where L is the number of second-order sections that describe the system. The MATLAB environment
represents the second-order section form of a discrete-time system as an L-by-6 array sos. Each row
of sos contains a single second-order section, where the row elements are the three numerator and
three denominator coefficients that describe the second-order section.

1 Filtering, Linear Systems and Transforms Overview

1-34



sos =

b01 b11 b21 a01 a11 a21
b02 b12 b22 a02 a12 a22

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
b0L b1L b2L a0L a1L a2L

There are many ways to represent a filter in second-order section form. Through careful pairing of
the pole and zero pairs, ordering of the sections in the cascade, and multiplicative scaling of the
sections, it is possible to reduce quantization noise gain and avoid overflow in some fixed-point filter
implementations. The functions zp2sos and ss2sos, described in “Linear System Transformations”
on page 1-39, perform pole-zero pairing, section scaling, and section ordering.

Note All Signal Processing Toolbox second-order section transformations apply only to digital filters.

Lattice Structure
For a discrete Nth order all-pole or all-zero filter described by the polynomial coefficients a(n),
n = 1, 2, ..., N+1, there are N corresponding lattice structure coefficients k(n), n = 1, 2, ..., N. The
parameters k(n) are also called the reflection coefficients of the filter. Given these reflection
coefficients, you can implement a discrete filter as shown below.

FIR and IIR Lattice Filter structure diagrams

For a general pole-zero IIR filter described by polynomial coefficients a and b, there are both lattice
coefficients k(n) for the denominator a and ladder coefficients v(n) for the numerator b. The lattice/
ladder filter may be implemented as
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Diagram of lattice/ladder filter

The toolbox function tf2latc accepts an FIR or IIR filter in polynomial form and returns the
corresponding reflection coefficients. An example FIR filter in polynomial form is

b = [1.0000   0.6149   0.9899   0.0000   0.0031  -0.0082];

This filter's lattice (reflection coefficient) representation is

k = tf2latc(b)

For IIR filters, the magnitude of the reflection coefficients provides an easy stability check. If all the
reflection coefficients corresponding to a polynomial have magnitude less than 1, all of that
polynomial's roots are inside the unit circle. For example, consider an IIR filter with numerator
polynomial b from above and denominator polynomial:

a = [1 1/2 1/3];

The filter's lattice representation is

[k,v] = tf2latc(b,a);  

Because abs(k) < 1 for all reflection coefficients in k, the filter is stable.

The function latc2tf calculates the polynomial coefficients for a filter from its lattice (reflection)
coefficients. Given the reflection coefficient vector k, the corresponding polynomial form is

b = latc2tf(k);

The lattice or lattice/ladder coefficients can be used to implement the filter using the function
latcfilt.

Convolution Matrix
In signal processing, convolving two vectors or matrices is equivalent to filtering one of the input
operands by the other. This relationship permits the representation of a digital filter as a convolution
matrix.

Given any vector, the toolbox function convmtx generates a matrix whose inner product with another
vector is equivalent to the convolution of the two vectors. The generated matrix represents a digital
filter that you can apply to any vector of appropriate length; the inner dimension of the operands
must agree to compute the inner product.

The convolution matrix for a vector b, representing the numerator coefficients for a digital filter, is
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b = [1 2 3];
x = randn(3,1);
C = convmtx(b',3);

Two equivalent ways to convolve b with x are as follows.

y1 = C*x;
y2 = conv(b,x);
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Continuous-Time System Models
The continuous-time system models are representational schemes for analog filters. Many of the
discrete-time system models described earlier are also appropriate for the representation of
continuous-time systems:

• State-space form
• Partial fraction expansion
• Transfer function
• Zero-pole-gain form

It is possible to represent any system of linear time-invariant differential equations as a set of first-
order differential equations. In matrix or state-space form, you can express the equations as

ẋ = Ax + Bu
y = Cx + Du

where u is a vector of nu inputs, x is an nx-element state vector, and y is a vector of ny outputs. In the
MATLAB environment, A, B, C, and D are stored in separate rectangular arrays.

An equivalent representation of the state-space system is the Laplace transform transfer function
description

Y(s) = H(s)U(s)

where

H(s) = C(sI − A)−1B + D

For single-input, single-output systems, this form is given by

H(s) = b(s)
a(s) = b(1)sn + b(2)sn− 1 + … + b(n + 1)

a(1)sm + a(2)sm− 1 + … + a(m + 1)

Given the coefficients of a Laplace transform transfer function, residue determines the partial
fraction expansion of the system. See the description of residue for details.

The factored zero-pole-gain form is

H(s) = z(s)
p(s) = k (s− z(1))(s− z(2))…(s− z(n))

(s− p(1))(s− p(2))…(s− p(m))

As in the discrete-time case, the MATLAB environment stores polynomial coefficients in row vectors
in descending powers of s. It stores polynomial roots, or zeros and poles, in column vectors.
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Linear System Transformations
A number of Signal Processing Toolbox functions are provided to convert between the various linear
system models. You can use the following chart to find an appropriate transfer function: find the row
of the model to convert from on the left side of the chart and the column of the model to convert to on
the top of the chart and read the function name(s) at the intersection of the row and column. Note
that some cells of this table are empty.

To →

From ↓

Transfer
Function

State-
Space

Zero- Pole-
Gain

Partial
Fraction

Lattice
Filter

Second-
Order
Sections

Convolution
Matrix

Transfer
Function

 tf2ss tf2zp
roots

residuez tf2latc none convmtx

State-Space ss2tf  ss2zp none none ss2sos none
Zero-Pole-
Gain

zp2tf poly zp2ss  none none zp2sos none

Partial
Fraction

residuez none none  none none none

Lattice Filter latc2tf none none none  none none
SOS sos2tf sos2ss sos2zp none none  none

Note Converting from one filter structure or model to another may produce a result with different
characteristics than the original. This is due to the computer's finite-precision arithmetic and the
variations in the conversion's round-off computations.

Many of the toolbox filter design functions use these functions internally. For example, the zp2ss
function converts the poles and zeros of an analog prototype into the state-space form required for
creation of a Butterworth, Chebyshev, or elliptic filter. Once in state-space form, the filter design
function performs any required frequency transformation, that is, it transforms the initial lowpass
design into a bandpass, highpass, or bandstop filter, or a lowpass filter with the desired cutoff
frequency.

Note All Signal Processing Toolbox second-order section transformations apply only to digital filters.
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Discrete Fourier Transform
The discrete Fourier transform, or DFT, is the primary tool of digital signal processing. The
foundation of the product is the fast Fourier transform (FFT), a method for computing the DFT with
reduced execution time. Many of the toolbox functions (including Z-domain frequency response,
spectrum and cepstrum analysis, and some filter design and implementation functions) incorporate
the FFT.

The MATLAB® environment provides the functions fft and ifft to compute the discrete Fourier
transform and its inverse, respectively. For the input sequence x and its transformed version X (the
discrete-time Fourier transform at equally spaced frequencies around the unit circle), the two
functions implement the relationships

X(k + 1) = ∑
n = 0

N − 1
x(n + 1)WN

kn

and

x(n + 1) = 1
N ∑

k = 0

N − 1
X(k + 1)WN

−kn .

In these equations, the series subscripts begin with 1 instead of 0 because of the MATLAB vector
indexing scheme, and

WN = e− j2π/N .

Note  The MATLAB convention is to use a negative j for the fft function. This is an engineering
convention; physics and pure mathematics typically use a positive j.

fft, with a single input argument, x, computes the DFT of the input vector or matrix. If x is a vector,
fft computes the DFT of the vector; if x is a rectangular array, fft computes the DFT of each array
column.

For example, create a time vector and signal:

t = 0:1/100:10-1/100;                     % Time vector
x = sin(2*pi*15*t) + sin(2*pi*40*t);      % Signal

Compute the DFT of the signal and the magnitude and phase of the transformed sequence. Decrease
round-off error when computing the phase by setting small-magnitude transform values to zero.

y = fft(x);                               % Compute DFT of x
m = abs(y);                               % Magnitude
y(m<1e-6) = 0;
p = unwrap(angle(y));                     % Phase

To plot the magnitude and phase in degrees, type the following commands:

f = (0:length(y)-1)*100/length(y);        % Frequency vector

subplot(2,1,1)
plot(f,m)
title('Magnitude')
ax = gca;
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ax.XTick = [15 40 60 85];

subplot(2,1,2)
plot(f,p*180/pi)
title('Phase')
ax = gca;
ax.XTick = [15 40 60 85];

A second argument to fft specifies a number of points n for the transform, representing DFT length:

n = 512;
y = fft(x,n);
m = abs(y);
p = unwrap(angle(y));
f = (0:length(y)-1)*100/length(y);

subplot(2,1,1)
plot(f,m)
title('Magnitude')
ax = gca;
ax.XTick = [15 40 60 85];

subplot(2,1,2)
plot(f,p*180/pi)
title('Phase')
ax = gca;
ax.XTick = [15 40 60 85];
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In this case, fft pads the input sequence with zeros if it is shorter than n, or truncates the sequence
if it is longer than n. If n is not specified, it defaults to the length of the input sequence. Execution
time for fft depends on the length, n, of the DFT it performs; see the fft reference page for details
about the algorithm.

Note  The resulting FFT amplitude is A*n/2, where A is the original amplitude and n is the number
of FFT points. This is true only if the number of FFT points is greater than or equal to the number of
data samples. If the number of FFT points is less, the FFT amplitude is lower than the original
amplitude by the above amount.

The inverse discrete Fourier transform function ifft also accepts an input sequence and, optionally,
the number of desired points for the transform. Try the example below; the original sequence x and
the reconstructed sequence are identical (within rounding error).

t = 0:1/255:1;
x = sin(2*pi*120*t);
y = real(ifft(fft(x)));

figure
plot(t,x-y)
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This toolbox also includes functions for the two-dimensional FFT and its inverse, fft2 and ifft2.
These functions are useful for two-dimensional signal or image processing. The goertzel function,
which is another algorithm to compute the DFT, also is included in the toolbox. This function is
efficient for computing the DFT of a portion of a long signal.

It is sometimes convenient to rearrange the output of the fft or fft2 function so the zero frequency
component is at the center of the sequence. The function fftshift moves the zero frequency
component to the center of a vector or matrix.

See Also
fft | fft2 | fftshift | goertzel | ifft | ifft2
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Filter Design and Implementation

• “Filter Requirements and Specification” on page 2-2
• “IIR Filter Design” on page 2-4
• “FIR Filter Design” on page 2-16
• “Special Topics in IIR Filter Design” on page 2-33
• “Filtering Data With Signal Processing Toolbox Software” on page 2-39
• “Selected Bibliography” on page 2-55
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Filter Requirements and Specification
Filter design is the process of creating the filter coefficients to meet specific filtering requirements.
Filter implementation involves choosing and applying a particular filter structure to those
coefficients. Only after both design and implementation have been performed can data be filtered.
The following chapter describes filter design and implementation in Signal Processing Toolbox™
software.

The goal of filter design is to perform frequency dependent alteration of a data sequence. A possible
requirement might be to remove noise above 200 Hz from a data sequence sampled at 1000 Hz. A
more rigorous specification might call for a specific amount of passband ripple, stopband attenuation,
or transition width. A very precise specification could ask to achieve the performance goals with the
minimum filter order, or it could call for an arbitrary magnitude shape, or it might require an FIR
filter. Filter design methods differ primarily in how performance is specified.

To design a filter, the Signal Processing Toolbox software offers two approaches. The first approach
uses the designfilt function. As an example, design and implement a 5th-order lowpass
Butterworth filter with a 3-dB frequency of 200 Hz. Assume a sample rate of 1 kHz. Apply the filter to
input data.

Fs = 1000;
fc = 200;
time = 0:1/Fs:1;
x = cos(2*pi*60*time)+sin(2*pi*120*time)+randn(size(time));

d = designfilt('lowpassiir','FilterOrder',5, ...
    'HalfPowerFrequency',fc,'DesignMethod','butter', ...
    'SampleRate',Fs);
yd = filter(d,x);

The other approach implements the filter using a function such as butter or firpm. All of these
"classic" filter design functions operate with normalized frequencies. Convert frequency
specifications in Hz to normalized frequency to use these functions. The Signal Processing Toolbox
software defines normalized frequency to be in the closed interval [0,1], with 1 denoting π rad/
sample. For example, to specify a normalized frequency of π/2 rad/sample, enter 0.5.

To convert from Hz to normalized frequency, multiply the frequency in Hz by two and divide by the
sampling frequency. For example, design a 5th-order lowpass Butterworth filter with a 3-dB frequency
of 200 Hz using butter.

Wn = fc/(Fs/2);

[b,a] = butter(5,Wn,'low');
yb = filter(b,a,x);

Plot the two filtered signals.

plot(time,yd,time,yb)
legend('designfilt','butter')
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See Also
butter | designfilt | filter
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IIR Filter Design

In this section...
“IIR vs. FIR Filters” on page 2-4
“Classical IIR Filters” on page 2-4
“Other IIR Filters” on page 2-4
“IIR Filter Method Summary” on page 2-4
“Classical IIR Filter Design Using Analog Prototyping” on page 2-5
“Comparison of Classical IIR Filter Types” on page 2-7

IIR vs. FIR Filters
The primary advantage of IIR filters over FIR filters is that they typically meet a given set of
specifications with a much lower filter order than a corresponding FIR filter. Although IIR filters have
nonlinear phase, data processing within MATLAB software is commonly performed “offline,” that is,
the entire data sequence is available prior to filtering. This allows for a noncausal, zero-phase
filtering approach (via the filtfilt function), which eliminates the nonlinear phase distortion of an
IIR filter.

Classical IIR Filters
The classical IIR filters, Butterworth, Chebyshev Types I and II, elliptic, and Bessel, all approximate
the ideal “brick wall” filter in different ways.

This toolbox provides functions to create all these types of classical IIR filters in both the analog and
digital domains (except Bessel, for which only the analog case is supported), and in lowpass,
highpass, bandpass, and bandstop configurations. For most filter types, you can also find the lowest
filter order that fits a given filter specification in terms of passband and stopband attenuation, and
transition width(s).

Other IIR Filters
The direct filter design function yulewalk finds a filter with magnitude response approximating a
specified frequency-response function. This is one way to create a multiband bandpass filter.

You can also use the parametric modeling or system identification functions to design IIR filters.
These functions are discussed in “Parametric Modeling” on page 8-18.

The generalized Butterworth design function maxflat is discussed in the section “Generalized
Butterworth Filter Design” on page 2-14.

IIR Filter Method Summary
The following table summarizes the various filter methods in the toolbox and lists the functions
available to implement these methods.
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Toolbox Filters Methods and Available Functions

Filter Method Description Filter Functions
Analog Prototyping Using the poles and zeros of a

classical lowpass prototype filter in
the continuous (Laplace) domain,
obtain a digital filter through
frequency transformation and filter
discretization.

Complete design functions:
besself, butter, cheby1, cheby2, ellip

Order estimation functions:
buttord, cheb1ord, cheb2ord, ellipord

Lowpass analog prototype functions:
besselap, buttap, cheb1ap, cheb2ap,
ellipap

Frequency transformation functions:
lp2bp, lp2bs, lp2hp, lp2lp

Filter discretization functions:
bilinear, impinvar

Direct Design Design digital filter directly in the
discrete time-domain by
approximating a piecewise linear
magnitude response.

yulewalk

Generalized
Butterworth Design

Design lowpass Butterworth filters
with more zeros than poles.

maxflat

Parametric
Modeling

Find a digital filter that approximates
a prescribed time or frequency
domain response. (See System
Identification Toolbox™
documentation for an extensive
collection of parametric modeling
tools.)

Time-domain modeling functions:
lpc, prony, stmcb

Frequency-domain modeling functions:
invfreqs, invfreqz

Classical IIR Filter Design Using Analog Prototyping
The principal IIR digital filter design technique this toolbox provides is based on the conversion of
classical lowpass analog filters to their digital equivalents. The following sections describe how to
design filters and summarize the characteristics of the supported filter types. See “Special Topics in
IIR Filter Design” on page 2-33 for detailed steps on the filter design process.

Complete Classical IIR Filter Design

You can easily create a filter of any order with a lowpass, highpass, bandpass, or bandstop
configuration using the filter design functions.
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Filter Design Functions

Filter Type Design Function
Bessel (analog only) [b,a] = besself(n,Wn,options)

[z,p,k] = besself(n,Wn,options)

[A,B,C,D] = besself(n,Wn,options)
Butterworth [b,a] = butter(n,Wn,options)

[z,p,k] = butter(n,Wn,options)

[A,B,C,D] = butter(n,Wn,options)
Chebyshev Type I [b,a] = cheby1(n,Rp,Wn,options)

[z,p,k] = cheby1(n,Rp,Wn,options)

[A,B,C,D] = cheby1(n,Rp,Wn,options)
Chebyshev Type II [b,a] = cheby2(n,Rs,Wn,options)

[z,p,k] = cheby2(n,Rs,Wn,options)

[A,B,C,D] = cheby2(n,Rs,Wn,options)
Elliptic [b,a] = ellip(n,Rp,Rs,Wn,options)

[z,p,k] = ellip(n,Rp,Rs,Wn,options)

[A,B,C,D] = ellip(n,Rp,Rs,Wn,options)

By default, each of these functions returns a lowpass filter; you need to specify only the cutoff
frequency that you want, Wn, in normalized units such that the Nyquist frequency is 1 Hz). For a
highpass filter, append 'high' to the function's parameter list. For a bandpass or bandstop filter,
specify Wn as a two-element vector containing the passband edge frequencies. Append 'stop' for
the bandstop configuration.

Here are some example digital filters:
[b,a] = butter(5,0.4);                    % Lowpass Butterworth
[b,a] = cheby1(4,1,[0.4 0.7]);            % Bandpass Chebyshev Type I
[b,a] = cheby2(6,60,0.8,'high');          % Highpass Chebyshev Type II
[b,a] = ellip(3,1,60,[0.4 0.7],'stop');   % Bandstop elliptic

To design an analog filter, perhaps for simulation, use a trailing 's' and specify cutoff frequencies in
rad/s:

[b,a] = butter(5,0.4,'s');      % Analog Butterworth filter

All filter design functions return a filter in the transfer function, zero-pole-gain, or state-space linear
system model representation, depending on how many output arguments are present. In general, you
should avoid using the transfer function form because numerical problems caused by round-off errors
can occur. Instead, use the zero-pole-gain form which you can convert to a second-order section
(SOS) form using zp2sos and then use the SOS form to analyze or implement your filter.
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Note All classical IIR lowpass filters are ill-conditioned for extremely low cutoff frequencies.
Therefore, instead of designing a lowpass IIR filter with a very narrow passband, it can be better to
design a wider passband and decimate the input signal.

Designing IIR Filters to Frequency Domain Specifications

This toolbox provides order selection functions that calculate the minimum filter order that meets a
given set of requirements.

Filter Type Order Estimation Function
Butterworth [n,Wn] = buttord(Wp,Ws,Rp,Rs)
Chebyshev Type I [n,Wn] = cheb1ord(Wp,Ws,Rp,Rs)
Chebyshev Type II [n,Wn] = cheb2ord(Wp,Ws,Rp,Rs)
Elliptic [n,Wn] = ellipord(Wp,Ws,Rp,Rs)

These are useful in conjunction with the filter design functions. Suppose you want a bandpass filter
with a passband from 1000 to 2000 Hz, stopbands starting 500 Hz away on either side, a 10 kHz
sampling frequency, at most 1 dB of passband ripple, and at least 60 dB of stopband attenuation. You
can meet these specifications by using the butter function as follows.

[n,Wn] = buttord([1000 2000]/5000,[500 2500]/5000,1,60)
[b,a] = butter(n,Wn);

n =
    12
Wn =
    0.1951    0.4080

An elliptic filter that meets the same requirements is given by

[n,Wn] = ellipord([1000 2000]/5000,[500 2500]/5000,1,60)
[b,a] = ellip(n,1,60,Wn);

n =
    5
Wn =
    0.2000    0.4000

These functions also work with the other standard band configurations, as well as for analog filters.

Comparison of Classical IIR Filter Types
The toolbox provides five different types of classical IIR filters, each optimal in some way. This section
shows the basic analog prototype form for each and summarizes major characteristics.

Butterworth Filter

The Butterworth filter provides the best Taylor series approximation to the ideal lowpass filter
response at analog frequencies Ω  = 0 and Ω = ∞; for any order N, the magnitude squared response
has 2N – 1 zero derivatives at these locations (maximally flat at Ω = 0 and Ω = ∞). Response is
monotonic overall, decreasing smoothly from Ω = 0 to Ω = ∞. H( jΩ) = 1/ 2 at Ω = 1.
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Chebyshev Type I Filter

The Chebyshev Type I filter minimizes the absolute difference between the ideal and actual frequency
response over the entire passband by incorporating an equal ripple of Rp dB in the passband.
Stopband response is maximally flat. The transition from passband to stopband is more rapid than for
the Butterworth filter. H( jΩ) = 10−Rp/20 at Ω = 1.
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Chebyshev Type II Filter

The Chebyshev Type II filter minimizes the absolute difference between the ideal and actual
frequency response over the entire stopband by incorporating an equal ripple of Rs dB in the
stopband. Passband response is maximally flat.

The stopband does not approach zero as quickly as the type I filter (and does not approach zero at all
for even-valued filter order n). The absence of ripple in the passband, however, is often an important
advantage. H( jΩ) = 10−Rs/20 at Ω = 1.
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Elliptic Filter

Elliptic filters are equiripple in both the passband and stopband. They generally meet filter
requirements with the lowest order of any supported filter type. Given a filter order n, passband
ripple Rp in decibels, and stopband ripple Rs in decibels, elliptic filters minimize transition width.
H( jΩ) = 10−Rp/20 at Ω = 1.
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Bessel Filter

Analog Bessel lowpass filters have maximally flat group delay at zero frequency and retain nearly
constant group delay across the entire passband. Filtered signals therefore maintain their
waveshapes in the passband frequency range. When an analog Bessel lowpass filter is converted to a
digital one through frequency mapping, it no longer has this maximally flat property. Signal
Processing Toolbox supports only the analog case for the complete Bessel filter design function.

Bessel filters generally require a higher filter order than other filters for satisfactory stopband
attenuation. H( jΩ) < 1/ 2 at Ω = 1 and decreases as filter order n increases.
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Note The lowpass filters shown above were created with the analog prototype functions besselap,
buttap, cheb1ap, cheb2ap, and ellipap. These functions find the zeros, poles, and gain of an nth-
order analog filter of the appropriate type with a cutoff frequency of 1 rad/s. The complete filter
design functions (besself, butter, cheby1, cheby2, and ellip) call the prototyping functions as a
first step in the design process. See “Special Topics in IIR Filter Design” on page 2-33 for details.

To create similar plots, use n = 5 and, as needed, Rp = 0.5 and Rs = 20. For example, to create the
elliptic filter plot:

[z,p,k] = ellipap(5,0.5,20);
w = logspace(-1,1,1000);
h = freqs(k*poly(z),poly(p),w);
semilogx(w,abs(h)), grid
xlabel('Frequency (rad/s)')
ylabel('Magnitude')

Direct IIR Filter Design

This toolbox uses the term direct methods to describe techniques for IIR design that find a filter
based on specifications in the discrete domain. Unlike the analog prototyping method, direct design
methods are not constrained to the standard lowpass, highpass, bandpass, or bandstop
configurations. Rather, these functions design filters with an arbitrary, perhaps multiband, frequency
response. This section discusses the yulewalk function, which is intended specifically for filter
design; “Parametric Modeling” on page 8-18 discusses other methods that may also be considered
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direct, such as Prony's method, Linear Prediction, the Steiglitz-McBride method, and inverse
frequency design.

The yulewalk function designs recursive IIR digital filters by fitting a specified frequency response.
yulewalk's name reflects its method for finding the filter's denominator coefficients: it finds the
inverse FFT of the ideal specified magnitude-squared response and solves the modified Yule-Walker
equations using the resulting autocorrelation function samples. The statement

[b,a] = yulewalk(n,f,m)

returns row vectors b and a containing the n+1 numerator and denominator coefficients of the nth-
order IIR filter whose frequency-magnitude characteristics approximate those given in vectors f and
m. f is a vector of frequency points ranging from 0 to 1, where 1 represents the Nyquist frequency. m
is a vector containing the specified magnitude response at the points in f. f and m can describe any
piecewise linear shape magnitude response, including a multiband response. The FIR counterpart of
this function is fir2, which also designs a filter based on an arbitrary piecewise linear magnitude
response. See “FIR Filter Design” on page 2-16 for details.

Note that yulewalk does not accept phase information, and no statements are made about the
optimality of the resulting filter.

Design a multiband filter with yulewalk and plot the specified and actual frequency response:

m = [0   0   1   1   0   0   1   1   0 0];
f = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1];
[b,a] = yulewalk(10,f,m);
[h,w] = freqz(b,a,128)
plot(f,m,w/pi,abs(h))
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Generalized Butterworth Filter Design

The toolbox function maxflat enables you to design generalized Butterworth filters, that is,
Butterworth filters with differing numbers of zeros and poles. This is desirable in some
implementations where poles are more expensive computationally than zeros. maxflat is just like
the butter function, except that it you can specify two orders (one for the numerator and one for the
denominator) instead of just one. These filters are maximally flat. This means that the resulting filter
is optimal for any numerator and denominator orders, with the maximum number of derivatives at 0
and the Nyquist frequency ω = π both set to 0.

For example, when the two orders are the same, maxflat is the same as butter:

[b,a] = maxflat(3,3,0.25)

b =
    0.0317    0.0951    0.0951    0.0317
a =
    1.0000   -1.4590    0.9104   -0.1978

[b,a] = butter(3,0.25)

b =
    0.0317    0.0951    0.0951    0.0317
a =
    1.0000   -1.4590    0.9104   -0.1978

However, maxflat is more versatile because it allows you to design a filter with more zeros than
poles:
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[b,a] = maxflat(3,1,0.25)

b =
    0.0950    0.2849    0.2849    0.0950
a =
    1.0000   -0.2402

The third input to maxflat is the half-power frequency, a frequency between 0 and 1 with a
magnitude response of 1/ 2.

You can also design linear phase filters that have the maximally flat property using the 'sym' option:

maxflat(4,'sym',0.3)

ans =
    0.0331    0.2500    0.4337    0.2500    0.0331

For complete details of the maxflat algorithm, see Selesnick and Burrus [2].
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FIR Filter Design
In this section...
“FIR vs. IIR Filters” on page 2-16
“FIR Filter Summary” on page 2-16
“Linear Phase Filters” on page 2-17
“Windowing Method” on page 2-17
“Multiband FIR Filter Design with Transition Bands” on page 2-20
“Constrained Least Squares FIR Filter Design” on page 2-24
“Arbitrary-Response Filter Design” on page 2-28

FIR vs. IIR Filters
Digital filters with finite-duration impulse response (all-zero, or FIR filters) have both advantages and
disadvantages compared to infinite-duration impulse response (IIR) filters.

FIR filters have the following primary advantages:

• They can have exactly linear phase.
• They are always stable.
• The design methods are generally linear.
• They can be realized efficiently in hardware.
• The filter startup transients have finite duration.

The primary disadvantage of FIR filters is that they often require a much higher filter order than IIR
filters to achieve a given level of performance. Correspondingly, the delay of these filters is often
much greater than for an equal performance IIR filter.

FIR Filter Summary
FIR Filters

Filter Design
Method

Description Filter Functions

Windowing Apply window to truncated inverse Fourier
transform of specified "brick wall" filter

fir1, fir2, kaiserord

Multiband with
Transition Bands

Equiripple or least squares approach over sub-
bands of the frequency range

firls, firpm,
firpmord

Constrained Least
Squares

Minimize squared integral error over entire
frequency range subject to maximum error
constraints

fircls, fircls1

Arbitrary Response Arbitrary responses, including nonlinear phase and
complex filters

cfirpm

Raised Cosine Lowpass response with smooth, sinusoidal
transition

rcosdesign
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Linear Phase Filters
Except for cfirpm, all of the FIR filter design functions design linear phase filters only. The filter
coefficients, or “taps,” of such filters obey either an even or odd symmetry relation. Depending on
this symmetry, and on whether the order n of the filter is even or odd, a linear phase filter (stored in
length n+1 vector b) has certain inherent restrictions on its frequency response.

Linear Phase
Filter Type

Filter
Order

Symmetry of Coefficients Response
H(f), f = 0

Response
H(f), f = 1
(Nyquist)

Type I Even even:

b(k) = b(n + 2 − k), k = 1, ..., n + 1

No restriction No restriction

Type II Odd even:

b(k) = b(n + 2 − k), k = 1, ..., n + 1

No restriction H(1) = 0

Type III Even odd:

b(k) = − b(n + 2 − k), k = 1, ..., n + 1

H(0) = 0 H(1) = 0

Type IV Odd odd:

b(k) = − b(n + 2 − k), k = 1, ..., n + 1

H(0) = 0 No restriction

The phase delay and group delay of linear phase FIR filters are equal and constant over the frequency
band. For an order n linear phase FIR filter, the group delay is n/2, and the filtered signal is simply
delayed by n/2 time steps (and the magnitude of its Fourier transform is scaled by the filter's
magnitude response). This property preserves the wave shape of signals in the passband; that is,
there is no phase distortion.

The functions fir1, fir2, firls, firpm, fircls, and fircls1 all design type I and II linear phase
FIR filters by default. rcosdesign designs only type I filters. Both firls and firpm design type III
and IV linear phase FIR filters given a 'hilbert' or 'differentiator' flag. cfirpm can design
any type of linear phase filter, and nonlinear phase filters as well.

Note Because the frequency response of a type II filter is zero at the Nyquist frequency (“high”
frequency), fir1 does not design type II highpass and bandstop filters. For odd-valued n in these
cases, fir1 adds 1 to the order and returns a type I filter.

Windowing Method
Consider the ideal, or “brick wall,” digital lowpass filter with a cutoff frequency of ω0 rad/s. This filter
has magnitude 1 at all frequencies with magnitude less than ω0, and magnitude 0 at frequencies with
magnitude between ω0 and π. Its impulse response sequence h(n) is

h(n) = 1
2π∫−π

π
H(ω)e jωndω = 1

2π∫−ω0

ω0
e jωndω =

sinω0n
πn

This filter is not implementable since its impulse response is infinite and noncausal. To create a finite-
duration impulse response, truncate it by applying a window. By retaining the central section of
impulse response in this truncation, you obtain a linear phase FIR filter. For example, a length 51
filter with a lowpass cutoff frequency ω0 of 0.4 π rad/s is
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b = 0.4*sinc(0.4*(-25:25));

The window applied here is a simple rectangular window. By Parseval’s theorem, this is the length 51
filter that best approximates the ideal lowpass filter, in the integrated least squares sense. The
following command displays the filter's frequency response in FVTool:

fvtool(b,1)

Note that the y-axis shown in the figure below is in Magnitude Squared. You can set this by right-
clicking on the axis label and selecting Magnitude Squared from the menu.

Ringing and ripples occur in the response, especially near the band edge. This “Gibbs effect” does not
vanish as the filter length increases, but a nonrectangular window reduces its magnitude.
Multiplication by a window in the time domain causes a convolution or smoothing in the frequency
domain. Apply a length 51 Hamming window to the filter and display the result using FVTool:

b = 0.4*sinc(0.4*(-25:25));
b = b.*hamming(51)';
fvtool(b,1)

Note that the y-axis shown in the figure below is in Magnitude Squared. You can set this by right-
clicking on the axis label and selecting Magnitude Squared from the menu.
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Using a Hamming window greatly reduces the ringing. This improvement is at the expense of
transition width (the windowed version takes longer to ramp from passband to stopband) and
optimality (the windowed version does not minimize the integrated squared error).

Standard Band FIR Filter Design: fir1

fir1 uses a least-squares approximation to compute filter coefficients and then smooths the impulse
response with a window. For an overview of windows and their properties, see “Windows” on page 8-
2. fir1 resembles the IIR filter design functions in that it is formulated to design filters in
standard band configurations: lowpass, bandpass, highpass, and bandstop.

The statements

n = 50;
Wn = 0.4;
b = fir1(n,Wn);

create row vector b containing the coefficients of the order n Hamming-windowed filter. This is a
lowpass, linear phase FIR filter with cutoff frequency Wn. Wn is a number between 0 and 1, where 1
corresponds to the Nyquist frequency, half the sampling frequency. (Unlike other methods, here Wn
corresponds to the 6 dB point.) For a highpass filter, simply append 'high' to the function's
parameter list. For a bandpass or bandstop filter, specify Wn as a two-element vector containing the
passband edge frequencies. Append 'stop' for the bandstop configuration.

b = fir1(n,Wn,window) uses the window specified in column vector window for the design. The
vector window must be n+1 elements long. If you do not specify a window, fir1 applies a Hamming
window.
Kaiser Window Order Estimation

The kaiserord function estimates the filter order, cutoff frequency, and Kaiser window beta
parameter needed to meet a given set of specifications. Given a vector of frequency band edges and a

 FIR Filter Design

2-19



corresponding vector of magnitudes, as well as maximum allowable ripple, kaiserord returns
appropriate input parameters for the fir1 function.

Multiband FIR Filter Design: fir2

The fir2 function also designs windowed FIR filters, but with an arbitrarily shaped piecewise linear
frequency response. This is in contrast to fir1, which only designs filters in standard lowpass,
highpass, bandpass, and bandstop configurations.

The commands

n = 50;
f = [0 .4 .5 1];
m = [1  1  0 0];
b = fir2(n,f,m);

return row vector b containing the n+1 coefficients of the order n FIR filter whose frequency-
magnitude characteristics match those given by vectors f and m. f is a vector of frequency points
ranging from 0 to 1, where 1 represents the Nyquist frequency. m is a vector containing the specified
magnitude response at the points specified in f. (The IIR counterpart of this function is yulewalk,
which also designs filters based on arbitrary piecewise linear magnitude responses. See “IIR Filter
Design” on page 2-4 for details.)

Multiband FIR Filter Design with Transition Bands
The firls and firpm functions provide a more general means of specifying the ideal specified filter
than the fir1 and fir2 functions. These functions design Hilbert transformers, differentiators, and
other filters with odd symmetric coefficients (type III and type IV linear phase). They also let you
include transition or “don't care” regions in which the error is not minimized, and perform band
dependent weighting of the minimization.

The firls function is an extension of the fir1 and fir2 functions in that it minimizes the integral
of the square of the error between the specified frequency response and the actual frequency
response.

The firpm function implements the Parks-McClellan algorithm, which uses the Remez exchange
algorithm and Chebyshev approximation theory to design filters with optimal fits between the
specified and actual frequency responses. The filters are optimal in the sense that they minimize the
maximum error between the specified frequency response and the actual frequency response; they
are sometimes called minimax filters. Filters designed in this way exhibit an equiripple behavior in
their frequency response, and hence are also known as equiripple filters. The Parks-McClellan FIR
filter design algorithm is perhaps the most popular and widely used FIR filter design methodology.

The syntax for firls and firpm is the same; the only difference is their minimization schemes. The
next example shows how filters designed with firls and firpm reflect these different schemes.

Basic Configurations

The default mode of operation of firls and firpm is to design type I or type II linear phase filters,
depending on whether the order you want is even or odd, respectively. A lowpass example with
approximate amplitude 1 from 0 to 0.4 Hz, and approximate amplitude 0 from 0.5 to 1.0 Hz is

n = 20;                    % Filter order
f = [0 0.4 0.5 1];         % Frequency band edges
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a = [1  1  0 0];           % Amplitudes
b = firpm(n,f,a);

From 0.4 to 0.5 Hz, firpm performs no error minimization; this is a transition band or “don't care”
region. A transition band minimizes the error more in the bands that you do care about, at the
expense of a slower transition rate. In this way, these types of filters have an inherent trade-off
similar to FIR design by windowing.

To compare least squares to equiripple filter design, use firls to create a similar filter. Type

bb = firls(n,f,a);

and compare their frequency responses using FVTool:

fvtool(b,1,bb,1)

Note that the y-axis shown in the figure below is in Magnitude Squared. You can set this by right-
clicking on the axis label and selecting Magnitude Squared from the menu.

The filter designed with firpm exhibits equiripple behavior. Also note that the firls filter has a
better response over most of the passband and stopband, but at the band edges (f = 0.4 and
f = 0.5), the response is further away from the ideal than the firpm filter. This shows that the
firpm filter's maximum error over the passband and stopband is smaller and, in fact, it is the
smallest possible for this band edge configuration and filter length.

Think of frequency bands as lines over short frequency intervals. firpm and firls use this scheme
to represent any piecewise linear frequency-response function with any transition bands. firls and
firpm design lowpass, highpass, bandpass, and bandstop filters; a bandpass example is

f = [0 0.3  0.4  0.7  0.8  1];   % Band edges in pairs
a = [0  0    1    1    0   0];   % Bandpass filter amplitude
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Technically, these f and a vectors define five bands:

• Two stopbands, from 0.0 to 0.3 and from 0.8 to 1.0
• A passband from 0.4 to 0.7
• Two transition bands, from 0.3 to 0.4 and from 0.7 to 0.8

Example highpass and bandstop filters are

f = [0 0.7  0.8  1];            % Band edges in pairs
a = [0  0    1   1];            % Highpass filter amplitude
f = [0 0.3  0.4  0.5  0.8  1];  % Band edges in pairs
a = [1  1    0    0    1   1];  % Bandstop filter amplitude

An example multiband bandpass filter is

f = [0 0.1 0.15 0.25 0.3 0.4 0.45 0.55 0.6 0.7 0.75 0.85 0.9 1];
a = [1  1   0    0    1   1   0    0    1   1   0    0    1  1];

Another possibility is a filter that has as a transition region the line connecting the passband with the
stopband; this can help control “runaway” magnitude response in wide transition regions:

f = [0 0.4 0.42 0.48 0.5  1];
a = [1 1 0.8 0.2 0 0];   % Passband, linear transition, 
                         %  stopband

The Weight Vector

Both firls and firpm allow you to place more or less emphasis on minimizing the error in certain
frequency bands relative to others. To do this, specify a weight vector following the frequency and
amplitude vectors. An example lowpass equiripple filter with 10 times less ripple in the stopband than
the passband is

n = 20;              % Filter order
f = [0 0.4 0.5 1];   % Frequency band edges
a = [1  1   0  0];   % Amplitudes
w = [1 10];          % Weight vector
b = firpm(n,f,a,w);

A legal weight vector is always half the length of the f and a vectors; there must be exactly one
weight per band.

Anti-Symmetric Filters / Hilbert Transformers

When called with a trailing 'h' or 'Hilbert' option, firpm and firls design FIR filters with odd
symmetry, that is, type III (for even order) or type IV (for odd order) linear phase filters. An ideal
Hilbert transformer has this anti-symmetry property and an amplitude of 1 across the entire
frequency range. Try the following approximate Hilbert transformers and plot them using FVTool:

b = firpm(21,[0.05 1],[1 1],'h');       % Highpass Hilbert
bb = firpm(20,[0.05 0.95],[1 1],'h');   % Bandpass Hilbert
fvtool(b,1,bb,1)
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You can find the delayed Hilbert transform of a signal x by passing it through these filters.

fs = 1000;            % Sampling frequency
t = (0:1/fs:2)';      % Two second time vector
x = sin(2*pi*300*t);  % 300 Hz sine wave example signal
xh = filter(bb,1,x);  % Hilbert transform of x

The analytic signal corresponding to x is the complex signal that has x as its real part and the Hilbert
transform of x as its imaginary part. For this FIR method (an alternative to the hilbert function),
you must delay x by half the filter order to create the analytic signal:

xd = [zeros(10,1); x(1:length(x)-10)];        % Delay 10 samples
xa = xd + j*xh;                            % Analytic signal

This method does not work directly for filters of odd order, which require a noninteger delay. In this
case, the hilbert function, described in “Hilbert Transform” on page 8-44, estimates the analytic
signal. Alternatively, use the resample function to delay the signal by a noninteger number of
samples.

Differentiators

Differentiation of a signal in the time domain is equivalent to multiplication of the signal's Fourier
transform by an imaginary ramp function. That is, to differentiate a signal, pass it through a filter that
has a response H(ω) = jω. Approximate the ideal differentiator (with a delay) using firpm or firls
with a 'd' or 'differentiator' option:

b = firpm(21,[0 1],[0 pi],'d');

For a type III filter, the differentiation band should stop short of the Nyquist frequency, and the
amplitude vector must reflect that change to ensure the correct slope:

bb = firpm(20,[0 0.9],[0 0.9*pi],'d');
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In the 'd' mode, firpm weights the error by 1/ω in nonzero amplitude bands to minimize the
maximum relative error. firls weights the error by (1/ω)2 in nonzero amplitude bands in the 'd'
mode.

The following plots show the magnitude responses for the differentiators above.

fvtool(b,1,bb,1)
legend('Odd order','Even order','Location','best')

Constrained Least Squares FIR Filter Design
The Constrained Least Squares (CLS) FIR filter design functions implement a technique that enables
you to design FIR filters without explicitly defining the transition bands for the magnitude response.
The ability to omit the specification of transition bands is useful in several situations. For example, it
may not be clear where a rigidly defined transition band should appear if noise and signal information
appear together in the same frequency band. Similarly, it may make sense to omit the specification of
transition bands if they appear only to control the results of Gibbs phenomena that appear in the
filter's response. See Selesnick, Lang, and Burrus [2] for discussion of this method.

Instead of defining passbands, stopbands, and transition regions, the CLS method accepts a cutoff
frequency (for the highpass, lowpass, bandpass, or bandstop cases), or passband and stopband edges
(for multiband cases), for the response you specify. In this way, the CLS method defines transition
regions implicitly, rather than explicitly.

The key feature of the CLS method is that it enables you to define upper and lower thresholds that
contain the maximum allowable ripple in the magnitude response. Given this constraint, the
technique applies the least square error minimization technique over the frequency range of the
filter's response, instead of over specific bands. The error minimization includes any areas of
discontinuity in the ideal, "brick wall" response. An additional benefit is that the technique enables
you to specify arbitrarily small peaks resulting from the Gibbs phenomenon.
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There are two toolbox functions that implement this design technique.

Description Function
Constrained least square multiband FIR filter design fircls
Constrained least square filter design for lowpass and highpass linear phase filters fircls1

For details on the calling syntax for these functions, see their reference descriptions in the Function
Reference.

Basic Lowpass and Highpass CLS Filter Design

The most basic of the CLS design functions, fircls1, uses this technique to design lowpass and
highpass FIR filters. As an example, consider designing a filter with order 61 impulse response and
cutoff frequency of 0.3 (normalized). Further, define the upper and lower bounds that constrain the
design process as:

• Maximum passband deviation from 1 (passband ripple) of 0.02.
• Maximum stopband deviation from 0 (stopband ripple) of 0.008.

To approach this design problem using fircls1, use the following commands:

n = 61;
wo = 0.3;
dp = 0.02;    
ds = 0.008;
h = fircls1(n,wo,dp,ds);
fvtool(h,1)

Note that the y-axis shown below is in Magnitude Squared. You can set this by right-clicking on the
axis label and selecting Magnitude Squared from the menu.
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Multiband CLS Filter Design

fircls uses the same technique to design FIR filters with a specified piecewise constant magnitude
response. In this case, you can specify a vector of band edges and a corresponding vector of band
amplitudes. In addition, you can specify the maximum amount of ripple for each band.

For example, assume the specifications for a filter call for:

• From 0 to 0.3 (normalized): amplitude 0, upper bound 0.005, lower bound –0.005
• From 0.3 to 0.5: amplitude 0.5, upper bound 0.51, lower bound 0.49
• From 0.5 to 0.7: amplitude 0, upper bound 0.03, lower bound –0.03
• From 0.7 to 0.9: amplitude 1, upper bound 1.02, lower bound 0.98
• From 0.9 to 1: amplitude 0, upper bound 0.05, lower bound –0.05

Design a CLS filter with impulse response order 129 that meets these specifications:

n = 129;
f = [0 0.3 0.5 0.7 0.9 1];
a = [0 0.5 0 1 0];
up = [0.005 0.51 0.03 1.02 0.05];
lo = [-0.005 0.49 -0.03 0.98 -0.05];
h = fircls(n,f,a,up,lo);
fvtool(h,1)

Note that the y-axis shown below is in Magnitude Squared. You can set this by right-clicking on the
axis label and selecting Magnitude Squared from the menu.
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Weighted CLS Filter Design

Weighted CLS filter design lets you design lowpass or highpass FIR filters with relative weighting of
the error minimization in each band. The fircls1 function enables you to specify the passband and
stopband edges for the least squares weighting function, as well as a constant k that specifies the
ratio of the stopband to passband weighting.

For example, consider specifications that call for an FIR filter with impulse response order of 55 and
cutoff frequency of 0.3 (normalized). Also assume maximum allowable passband ripple of 0.02 and
maximum allowable stopband ripple of 0.004. In addition, add weighting requirements:

• Passband edge for the weight function of 0.28 (normalized)
• Stopband edge for the weight function of 0.32
• Weight error minimization 10 times as much in the stopband as in the passband

To approach this using fircls1, type

n = 55;
wo = 0.3;
dp = 0.02;
ds = 0.004;
wp = 0.28;
ws = 0.32;
k = 10;
h = fircls1(n,wo,dp,ds,wp,ws,k);
fvtool(h,1)

Note that the y-axis shown below is in Magnitude Squared. You can set this by right-clicking on the
axis label and selecting Magnitude Squared from the menu.
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Arbitrary-Response Filter Design
The cfirpm filter design function provides a tool for designing FIR filters with arbitrary complex
responses. It differs from the other filter design functions in how the frequency response of the filter
is specified: it accepts the name of a function which returns the filter response calculated over a grid
of frequencies. This capability makes cfirpm a highly versatile and powerful technique for filter
design.

This design technique may be used to produce nonlinear-phase FIR filters, asymmetric frequency-
response filters (with complex coefficients), or more symmetric filters with custom frequency
responses.

The design algorithm optimizes the Chebyshev (or minimax) error using an extended Remez-
exchange algorithm for an initial estimate. If this exchange method fails to obtain the optimal filter,
the algorithm switches to an ascent-descent algorithm that takes over to finish the convergence to
the optimal solution.

Multiband Filter Design

Consider a multiband filter with the following special frequency-domain characteristics.

Band Amplitude Optimization Weighting
[–1 –0.5] [5 1] 1
[–0.4 +0.3] [2 2] 10
[+0.4 +0.8] [2 1] 5

A linear-phase multiband filter may be designed using the predefined frequency-response function
multiband, as follows:
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b = cfirpm(38, [-1 -0.5 -0.4 0.3 0.4 0.8], ...
               {'multiband', [5 1 2 2 2 1]}, [1 10 5]);

For the specific case of a multiband filter, we can use a shorthand filter design notation similar to the
syntax for firpm:

b = cfirpm(38,[-1 -0.5 -0.4 0.3 0.4 0.8], ...
              [5 1 2 2 2 1], [1 10 5]);

As with firpm, a vector of band edges is passed to cfirpm. This vector defines the frequency bands
over which optimization is performed; note that there are two transition bands, from –0.5 to –0.4 and
from 0.3 to 0.4.

In either case, the frequency response is obtained and plotted using linear scale in FVTool:

fvtool(b,1)

Note that the range of data shown below is (-pi,pi).

The filter response for this multiband filter is complex, which is expected because of the asymmetry
in the frequency domain. The impulse response, which you can select from the FVTool toolbar, is
shown below.
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Filter Design with Reduced Delay

Consider the design of a 62-tap lowpass filter with a half-Nyquist cutoff. If we specify a negative offset
value to the lowpass filter design function, the group delay offset for the design is significantly less
than that obtained for a standard linear-phase design. This filter design may be computed as follows:

b = cfirpm(61,[0 0.5 0.55 1],{'lowpass',-16});

The resulting magnitude response is

fvtool(b,1)

The y-axis is in Magnitude Squared, which you can set by right-clicking on the axis label and
selecting Magnitude Squared from the menu.
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The group delay of the filter reveals that the offset has been reduced from N/2 to N/2-16 (i.e., from
30.5 to 14.5). Now, however, the group delay is no longer flat in the passband region. To create this
plot, click the Group Delay Response button on the toolbar.

If we compare this nonlinear-phase filter to a linear-phase filter that has exactly 14.5 samples of
group delay, the resulting filter is of order 2*14.5, or 29. Using b = cfirpm(29,[0 0.5 0.55
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1],'lowpass'), the passband and stopband ripple is much greater for the order 29 filter. These
comparisons can assist you in deciding which filter is more appropriate for a specific application.
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Special Topics in IIR Filter Design
In this section...
“Classic IIR Filter Design” on page 2-33
“Analog Prototype Design” on page 2-33
“Frequency Transformation” on page 2-34
“Filter Discretization” on page 2-35

Classic IIR Filter Design
The classic IIR filter design technique includes the following steps.

1 Find an analog lowpass filter with cutoff frequency of 1 and translate this prototype filter to the
specified band configuration

2 Transform the filter to the digital domain.
3 Discretize the filter.

The toolbox provides functions for each of these steps.

Design Task Available functions
Analog lowpass prototype buttap, cheb1ap, besselap, ellipap, cheb2ap
Frequency transformation lp2lp, lp2hp, lp2bp, lp2bs
Discretization bilinear, impinvar

Alternatively, the butter, cheby1, cheb2ord, ellip, and besself functions perform all steps of
the filter design and the buttord, cheb1ord, cheb2ord, and ellipord functions provide minimum
order computation for IIR filters. These functions are sufficient for many design problems, and the
lower level functions are generally not needed. But if you do have an application where you need to
transform the band edges of an analog filter, or discretize a rational transfer function, this section
describes the tools with which to do so.

Analog Prototype Design
This toolbox provides a number of functions to create lowpass analog prototype filters with cutoff
frequency of 1, the first step in the classical approach to IIR filter design.

The table below summarizes the analog prototype design functions for each supported filter type;
plots for each type are shown in “IIR Filter Design” on page 2-4.

Filter Type Analog Prototype Function
Bessel [z,p,k] = besselap(n)
Butterworth [z,p,k] = buttap(n)
Chebyshev Type I [z,p,k] = cheb1ap(n,Rp)
Chebyshev Type II [z,p,k] = cheb2ap(n,Rs)
Elliptic [z,p,k] = ellipap(n,Rp,Rs)
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Frequency Transformation
The second step in the analog prototyping design technique is the frequency transformation of a
lowpass prototype. The toolbox provides a set of functions to transform analog lowpass prototypes
(with cutoff frequency of 1 rad/s) into bandpass, highpass, bandstop, and lowpass filters with the
specified cutoff frequency.

Frequency Transformation Transformation Function
Lowpass to lowpass

s′ = s/ω0

[numt,dent]   = lp2lp (num,den,Wo)

[At,Bt,Ct,Dt] = lp2lp (A,B,C,D,Wo)
Lowpass to highpass

s′ =
ω0
s

[numt,dent]   = lp2hp (num,den,Wo)

[At,Bt,Ct,Dt] = lp2hp (A,B,C,D,Wo)

Lowpass to bandpass

s′ =
ω0
Bω

(s/ω0)2 + 1
s/ω0

[numt,dent]   = lp2bp (num,den,Wo,Bw)

[At,Bt,Ct,Dt] = lp2bp (A,B,C,D,Wo,Bw)

Lowpass to bandstop

s′ =
Bω
ω0

s/ω0

(s/ω0)2 + 1

[numt,dent]   = lp2bs (num,den,Wo,Bw)

[At,Bt,Ct,Dt] = lp2bs( A,B,C,D,Wo,Bw)

As shown, all of the frequency transformation functions can accept two linear system models: transfer
function and state-space form. For the bandpass and bandstop cases

ω0 = ω1ω2

and

Bω = ω2− ω1

where ω1 is the lower band edge and ω2 is the upper band edge.

The frequency transformation functions perform frequency variable substitution. In the case of lp2bp
and lp2bs, this is a second-order substitution, so the output filter is twice the order of the input. For
lp2lp and lp2hp, the output filter is the same order as the input.

To begin designing an order 10 bandpass Chebyshev Type I filter with a value of 3 dB for passband
ripple, enter

[z,p,k] = cheb1ap(10,3);

Outputs z, p, and k contain the zeros, poles, and gain of a lowpass analog filter with cutoff frequency
Ωc equal to 1 rad/s. Use the function to transform this lowpass prototype to a bandpass analog filter
with band edges Ω1 = π/5 and Ω2 = π. First, convert the filter to state-space form so the lp2bp
function can accept it:

[A,B,C,D] = zp2ss(z,p,k);   % Convert to state-space form.

Now, find the bandwidth and center frequency, and call lp2bp:
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u1 = 0.1*2*pi;
u2 = 0.5*2*pi;   % In radians per second
Bw = u2-u1;
Wo = sqrt(u1*u2);
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw);

Finally, calculate the frequency response and plot its magnitude:

[b,a] = ss2tf(At,Bt,Ct,Dt);        % Convert to TF form
w = linspace(0.01,1,500)*2*pi;     % Generate frequency vector
h = freqs(b,a,w);                  % Compute frequency response
semilogy(w/2/pi,abs(h))            % Plot log magnitude vs. freq
xlabel('Frequency (Hz)')
grid

Filter Discretization
The third step in the analog prototyping technique is the transformation of the filter to the discrete-
time domain. The toolbox provides two methods for this: the impulse invariant and bilinear
transformations. The filter design functions butter, cheby1, cheby2, and ellip use the bilinear
transformation for discretization in this step.

Analog to Digital
Transformation

Transformation Function

Impulse invariance [numd,dend] = impinvar (num,den,fs)
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Analog to Digital
Transformation

Transformation Function

Bilinear transform [zd,pd,kd] = bilinear (z,p,k,fs,Fp)

[numd,dend] = bilinear (num,den,fs,Fp)

[Ad,Bd,Cd,Dd] = bilinear (At,Bt,Ct,Dt,fs,Fp)

Impulse Invariance

The toolbox function impinvar creates a digital filter whose impulse response is the samples of the
continuous impulse response of an analog filter. This function works only on filters in transfer
function form. For best results, the analog filter should have negligible frequency content above half
the sampling frequency, because such high-frequency content is aliased into lower bands upon
sampling. Impulse invariance works for some lowpass and bandpass filters, but is not appropriate for
highpass and bandstop filters.

Design a Chebyshev Type I filter and plot its frequency and phase response using FVTool:

[bz,az] = impinvar(b,a,2);
fvtool(bz,az)

Click the Magnitude and Phase Response toolbar button.

Impulse invariance retains the cutoff frequencies of 0.1 Hz and 0.5 Hz.

Bilinear Transformation

The bilinear transformation is a nonlinear mapping of the continuous domain to the discrete domain;
it maps the s-plane into the z-plane by
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H(z) = H(s) s = kz − 1
z + 1

Bilinear transformation maps the jΩ-axis of the continuous domain to the unit circle of the discrete
domain according to

ω = 2tan−1 Ω
k

The toolbox function bilinear implements this operation, where the frequency warping constant k
is equal to twice the sampling frequency (2*fs) by default, and equal to 2πfp/tan πfp/ fs if you give
bilinear a trailing argument that represents a “match” frequency Fp. If a match frequency Fp (in
hertz) is present, bilinear maps the frequency Ω = 2πfp (in rad/s) to the same frequency in the
discrete domain, normalized to the sampling rate: ω = 2πfp/fs (in rad/sample).

The bilinear function can perform this transformation on three different linear system
representations: zero-pole-gain, transfer function, and state-space form. Try calling bilinear with
the state-space matrices that describe the Chebyshev Type I filter from the previous section, using a
sampling frequency of 2 Hz, and retaining the lower band edge of 0.1 Hz:

[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,2,0.1);

The frequency response of the resulting digital filter is

[bz,az] = ss2tf(Ad,Bd,Cd,Dd);       % Convert to TF
fvtool(bz,az)

Click the Magnitude and Phase Response toolbar button.

The lower band edge is at 0.1 Hz as expected. Notice, however, that the upper band edge is slightly
less than 0.5 Hz, although in the analog domain it was exactly 0.5 Hz. This illustrates the nonlinear
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nature of the bilinear transformation. To counteract this nonlinearity, it is necessary to create analog
domain filters with “prewarped” band edges, which map to the correct locations upon bilinear
transformation. Here the prewarped frequencies u1 and u2 generate Bw and Wo for the lp2bp
function:

fs = 2;                           % Sampling frequency (hertz)
u1 = 2*fs*tan(0.1*(2*pi/fs)/2);   % Lower band edge (rad/s)
u2 = 2*fs*tan(0.5*(2*pi/fs)/2);   % Upper band edge (rad/s)
Bw = u2 - u1;                     % Bandwidth
Wo = sqrt(u1*u2);                 % Center frequency
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw);

A digital bandpass filter with correct band edges 0.1 and 0.5 times the Nyquist frequency is

[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,fs);

The example bandpass filters from the last two sections could also be created in one statement using
the complete IIR design function cheby1. For instance, an analog version of the example Chebyshev
filter is

[b,a] = cheby1(5,3,[0.1 0.5]*2*pi,'s');

Note that the band edges are in rad/s for analog filters, whereas for the digital case, frequency is
normalized:

[bz,az] = cheby1(5,3,[0.1 0.5]);

All of the complete design functions call bilinear internally. They prewarp the band edges as
needed to obtain the correct digital filter.
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Filtering Data With Signal Processing Toolbox Software
Lowpass FIR Filter – Window Method

This example shows how to design and implement an FIR filter using two command line functions,
fir1 and designfilt, and the interactive Filter Designer app.

Create a signal to use in the examples. The signal is a 100 Hz sine wave in additive N(0, 1/4) white
Gaussian noise. Set the random number generator to the default state for reproducible results.

rng default

Fs = 1000;
t = linspace(0,1,Fs);
x = cos(2*pi*100*t)+0.5*randn(size(t));

The filter design is an FIR lowpass filter with order equal to 20 and a cutoff frequency of 150 Hz. Use
a Kaiser window with length one sample greater than the filter order and β = 3. See kaiser for
details on the Kaiser window.

Use fir1 to design the filter. fir1 requires normalized frequencies in the interval [0,1], where 1
corresponds to π rad/sample. To use fir1, you must convert all frequency specifications to
normalized frequencies.

Design the filter and view the filter's magnitude response.

fc = 150;
Wn = (2/Fs)*fc;
b = fir1(20,Wn,'low',kaiser(21,3));

fvtool(b,1,'Fs',Fs)
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Apply the filter to the signal and plot the result for the first ten periods of the 100 Hz sinusoid.

y = filter(b,1,x);

plot(t,x,t,y)
xlim([0 0.1])

xlabel('Time (s)')
ylabel('Amplitude')
legend('Original Signal','Filtered Data')
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Design the same filter using designfilt. Set the filter response to 'lowpassfir' and input the
specifications as Name,Value pairs. With designfilt, you can specify your filter design in Hz.

Fs = 1000;
Hd = designfilt('lowpassfir','FilterOrder',20,'CutoffFrequency',150, ...
       'DesignMethod','window','Window',{@kaiser,3},'SampleRate',Fs);

Filter the data and plot the result.

y1 = filter(Hd,x);

plot(t,x,t,y1)
xlim([0 0.1])

xlabel('Time (s)')
ylabel('Amplitude')
legend('Original Signal','Filtered Data')
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Lowpass FIR Filter with Filter Designer

This example shows how to design and implement a lowpass FIR filter using the window method with
the interactive Filter Designer app.

• Start the app by entering filterDesigner at the command line.
• Set the Response Type to Lowpass.
• Set the Design Method to FIR and select the Window method.
• Under Filter Order, select Specify order. Set the order to 20.
• Under Frequency Specifications, set Units to Hz, Fs to 1000, and Fc to 150.
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• Click Design Filter.
• Select File > Export... to export your FIR filter to the MATLAB® workspace as coefficients or a
filter object. In this example, export the filter as an object. Specify the variable name as Hd.
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• Click Export.
• Filter the input signal in the command window with the exported filter object. Plot the result for

the first ten periods of the 100 Hz sinusoid.

y2 = filter(Hd,x);

plot(t,x,t,y2)
xlim([0 0.1])

xlabel('Time (s)')
ylabel('Amplitude')
legend('Original Signal','Filtered Data')
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• Select File > Generate MATLAB Code > Filter Design Function to generate a MATLAB
function to create a filter object using your specifications.

You can also use the interactive tool filterBuilder to design your filter.

Bandpass Filters – Minimum-Order FIR and IIR Systems

This example shows how to design a bandpass filter and filter data with minimum-order FIR
equiripple and IIR Butterworth filters. You can model many real-world signals as a superposition of
oscillating components, a low-frequency trend, and additive noise. For example, economic data often
contain oscillations, which represent cycles superimposed on a slowly varying upward or downward
trend. In addition, there is an additive noise component, which is a combination of measurement
error and the inherent random fluctuations in the process.

In these examples, assume you sample some process every day for one year. Assume the process has
oscillations on approximately one-week and one-month scales. In addition, there is a low-frequency
upward trend in the data and additive N(0, 1/4) white Gaussian noise.

Create the signal as a superposition of two sine waves with frequencies of 1/7 and 1/30 cycles/day.
Add a low-frequency increasing trend term and N(0, 1/4) white Gaussian noise. Reset the random
number generator for reproducible results. The data is sampled at 1 sample/day. Plot the resulting
signal and the power spectral density (PSD) estimate.

rng default

Fs = 1;
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n = 1:365;

x = cos(2*pi*(1/7)*n)+cos(2*pi*(1/30)*n-pi/4);
trend = 3*sin(2*pi*(1/1480)*n);

y = x+trend+0.5*randn(size(n));

[pxx,f] = periodogram(y,[],[],Fs);

subplot(2,1,1)
plot(n,y)
xlim([1 365])
xlabel('Days')
grid

subplot(2,1,2)
plot(f,10*log10(pxx))
xlabel('Cycles/day')
ylabel('dB')
grid

The low-frequency trend appears in the power spectral density estimate as increased low-frequency
power. The low-frequency power appears approximately 10 dB above the oscillation at 1/30 cycles/
day. Use this information in the specifications for the filter stopbands.
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Design minimum-order FIR equiripple and IIR Butterworth filters with the following specifications:
passband from [1/40,1/4] cycles/day and stopbands from [0,1/60] and [1/4,1/2] cycles/day. Set both
stopband attenuations to 10 dB and the passband ripple tolerance to 1 dB.

Hd1 = designfilt('bandpassfir', ...
    'StopbandFrequency1',1/60,'PassbandFrequency1',1/40, ...
    'PassbandFrequency2',1/4 ,'StopbandFrequency2',1/2 , ...
    'StopbandAttenuation1',10,'PassbandRipple',1, ...
    'StopbandAttenuation2',10,'DesignMethod','equiripple','SampleRate',Fs);
Hd2 = designfilt('bandpassiir', ...
    'StopbandFrequency1',1/60,'PassbandFrequency1',1/40, ...
    'PassbandFrequency2',1/4 ,'StopbandFrequency2',1/2 , ...
    'StopbandAttenuation1',10,'PassbandRipple',1, ...
    'StopbandAttenuation2',10,'DesignMethod','butter','SampleRate',Fs);

Compare the order of the FIR and IIR filters and the unwrapped phase responses.

fprintf('The order of the FIR filter is %d\n',filtord(Hd1))

The order of the FIR filter is 78

fprintf('The order of the IIR filter is %d\n',filtord(Hd2))

The order of the IIR filter is 8

[phifir,w] = phasez(Hd1,[],1);
[phiiir,w] = phasez(Hd2,[],1);

figure
plot(w,unwrap(phifir))
hold on
plot(w,unwrap(phiiir))
hold off

xlabel('Cycles/Day')
ylabel('Radians')
legend('FIR Equiripple Filter','IIR Butterworth Filter')
grid
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The IIR filter has a much lower order that the FIR filter. However, the FIR filter has a linear phase
response over the passband, while the IIR filter does not. The FIR filter delays all frequencies in the
filter passband equally, while the IIR filter does not.

Additionally, the rate of change of the phase per unit of frequency is greater in the FIR filter than in
the IIR filter.

Design a lowpass FIR equiripple filter for comparison. The lowpass filter specifications are: passband
[0,1/4] cycles/day, stopband attenuation equal to 10 dB, and the passband ripple tolerance set to 1
dB.

Hdlow = designfilt('lowpassfir', ...
    'PassbandFrequency',1/4,'StopbandFrequency',1/2, ...
    'PassbandRipple',1,'StopbandAttenuation',10, ...
    'DesignMethod','equiripple','SampleRate',1);

Filter the data with the bandpass and lowpass filters.

yfir = filter(Hd1,y);
yiir = filter(Hd2,y);
ylow = filter(Hdlow,y);

Plot the PSD estimate of the bandpass IIR filter output. You can replace yiir with yfir in the
following code to view the PSD estimate of the FIR bandpass filter output.

[pxx,f] = periodogram(yiir,[],[],Fs);
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plot(f,10*log10(pxx))

xlabel('Cycles/day')
ylabel('dB')
grid

The PSD estimate shows the bandpass filter attenuates the low-frequency trend and high-frequency
noise.

Plot the first 120 days of FIR and IIR filter output.

plot(n,yfir,n,yiir)

axis([1 120 -2.8 2.8])
xlabel('Days')
legend('FIR bandpass filter output','IIR bandpass filter output', ...
    'Location','SouthEast')
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The increased phase delay in the FIR filter is evident in the filter output.

Plot the lowpass FIR filter output superimposed on the superposition of the 7-day and 30-day cycles
for comparison.

plot(n,x,n,ylow)

xlim([1 365])
xlabel('Days')
legend('7-day and 30-day cycles','FIR lowpass filter output', ...
    'Location','NorthWest')
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You can see in the preceding plot that the low-frequency trend is evident in the lowpass filter output.
While the lowpass filter preserves the 7-day and 30-day cycles, the bandpass filters perform better in
this example because the bandpass filters also remove the low-frequency trend.

Zero-Phase Filtering

This example shows how to perform zero-phase filtering.

Repeat the signal generation and lowpass filter design with fir1 and designfilt. You do not have
to execute the following code if you already have these variables in your workspace.

rng default

Fs = 1000;
t = linspace(0,1,Fs);
x = cos(2*pi*100*t)+0.5*randn(size(t));

% Using fir1
fc = 150;
Wn = (2/Fs)*fc;
b = fir1(20,Wn,'low',kaiser(21,3));

% Using designfilt
Hd = designfilt('lowpassfir','FilterOrder',20,'CutoffFrequency',150, ...
       'DesignMethod','window','Window',{@kaiser,3},'SampleRate',Fs);

Filter the data using filter. Plot the first 100 points of the filter output along with a superimposed
sinusoid with the same amplitude and initial phase as the input signal.
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yout = filter(Hd,x);
xin = cos(2*pi*100*t);

plot(t,xin,t,yout)
xlim([0 0.1])

xlabel('Time (s)')
ylabel('Amplitude')
legend('Input Sine Wave','Filtered Data')
grid

Looking at the initial 0.01 seconds of the filtered data, you see that the output is delayed with respect
to the input. The delay appears to be approximately 0.01 seconds, which is almost 1/2 the length of
the FIR filter in samples (10 × 0 . 001).

This delay is due to the filter's phase response. The FIR filter in these examples is a type I linear-
phase filter. The group delay of the filter is 10 samples.

Plot the group delay using fvtool.

fvtool(Hd,'Analysis','grpdelay')
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In many applications, phase distortion is acceptable. This is particularly true when phase response is
linear. In other applications, it is desirable to have a filter with a zero-phase response. A zero-phase
response is not technically possibly in a noncausal filter. However, you can implement zero-phase
filtering using a causal filter with filtfilt.

Filter the input signal using filtfilt. Plot the responses to compare the filter outputs obtained
with filter and filtfilt.

yzp = filtfilt(Hd,x);

plot(t,xin,t,yout,t,yzp)

xlim([0 0.1])
xlabel('Time (s)')
ylabel('Amplitude')
legend('100-Hz Sine Wave','Filtered Signal','Zero-phase Filtering',...
    'Location','NorthEast')
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In the preceding figure, you can see that the output of filtfilt does not exhibit the delay due to
the phase response of the FIR filter.
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Designing a Filter in fdesign — Process
Overview

3



Process Flow Diagram and Filter Design Methodology
In this section...
“Exploring the Process Flow Diagram” on page 3-2
“Selecting a Response” on page 3-4
“Selecting a Specification” on page 3-4
“Selecting an Algorithm” on page 3-5
“Customizing the Algorithm” on page 3-6
“Designing the Filter” on page 3-6
“Design Analysis” on page 3-7
“Realize or Apply the Filter to Input Data” on page 3-7

Note You must minimally have the Signal Processing Toolbox installed to use fdesign and design.
Some of the features described below may be unavailable if your installation does not additionally
include the DSP System Toolbox™ license. The DSP System Toolbox significantly expands the
functionality available for the specification, design, and analysis of filters. You can verify the presence
of both toolboxes by typing ver at the command prompt.

Exploring the Process Flow Diagram
The process flow diagram shown in the following figure lists the steps and shows the order of the
filter design process.
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The first four steps of the filter design process relate to the filter Specifications Object, while the last
two steps involve the filter Implementation Object. Both of these objects are discussed in more detail
in the following sections. Step 5 - the design of the filter, is the transition step from the filter
Specifications Object to the Implementation object. The analysis and verification step is completely
optional. It provides methods for the filter designer to ensure that the filter complies with all design
criteria. Depending on the results of this verification, you can loop back to steps 3 and 4, to either
choose a different algorithm, or to customize the current one. You may also wish to go back to steps 3
or 4 after you filter the input data with the designed filter (step 7), and find that you wish to tweak
the filter or change it further.

The diagram shows the help command for each step. Enter the help line at the MATLAB command
prompt to receive instructions and further documentation links for the particular step. Not all of the
steps have to be executed explicitly. For example, you could go from step 1 directly to step 5, and the
interim three steps are done for you by the software.

The following are the details for each of the steps shown above.
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Selecting a Response
If you type:

help fdesign/responses

at the MATLAB command prompt, you see a list of all available filter responses. The responses
marked with an asterisk require the DSP System Toolbox.

You must select a response to initiate the filter. In this example, a bandpass filter Specifications
Object is created by typing the following:

d = fdesign.bandpass

Selecting a Specification
A specification is an array of design parameters for a given filter. The specification is a property of the
Specifications Object.

Note A specification is not the same as the Specifications Object. A Specifications Object contains a
specification as one of its properties.

When you select a filter response, there are a number of different specifications available. Each one
contains a different combination of design parameters. After you create a filter Specifications Object,
you can query the available specifications for that response. Specifications marked with an asterisk
require the DSP System Toolbox.

d = fdesign.bandpass;
set(d,'specification')

ans = 

    'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
    'N,F3dB1,F3dB2'
    'N,F3dB1,F3dB2,Ap'
    'N,F3dB1,F3dB2,Ast'
    'N,F3dB1,F3dB2,Ast1,Ap,Ast2'
    'N,F3dB1,F3dB2,BWp'
    'N,F3dB1,F3dB2,BWst'
    'N,Fc1,Fc2'
    'N,Fp1,Fp2,Ap'
    'N,Fp1,Fp2,Ast1,Ap,Ast2'
    'N,Fst1,Fp1,Fp2,Fst2'
    'N,Fst1,Fp1,Fp2,Fst2,Ap'
    'N,Fst1,Fst2,Ast'
    'Nb,Na,Fst1,Fp1,Fp2,Fst2'

d = fdesign.arbmag;
set(d,'specification')

ans = 

    'N,F,A'
    'N,B,F,A'
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The set command can be used to select one of the available specifications as follows:

d = fdesign.lowpass;
set(d,'specification', 'N,Fc')

If you do not perform this step explicitly, fdesign returns the default specification for the response
you chose in “Select a Response” on page 4-2, and provides default values for all design
parameters included in the specification.

Selecting an Algorithm
The availability of algorithms depends the chosen filter response, the design parameters, and the
availability of the DSP System Toolbox. In other words, for the same lowpass filter, changing the
specification also changes the available algorithms. In the following example, for a lowpass filter and
a specification of 'N, Fc', only one algorithm is available—window.

set (d, 'specification', 'N,Fc')
designmethods (d) %step3: get available algorithms

Design Methods for class fdesign.lowpass (N,Fc):

window

However, for a specification of 'Fp,Fst,Ap,Ast', a number of algorithms are available. If the user
has only the Signal Processing Toolbox installed, the following algorithms are available:

set(d,'specification','Fp,Fst,Ap,Ast')
designmethods(d)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

If the user additionally has the DSP System Toolbox installed, the number of available algorithms for
this response and specification increases:

set(d,'specification','Fp,Fst,Ap,Ast')
designmethods(d)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

The user chooses a particular algorithm and implements the filter with the design function.
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Hd=design(d,'butter');

The preceding code actually creates the filter. If you do not perform this step explicitly, design
automatically selects the optimum algorithm for the chosen response and specification.

Customizing the Algorithm
The customization options available for any given algorithm depend not only on the algorithm itself,
selected in “Selecting an Algorithm” on page 3-5, but also on the specification selected in “Selecting
a Specification” on page 3-4. To explore all the available options, type the following at the MATLAB
command prompt:

help(d,'algorithm-name')

where d is the Filter Specification Object, and algorithm-name is the name of the algorithm in
single quotes, such as 'butter' or 'cheby1'.

The application of these customization options takes place while “Designing the Filter” on page 3-
6, because these options are the properties of the filter Implementation Object, not the
Specification Object.

If you do not perform this step explicitly, the optimum algorithm structure is selected.

Designing the Filter
To create a filter, use the design command:

Hd = design(d);

where d is the Specifications Object. This code creates a filter without specifying the algorithm. When
the algorithm is not specified, the software selects the best available one.

To apply the algorithm chosen in “Selecting an Algorithm” on page 3-5, use the same design
command, but specify the Butterworth algorithm as follows:

Hd = design(d,'butter');

To obtain help and see all the available options, type:

help fdesign/design

This help command describes not only the options for the design command itself, but also options
that pertain to the method or the algorithm. If you are customizing the algorithm, you apply these
options in this step. In the following example, you design a bandpass filter, and then modify the filter
structure:

Hd = design(d,'butter','FilterStructure','df2sos')

Hd =

         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'double'                               
               sosMatrix: [13x6 double]                          
             ScaleValues: [14x1 double]                          
     OptimizeScaleValues: true                                   
        PersistentMemory: false
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The filter design step, just like the first task of choosing a response, must be performed explicitly. The
filter is created only when design is called.

Design Analysis
After the filter is designed you may wish to analyze it to determine if the filter satisfies the design
criteria. Filter analysis is broken into three main sections:

• Frequency domain analysis — Includes the magnitude response, group delay, and pole-zero plots.
• Time domain analysis — Includes impulse and step response
• Implementation analysis — Includes quantization noise and cost

To display help for analysis of a discrete-time filter, type:

>> help dfilt/analysis

To display help for analysis of a farrow filter, type:

>> help farrow/functions

To analyze your filter, you must explicitly perform this step.

Realize or Apply the Filter to Input Data
After the filter is designed and optimized, it can be used to filter actual input data. The basic filter
command takes input data x, filters it through the Filter Object, and produces output y:

>> y = filter (FilterObj, x)

This step is never automatically performed for you. To filter your data, you must explicitly execute
this step. To understand how the filtering commands work, type:

>> help dfilt/filter

Note If you have Simulink®, you have the option of exporting this filter to a Simulink block using the
realizemdl command. To get help on this command, type:

>> help realizemdl
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Designing a Filter in the Filter Builder
GUI

• “Filter Builder Design Process” on page 4-2
• “Designing a FIR Filter Using filterBuilder” on page 4-9
• “Compensate for Delay and Distortion Introduced by Filters” on page 4-12
• “Comparison of Analog IIR Lowpass Filters” on page 4-19
• “Frequency Response of Lowpass Bessel Filter” on page 4-21
• “Speaker Crossover Filters” on page 4-23
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Filter Builder Design Process
In this section...
“Introduction to Filter Builder” on page 4-2
“Design a Filter Using Filter Builder” on page 4-2
“Select a Response” on page 4-2
“Select a Specification” on page 4-4
“Select an Algorithm” on page 4-5
“Customize the Algorithm” on page 4-5
“Analyze the Design” on page 4-6
“Realize or Apply the Filter to Input Data” on page 4-7

Introduction to Filter Builder
The filterBuilder function provides a graphical interface to the fdesign object-oriented filter
design paradigm and is intended to reduce development time during the filter design process.
filterBuilder uses a specification-centered approach to find the best algorithm for the desired
response.

Note filterBuilder requires the Signal Processing Toolbox. The DSP System Toolbox product
greatly expands the functionality of filterBuilder. Many of the features described or displayed on
this page are only available if the DSP System Toolbox is installed. You may verify your installation by
typing ver at the command prompt.

Design a Filter Using Filter Builder
The basic workflow in using filterBuilder is to choose the constraints and specifications of the
filter, and to use those constraints as a starting point in the design. Postponing the choice of
algorithm for the filter allows the best design method to be determined automatically, based on the
desired performance criteria. The following are the details of each of the steps for designing a filter
with filterBuilder.

Select a Response
When you open the filterBuilder tool by typing:

filterBuilder

at the MATLAB command prompt, the Response Selection dialog box appears, listing all possible
filter responses available in DSP System Toolbox.
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Note This step cannot be skipped because it is not automatically completed for you by the software.
You must select a response to initiate the filter design process.

After you choose a response, say bandpass, you start the design of the Specifications Object, and the
Bandpass Design dialog box appears. This dialog box contains a Main pane, a Data Types pane, and
a Code Generation pane. The specifications of your filter are generally set in the Main pane of the
dialog box.

The Data Types pane provides settings for precision and data types, and the Code Generation pane
contains options for various implementations of the completed filter design.

For the initial design of your filter, you mostly use the Main pane.
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The Bandpass Design dialog box contains all the parameters necessary to determine the
specifications of a bandpass filter. The parameters listed in the Main pane depend upon the type of
filter you are designing. However, no matter what type of filter you have chosen in the Response
Selection dialog box, the filter design dialog box contains the Main, Data Types, and Code
Generation panes.

Select a Specification
To choose the specification for the bandpass filter, you can begin by selecting an Impulse Response,
Order Mode, and Filter Type in the Filter Specifications frame of the Main Pane. You can further
specify the response of your filter by setting frequency and magnitude specifications in the
appropriate frames on the Main Pane.

Note Frequency, Magnitude, and Algorithm specifications are interdependent and might change
based on your Filter Specifications selections. When choosing specifications for your filter, select
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your Filter Specifications first and work your way down the dialog box. This approach ensures that
the best settings for dependent specifications display as available in the dialog box.

Select an Algorithm
The algorithms available for your filter depend upon the filter response and design parameters you
have selected in the previous steps. For example, in the case of a bandpass filter, if the impulse
response selected is IIR and the Order Mode field is set to Minimum, the design methods available
are Butterworth, Chebyshev type I or II, or Elliptic. If the Order Mode field is set to Specify,
the design method available is IIR least p-norm.

Customize the Algorithm
By expanding the Design options section of the Algorithm frame, you can further customize the
algorithm specified. The options available depend upon the algorithm and settings that have already
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been selected in the dialog box. In the case of a bandpass IIR filter using the Butterworth method,
design options such as Match Exactly are available, as shown in the following figure.

Analyze the Design
To analyze the filter response, click the View Filter Response button. The Filter Visualization Tool
(FVTool) opens displaying the magnitude plot of the filter response.
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Realize or Apply the Filter to Input Data
When you have achieved the desired filter response through design iterations and analysis using the
Filter Visualization Tool, apply the filter to the input data. Again, this step is never automatically
performed for you by the software. To filter your data, you must explicitly execute this step. In the
Bandpass Design dialog box, click OK and the Signal Processing Toolbox software creates the filter
coefficients and exports it to the MATLAB workspace.

The filter is then ready to be used to filter actual input data. The basic filter command takes input
data x, filters it through the Filter Object, and produces output y:

y = filter(Hbs,x)

To understand how the filtering command works, type:

help dfilt/filter

Tip If you have Simulink, you have the option of exporting this filter to a Simulink block using the
realizemdl command. To get help on this command, type:

help realizemdl
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See Also
FVTool
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Designing a FIR Filter Using filterBuilder

FIR Filter Design
Example 4.1. Example – Using Filter Builder to Design an FIR Filter

To design a lowpass finite impulse response (FIR) filter using filterBuilder:

1 Open the Filter Builder GUI by typing the following at the MATLAB prompt:

filterBuilder

The Response Selection dialog box appears. In this dialog box, you can select from a list of
filter response types. Select Lowpass in the list box.

2 Hit the OK button. The Lowpass Design dialog box opens. Here you can specify the writable
parameters of the Lowpass filter object. The components of the Main frame of this dialog box are
described in the section titled Lowpass Filter Design Dialog Box — Main Pane. In the dialog box,
make the following changes:

• Enter a Fpass value of 0.55.
• Enter a Fstop value of 0.65.
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3 Click Apply, and the following message appears at the MATLAB prompt:

The variable 'Hlp' has been exported to the command window.
4 To check your design, click View Filter Response. The Filter Visualization tool appears, showing

a plot of the magnitude response of the filter.
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You can change the design and click Apply, followed by View Filter Response, as many times as
needed until your design specifications are met.
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Compensate for Delay and Distortion Introduced by Filters
Filtering a signal introduces a delay. This means that the output signal is shifted in time with respect
to the input.

When the shift is constant, you can correct for the delay by shifting the signal in time.

Sometimes the filter delays some frequency components more than others. This phenomenon is called
phase distortion. To compensate for this effect, you can perform zero-phase filtering using the
filtfilt function.

Take an electrocardiogram reading sampled at 500 Hz for 1 s. Add random noise. Reset the random
number generator for reproducible results

Fs = 500;
N = 500;

rng default

xn = ecg(N)+0.1*randn([1 N]);
tn = (0:N-1)/Fs;

Remove some of the noise using a filter that stops frequencies above 75 Hz. Use designfilt to
design an FIR filter of order 70.

Nfir = 70;
Fst = 75;

firf = designfilt('lowpassfir','FilterOrder',Nfir, ...
    'CutoffFrequency',Fst,'SampleRate',Fs);

Filter the signal and plot it. The result is smoother than the original, but lags behind it.

xf = filter(firf,xn);

plot(tn,xn,tn,xf)
title 'Electrocardiogram'
xlabel 'Time (s)'
legend('Original','FIR Filtered')
grid
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Use grpdelay to check that the delay caused by the filter equals half the filter order.

grpdelay(firf,N,Fs)
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delay = mean(grpdelay(firf))

delay = 35

Line up the data. Shift the filtered signal by removing its first delay samples. Remove the last delay
samples of the original and of the time vector.

tt = tn(1:end-delay);
sn = xn(1:end-delay);

sf = xf;
sf(1:delay) = [];

Plot the signals and verify that they are aligned.

plot(tt,sn,tt,sf)
title 'Electrocardiogram'
xlabel('Time (s)')
legend('Original Signal','Filtered Shifted Signal')
grid
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Repeat the computation using a 7th-order IIR filter.

Niir = 7;

iir = designfilt('lowpassiir','FilterOrder',Niir, ...
    'HalfPowerFrequency',Fst,'SampleRate',Fs);

Filter the signal. The filtered signal is cleaner than the original, but lags in time with respect to it. It
is also distorted due to the nonlinear phase of the filter.

xfilter = filter(iir,xn);

plot(tn,xn,tn,xfilter)

title 'Electrocardiogram'
xlabel 'Time (s)'
legend('Original','Filtered')
axis([0.25 0.55 -1 1.5])
grid
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A look at the group delay introduced by the filter shows that the delay is frequency-dependent.

grpdelay(iir,N,Fs)
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Filter the signal using filtfilt. The delay and distortion have been effectively removed. Use
filtfilt when it is critical to keep the phase information of a signal intact.

xfiltfilt = filtfilt(iir,xn);

plot(tn,xn)
hold on
plot(tn,xfilter)
plot(tn,xfiltfilt)

title 'Electrocardiogram'
xlabel 'Time (s)'
legend('Original','''filter''','''filtfilt''')
axis([0.25 0.55 -1 1.5])
grid
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Comparison of Analog IIR Lowpass Filters
Design a 5th-order analog Butterworth lowpass filter with a cutoff frequency of 2 GHz. Multiply by 2π
to convert the frequency to radians per second. Compute the frequency response of the filter at 4096
points.

n = 5;
f = 2e9;

[zb,pb,kb] = butter(n,2*pi*f,'s');
[bb,ab] = zp2tf(zb,pb,kb);
[hb,wb] = freqs(bb,ab,4096);

Design a 5th-order Chebyshev Type I filter with the same edge frequency and 3 dB of passband
ripple. Compute its frequency response.

[z1,p1,k1] = cheby1(n,3,2*pi*f,'s');
[b1,a1] = zp2tf(z1,p1,k1);
[h1,w1] = freqs(b1,a1,4096);

Design a 5th-order Chebyshev Type II filter with the same edge frequency and 30 dB of stopband
attenuation. Compute its frequency response.

[z2,p2,k2] = cheby2(n,30,2*pi*f,'s');
[b2,a2] = zp2tf(z2,p2,k2);
[h2,w2] = freqs(b2,a2,4096);

Design a 5th-order elliptic filter with the same edge frequency, 3 dB of passband ripple, and 30 dB of
stopband attenuation. Compute its frequency response.

[ze,pe,ke] = ellip(n,3,30,2*pi*f,'s');
[be,ae] = zp2tf(ze,pe,ke);
[he,we] = freqs(be,ae,4096);

Plot the attenuation in decibels. Express the frequency in gigahertz. Compare the filters.

plot(wb/(2e9*pi),mag2db(abs(hb)))
hold on
plot(w1/(2e9*pi),mag2db(abs(h1)))
plot(w2/(2e9*pi),mag2db(abs(h2)))
plot(we/(2e9*pi),mag2db(abs(he)))
axis([0 4 -40 5])
grid
xlabel('Frequency (GHz)')
ylabel('Attenuation (dB)')
legend('butter','cheby1','cheby2','ellip')
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The Butterworth and Chebyshev Type II filters have flat passbands and wide transition bands. The
Chebyshev Type I and elliptic filters roll off faster but have passband ripple. The frequency input to
the Chebyshev Type II design function sets the beginning of the stopband rather than the end of the
passband.

See Also
butter | cheby1 | cheby2 | ellip | freqs | zp2tf
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Frequency Response of Lowpass Bessel Filter
Design a fifth-order analog lowpass Bessel filter with approximately constant group delay up to 104

rad/second. Plot the magnitude and phase responses of the filter using freqs.

[b,a] = besself(5,10000);
freqs(b,a)

Compute the group delay response of the filter as the derivative of the unwrapped phase response.
Plot the group delay to verify that it is approximately constant up to the cutoff frequency.

[h,w] = freqs(b,a,1000);
grpdel = diff(unwrap(angle(h)))./diff(w);

clf
semilogx(w(2:end),grpdel)
xlabel('Frequency (rad/s)')
ylabel('Group delay (s)')
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See Also
besself | freqs
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Speaker Crossover Filters
This example shows how to devise a simple model of a digital three-way loudspeaker. The system
splits the audio input into low-, mid-, and high-frequency bands that correspond respectively to the
woofer, the midrange driver, and the tweeter. Typical values for the normalized crossover frequencies
that delimit the bands are 0 . 136π rad/sample and 0 . 317π rad/sample.

Create lowpass, bandpass, and highpass filters to generate the low-frequency, mid-frequency, and
high-frequency bands. Specify the frequencies.

lo = 0.136;
hi = 0.317;

Use a 6th-order Chebyshev Type I design for each filter. Specify a passband ripple of 1 dB, larger
than the value for real speakers. The cheby1 function doubles the order of bandpass designs. Make
all filters have the same order by halving the order of the bandpass filter. Return the zeros, poles, and
gain of each filter.

ord = 6;
rip = 1;

[zw,pw,kw] = cheby1(ord,rip,lo);
[zm,pm,km] = cheby1(ord/2,rip,[lo hi]);
[zt,pt,kt] = cheby1(ord,rip,hi,'high');

Visualize the zeros and poles of the filters.

zplane([zw zm zt],[pw pm pt])
lg = legend('Woofer','Midrange','Tweeter');
lg.Box = 'off';
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• Woofer: The zeros at z = − 1 suppress high frequencies. The poles enhance the magnitude
response between 0 and the lower crossover frequency.

• Midrange: The zeros at z = 0 and z = 1 suppress high and low frequencies. The poles enhance the
magnitude response between the lower and higher crossover frequencies.

• Tweeter: The zeros at z = 1 suppress low frequencies. The poles enhance the magnitude response
between the higher crossover frequency and π.

Plot the magnitude responses on the unit circle to see the effect of the different poles and zeros. Use
linear units. Represent the filters as second-order sections.

sw = zp2sos(zw,pw,kw);
sm = zp2sos(zm,pm,km);
st = zp2sos(zt,pt,kt);

nf = 1024;
[hw,fw] = freqz(sw,nf,'whole');
hm = freqz(sm,nf,'whole');
ht = freqz(st,nf,'whole');

plot3(cos(fw),sin(fw),[abs(hw) abs(hm) abs(ht)])
xlabel('Real')
ylabel('Imaginary')
view(75,30)
grid
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Plot the magnitude responses in dB using fvtool.

hfvt = fvtool(sw,sm,st);
legend(hfvt,'Woofer','Mid-range','Tweeter')
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Load an audio file containing a fragment of Handel's "Hallelujah Chorus" sampled at 8192 Hz. Split
the signal into three frequency bands by filtering. Plot the bands.

load handel                % To hear, type soundsc(y,Fs)

yw = sosfilt(sw,y);        % To hear, type soundsc(yw,Fs)
ym = sosfilt(sm,y);        % To hear, type soundsc(ym,Fs)
yt = sosfilt(st,y);        % To hear, type soundsc(yt,Fs)

plot((0:length(y)-1)/Fs,[yw ym yt])
xlabel('Time (s)')
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% To hear all the frequency ranges, type soundsc(yw+ym+yt,Fs)

References

Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1996.

See Also
FVTool | cheby1 | freqz | sosfilt | zp2sos | zplane
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Filter Design Methods
The Filter Designer app is a user interface for designing and analyzing filters quickly. The app
enables you to design digital FIR or IIR filters by setting filter specifications, by importing filters from
your MATLAB workspace, or by adding, moving or deleting poles and zeros. It also provides tools for
analyzing filters, such as magnitude and phase response and pole-zero plots.

The Filter Designer app gives you access to the following Signal Processing Toolbox filter design
methods.

Design Method Function
Butterworth butter
Chebyshev Type I cheby1
Chebyshev Type II cheby2
Elliptic ellip
Maximally Flat maxflat
Equiripple firpm
Least-squares firls
Constrained least-squares fircls
Complex equiripple cfirpm
Window fir1

When using the window method, all Signal Processing Toolbox window functions are available, and
you can specify a user-defined window by entering its function name and input parameter.

Advanced Filter Design Methods
The following advanced filter design methods are available if you have DSP System Toolbox software.

Design Method Function
Constrained equiripple FIR firceqrip
Constrained-band equiripple FIR fircband
Generalized remez FIR firgr
Equiripple halfband FIR firhalfband
Least P-norm optimal FIR firlpnorm
Equiripple Nyquist FIR firnyquist
Interpolated FIR ifir
IIR comb notching or peaking iircomb
Allpass filter (given group delay) iirgrpdelay
Least P-norm optimal IIR iirlpnorm
Constrained least P-norm IIR iirlpnormc
Second-order IIR notch iirnotch
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Design Method Function
Second-order IIR peaking (resonator) iirpeak
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Using the Filter Designer App
There are different ways that you can design filters using the Filter Designer app. For example:

• You can first choose a response type, such as bandpass, and then choose from the available FIR or
IIR filter design methods.

• You can specify the filter by its type alone, along with certain frequency- or time-domain
specifications such as passband frequencies and stopband frequencies. The filter you design is
then computed using the default filter design method and filter order.
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Analyzing Filter Responses
Once you have designed your filter, you can display the filter coefficients and detailed filter
information, export the coefficients to the MATLAB workspace, or create a C header file containing
the coefficients.

You also can analyze different filter responses in the app or in a separate Filter Visualization Tool
(FVTool). The following filter responses are available:

• Magnitude response (freqz)
• Phase response (phasez)
• Group delay (grpdelay)
• Phase delay (phasedelay)
• Impulse response (impz)
• Step response (stepz)
• Pole-zero plots (zplane)
• Zero-phase response (zerophase)
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Filter Designer App Panels
The Filter Designer app has sidebar buttons that display particular panels in the lower half. The
panels are:

• Design Filter. See “Choosing a Filter Design Method” on page 5-9 for more information. You use
this panel to

• Design filters from scratch.
• Modify existing filters designed with the app.
• Analyze filters.

• Import filter. You use this panel to

• Import previously saved filters or filter coefficients that you have stored in the MATLAB
workspace.

• Analyze imported filters.
• Pole-Zero Editor. See “Editing the Filter Using the Pole-Zero Editor” on page 5-13. You use this

panel to add, delete, and move poles and zeros in your filter design.

If you also have DSP System Toolbox product installed, additional panels are available:

• Set quantization parameters — Use this panel to quantize double-precision filters that you design
with Filter Designer, quantize double-precision filters that you import into the app, and analyze
quantized filters.

• Transform filter — Use this panel to change a filter from one response type to another.
• Multirate filter design — Use this panel to create a multirate filter from your existing FIR design,

create CIC filters, and linear and hold interpolators.

If you have Simulink installed, this panel is available:

• Realize Model — Use this panel to create a Simulink block containing the filter structure.

5 Filter Designer: A Filter Design and Analysis App

5-6



Getting Help
At any time, you can right-click or click the What's this? button, , to get information. You can also
use the Help menu to see complete Help information.
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Getting Started with Filter Designer
The Filter Designer app enables you to design and analyze digital filters. You can also import and
modify existing filter designs.

To open the Filter Designer app, type

filterDesigner

at the MATLAB command prompt.

The Filter Designer app opens with the Design Filter panel displayed.

Note that when you open Filter Designer, Design Filter is not enabled. You must make a change to
the default filter design in order to enable Design Filter. This is true each time you want to change
the filter design. Changes to radio button items or drop down menu items such as those under
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Response Type or Filter Order enable Design Filter immediately. Changes to specifications in text
boxes such as Fs, Fpass, and Fstop require you to click outside the text box to enable Design Filter.

Choosing a Response Type
You can choose from several response types:

• Lowpass
• Raised cosine
• Highpass
• Bandpass
• Bandstop
• Differentiator
• Multiband
• Hilbert transformer
• Arbitrary magnitude

Additional response types are available if you have DSP System Toolbox software installed.

Note Not all filter design methods are available for all response types. Once you choose your
response type, this may restrict the filter design methods available to you. Filter design methods that
are not available for a selected response type are removed from the Design Method region of the app.

Choosing a Filter Design Method
You can use the default filter design method for the response type that you've selected, or you can
select a filter design method from the available FIR and IIR methods listed in the app.

To select the Remez algorithm to compute FIR filter coefficients, select the FIR radio button and
choose Equiripple from the list of methods.

Setting the Filter Design Specifications
Viewing Filter Specifications

The filter design specifications that you can set vary according to response type and design method.
The display region illustrates filter specifications when you select Analysis > Filter Specifications
or when you click the Filter Specifications toolbar button.

You can also view the filter specifications on the Magnitude plot of a designed filter by selecting View
> Specification Mask.

Filter Order

You have two mutually exclusive options for determining the filter order when you design an
equiripple filter:

• Specify order: You enter the filter order in a text box.
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• Minimum order: The filter design method determines the minimum order filter.

Note that filter order specification options depend on the filter design method you choose. Some filter
methods may not have both options available.

Options

The available options depend on the selected filter design method. Only the FIR Equiripple and FIR
Window design methods have settable options. For FIR Equiripple, the option is a Density Factor.
See firpm for more information. For FIR Window the options are Scale Passband, Window
selection, and for the following windows, a settable parameter:

Window Parameter
Chebyshev (chebwin) Sidelobe attenuation
Gaussian (gausswin) Alpha
Kaiser (kaiser) Beta
Taylor (taylorwin) Nbar and Sidelobe level
Tukey (tukeywin) Alpha
User Defined Function Name, Parameter

You can view the window in the Window Visualization Tool (WVTool) by clicking the View button.

Bandpass Filter Frequency Specifications

For a bandpass filter, you can set

• Units of frequency:

• Hz
• kHz
• MHz
• Normalized (0 to 1)

• Sample rate
• Passband frequencies
• Stopband frequencies

You specify the passband with two frequencies. The first frequency determines the lower edge of the
passband, and the second frequency determines the upper edge of the passband.

Similarly, you specify the stopband with two frequencies. The first frequency determines the upper
edge of the first stopband, and the second frequency determines the lower edge of the second
stopband.

Bandpass Filter Magnitude Specifications

For a bandpass filter, you can specify the following magnitude response characteristics:

• Units for the magnitude response (dB or linear)
• Passband ripple
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• Stopband attenuation

Computing the Filter Coefficients
Now that you've specified the filter design, click the Design Filter button to compute the filter
coefficients.

Note The Design Filter button is disabled once you've computed the coefficients for your filter
design. This button is enabled again once you make any changes to the filter specifications.

Analyzing the Filter
Displaying Filter Responses

You can view the following filter response characteristics in the display region or in a separate
window.

• Magnitude response
• Phase response
• Magnitude and Phase responses
• Group delay response
• Phase delay response
• Impulse response
• Step response
• Pole-zero plot
• Zero-phase response — available from the y-axis context menu in a Magnitude or Magnitude and

Phase response plot.

Note If you have DSP System Toolbox product installed, two other analyses are available: magnitude
response estimate and round-off noise power. These two analyses are the only ones that use filter
internals.

For descriptions of the above responses and their associated toolbar buttons and other Filter
Designer toolbar buttons, see FVTool.

You can display two responses in the same plot by selecting Analysis > Overlay Analysis and
selecting an available response. A second y-axis is added to the right side of the response plot. (Note
that not all responses can be overlaid on each other.)

You can also display the filter coefficients and detailed filter information in this region.

For all the analysis methods, except zero-phase response, you can access them from the Analysis
menu, the Analysis Parameters dialog box from the context menu, or by using the toolbar buttons. For
zero-phase, right-click the y-axis of the plot and select Zero-phase from the context menu.

You can overlay the filter specifications on the Magnitude plot by selecting View > Specification
Mask.
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Using Data Tips

You can click the response to add plot data tips that display information about particular points on the
response.

For information on using data tips, see “Interactively Explore Plotted Data”.

Drawing Spectral Masks

To add spectral masks or rejection area lines to your magnitude plot, click View > User-defined
Spectral Mask.

The mask is defined by a frequency vector and a magnitude vector. These vectors must be the same
length.

• Enable Mask — Select to turn on the mask display.
• Normalized Frequency — Select to normalize the frequency between 0 and 1 across the

displayed frequency range.
• Frequency Vector — Enter a vector of x-axis frequency values.
• Magnitude Units — Select the desired magnitude units. These units should match the units used

in the magnitude plot.
• Magnitude Vector — Enter a vector of y-axis magnitude values.

Changing the Sample Rate

To change the sample rate of your filter, right-click any filter response plot and select Sampling
Frequency from the context menu.

To change the filter name, type the new name in Filter name. (In FVTool, if you have multiple filters,
select the desired filter and then enter the new name.)

To change the sample rate, select the desired unit from Units and enter the sample rate in Fs. (For
each filter in FVTool, you can specify a different sample rate or you can apply the sample rate to all
filters.)

To save the displayed parameters as the default values to use when Filter Designer or FVTool is
opened, click Save as Default.

To restore the default values, click Restore Original Defaults.

Displaying the Response in FVTool

To display the filter response characteristics in a separate window, select View > Filter
Visualization Tool (available if any analysis, except the filter specifications, is in the display region)
or click the Full View Analysis button. This starts the Filter Visualization Tool (FVTool).

Note If Filter Specifications are shown in the display region, clicking the Full View Analysis toolbar
button launches a MATLAB figure window instead of FVTool. The associated menu item is Print to
Figure, which is enabled only if the filter specifications are displayed.
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You can use this tool to annotate your design, view other filter characteristics, and print your filter
response. You can link Filter Designer and FVTool so that changes made in Filter Designer are
immediately reflected in FVTool. See FVTool for more information.

Editing the Filter Using the Pole-Zero Editor
Displaying the Pole-Zero Plot

You can edit a designed or imported filter's coefficients by moving, deleting, or adding poles or zeros
or both using the Pole-Zero Editor panel.

Note You cannot generate MATLAB code (File > Generate MATLAB code) if your filter was
designed or edited with the Pole-Zero Editor.

You cannot move quantized poles and zeros. You can only move the reference poles and zeros.

Click the Pole-Zero Editor button in the sidebar or select Edit > Pole-Zero Editor to display the
Pole-Zero Editor panel.

Poles are shown using "x" symbols and zeros are shown using "o" symbols.

Changing the Pole-Zero Plot

Plot mode buttons are located to the left of the pole-zero plot. Select one of the buttons to change the
mode of the pole-zero plot. The Pole-Zero Editor has these buttons from left to right: Move Pole-
Zero, Add Pole, Add Zero, and Delete Pole-Zero.

Note For filters with orders larger than approximately 100, the Pole-Zero Editor might encounter
numerical problems when computing transfer function polynomials. As a result, the displayed filter
responses might be different than expected. To inspect poles and zeros without attempting to
compute high-order polynomials, select Analysis > Pole-Zero Plot. You cannot edit a filter in this
view.

The following plot parameters and controls are located to the left of the pole-zero plot and below the
plot mode buttons.

• Filter gain — factor to compensate for the filter's pole(s) and zero(s) gains
• Coordinates — units (Polar or Rectangular) of the selected pole or zero
• Magnitude — if polar coordinates is selected, magnitude of the selected pole or zero
• Angle — if polar coordinates is selected, angle of selected pole(s) or zero(s)
• Real — if rectangular coordinates is selected, real component of selected pole(s) or zero(s)
• Imaginary — if rectangular coordinates is selected, imaginary component of selected pole or zero
• Section — for multisection filters, number of the current section
• Conjugate — creates a corresponding conjugate pole or zero or automatically selects the

conjugate pole or zero if it already exists.
• Auto update — immediately updates the displayed magnitude response when poles or zeros are

added, moved, or deleted.
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The Edit > Pole-Zero Editor has items for selecting multiple poles or zeros, for inverting and
mirroring poles or zeros, and for deleting, scaling and rotating poles or zeros.

• When you select a pole or zero from a conjugate pair, the Conjugate check box and the conjugate
are automatically selected.

Converting the Filter Structure
Converting to a New Structure

You can use Edit > Convert Structure to convert the current filter to a new structure. All filters can
be converted to the following representations:

• Direct-form I
• Direct-form II
• Direct-form I transposed
• Direct-form II transposed
• Lattice ARMA

Note If you have DSP System Toolbox product installed, you will see additional structures in the
Convert structure dialog box.

In addition, the following conversions are available for particular classes of filters:

• Minimum phase FIR filters can be converted to Lattice minimum phase
• Maximum phase FIR filters can be converted to Lattice maximum phase
• Allpass filters can be converted to Lattice allpass
• IIR filters can be converted to Lattice ARMA

Note Converting from one filter structure to another might produce a result with different
characteristics than the original. This is due to the computer's finite-precision arithmetic and the
variations in the conversion's round-off computations.

For example:

• Select Edit > Convert Structure to open the Convert structure dialog box.
• Select Direct-form I in the list of filter structures.

Converting to Second-Order Sections

You can use Edit > Convert to Second-Order Sections to store the converted filter structure as a
collection of second-order sections rather than as a monolithic higher-order structure.

Note The following options are also used for Edit > Reorder and Scale Second-Order Sections,
which you use to modify an SOS filter structure.

The following Scale options are available when converting a direct-form II structure only:
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• None (default)
• L-2 (L2 norm)
• L-infinity (L∞ norm)

The Direction (Up or Down) determines the ordering of the second-order sections. The optimal
ordering changes depending on the Scale option selected.

For example:

• Select Edit > Convert to Second-Order Sections to open the Convert to SOS dialog box.
• Select L-infinity from the Scale menu for L∞ norm scaling.
• Leave Up as the Direction option.

Note To convert from second-order sections back to a single section, use Edit > Convert to Single
Section.

Exporting a Filter Design
Exporting Coefficients or Objects to the Workspace

You can save the filter either as filter coefficients variables or as a filter object variable. To save the
filter to the MATLAB workspace:

1 Select File > Export. The Export dialog box appears.
2 Select Workspace from the Export To menu.
3 Select Coefficients from the Export As menu to save the filter coefficients or select Objects

to save the filter in a filter object.
4 For coefficients, assign variable names using the Numerator (for FIR filters) or Numerator and

Denominator (for IIR filters), or SOS Matrix and Scale Values (for IIR filters in second-order
section form) text boxes in the Variable Names region.

For objects, assign the variable name in the Discrete Filter text box. If you have variables with
the same names in your workspace and you want to overwrite them, select the Overwrite
Variables check box.

5 Click the Export button.

Exporting Coefficients to an ASCII File

To save filter coefficients to a text file,

1 Select File > Export. The Export dialog box appears.
2 Select Coefficients File (ASCII) from the Export To menu.
3 Click the Export button. The Export Filter Coefficients to FCF File dialog box appears.
4 Choose or enter a file name and click the Save button.

The coefficients are saved in the text file that you specified, and the MATLAB Editor opens to display
the file. The text file also contains comments with the MATLAB version number, the Signal Processing
Toolbox version number, and filter information.
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Exporting Coefficients or Objects to a MAT-File

To save filter coefficients or a filter object as variables in a MAT-file:

1 Select File > Export. The Export dialog box appears.
2 Select MAT-file from the Export To menu.
3 Select Coefficients from the Export As menu to save the filter coefficients or select Objects

to save the filter in a filter object.
4 For coefficients, assign variable names using the Numerator (for FIR filters) or Numerator and

Denominator (for IIR filters), or SOS Matrix and Scale Values (for IIR filters in second-order
section form) text boxes in the Variable Names region.

For objects, assign the variable name in the Discrete Filter (or Quantized Filter) text box. If
you have variables with the same names in your workspace and you want to overwrite them,
select the Overwrite Variables check box.

5 Click the Export button. The Export to a MAT-File dialog box appears.
6 Choose or enter a file name and click the Save button.

Exporting to a Simulink Model

If you have the Simulink product installed, you can export a Simulink block of your filter design and
insert it into a new or existing Simulink model.

You can export a filter designed using any filter design method available in Filter Designer.

Note If you have the DSP System Toolbox and Fixed-Point Designer™ installed, you can export a CIC
filter to a Simulink model.

1 After designing your filter, click the Realize Model sidebar button or select File > Export to
Simulink Model. The Realize Model panel is displayed.

2 Specify the name to use for your block in Block name.
3 To insert the block into the current (most recently selected) Simulink model, set the Destination

to Current. To inset the block into a new model, select New. To insert the block into a user-
defined subsystem, select User defined.

4 If you want to overwrite a block previously created from this panel, check Overwrite generated
`Filter' block.

5 If you select the Build model using basic elements check box, your filter is created as a
subsystem (Simulink) block, which uses separate sub-elements. In this mode, the following
optimization(s) are available:

• Optimize for zero gains — Removes zero-valued gain paths from the filter structure.
• Optimize for unity gains — Substitutes a wire (short circuit) for gains equal to 1 in the
filter structure.

• Optimize for negative gains — Substitutes a wire (short circuit) for gains equal to -1
and changes corresponding additions to subtractions in the filter structure.

• Optimize delay chains — Substitutes delay chains composed of n unit delays with a
single delay of n.
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• Optimize for unity scale values — Removes multiplications for scale values equal to
1 from the filter structure.

The following illustration shows the effects of some of the optimizations:

Note The Build model using basic elements check box is enabled only when you have a DSP
System Toolbox license and your filter can be designed using a Biquad Filter block or a Discrete
FIR Filter block. For more information, see the Filter Realization Wizard topic in the DSP System
Toolbox documentation.

6 Set the Input processing parameter to specify whether the generated filter performs sample- or
frame-based processing on the input. Depending on the type of filter you design, one or both of
the following options may be available:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

7 Click the Realize Model button to create the filter block. When the Build model using basic
elements check box is selected, Filter Designer implements the filter as a subsystem block
using Add, Gain, and Delay blocks.

If you double-click the Simulink Filter block, the filter structure is displayed.
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Generating a C Header File
You may want to include filter information in an external C program. To create a C header file with
variables that contain filter parameter data, follow this procedure:

1 Select Targets > Generate C Header. The Generate C Header dialog box appears.
2 Enter the variable names to be used in the C header file. The particular filter structure

determines the variables that are created in the file.

Filter Structure Variable Parameter
Direct-form I

Direct-form II

Direct-form I transposed

Direct-form II transposed

Numerator, Numerator length, Denominator,
Denominator length

Lattice ARMA Lattice coeff., Lattice coeff. length, Ladder coeff., Ladder
coeff. length

Lattice MA Lattice coeff., Lattice coeff. length, and Number of
sections (inactive if filter has only one section)

Direct-form FIR Direct-
form FIR transposed

Numerator, Numerator length, and Number of sections
(inactive if filter has only one section)

Length variables contain the total number of coefficients of that type.

Note Variable names cannot be C language reserved words, such as for.
3 Select Export Suggested to use the suggested data type or select Export As and select the

desired data type from the pull-down.

Note If you do not have DSP System Toolbox software installed, selecting any data type other
than double-precision floating point results in a filter that does not exactly match the one you
designed in the Filter Designer. This is due to rounding and truncating differences.

4 Click Generate to save the file and leave the dialog box open for additional C header file
definitions. To close the dialog box, click Close.

Generating MATLAB Code
You can generate MATLAB code that constructs the filter you designed in Filter Designer from the
command line. Select File > Generate MATLAB Code > Filter Design Function and specify the
file name in the Generate MATLAB code dialog box.

Note You cannot generate MATLAB code (File > Generate MATLAB Code > Filter Design
Function) if your filter was designed or edited with the Pole-Zero Editor.

The following is generated MATLAB code for the default lowpass filter in Filter Designer.

5 Filter Designer: A Filter Design and Analysis App

5-18



function Hd = ExFilter
%EXFILTER Returns a discrete-time filter object.

%
% MATLAB Code
% Generated by MATLAB(R) 7.11 and the Signal Processing Toolbox 6.14.
%
% Generated on: 17-Feb-2010 14:15:37
%

% Equiripple Lowpass filter designed using the FIRPM function.

% All frequency values are in Hz.
Fs = 48000;  % Sample Rate

Fpass = 9600;            % Passband Frequency
Fstop = 12000;           % Stopband Frequency
Dpass = 0.057501127785;  % Passband Ripple
Dstop = 0.0001;          % Stopband Attenuation
dens  = 20;              % Density Factor

% Calculate the order from the parameters using FIRPMORD.
[N, Fo, Ao, W] = firpmord([Fpass, Fstop]/(Fs/2), [1 0], [Dpass, Dstop]);

% Calculate the coefficients using the FIRPM function.
b  = firpm(N, Fo, Ao, W, {dens});
Hd = dfilt.dffir(b);

% [EOF]

Managing Filters in the Current Session
You can store filters designed in the current Filter Designer session for cascading together,
exporting to FVTool or for recalling later in the same or future Filter Designer sessions.

You store and access saved filters with the Store Filter and Filter Manager buttons, respectively, in
the Current Filter Information pane.

Store Filter — Displays the Store Filter dialog box in which you specify the filter name to use when
storing the filter in the Filter Manager. The default name is the type of the filter.

Filter Manager — Opens the Filter Manager.

The current filter is listed below the list box. To change the current filter, highlight the desired filter.
If you select Edit current filter, Filter Designer displays the currently selected filter specifications.
If you make any changes to the specifications, the stored filter is updated immediately.

To cascade two or more filters, highlight the desired filters and press Cascade. A new cascaded filter
is added to the Filter Manager.

To change the name of a stored filter, press Rename. The Rename filter dialog box is displayed.

To remove a stored filter from the Filter Manager, press Delete.

To export one or more filters to FVTool, highlight the filter(s) and press FVTool.
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Saving and Opening Filter Design Sessions
You can save your filter design session as a MAT-file and return to the same session another time.

Select the Save Session button to save your session as a MAT-file. The first time you save a session, a
Save Filter Design Session browser opens, prompting you for a session name.

The .fda extension is added automatically to all filter design sessions you save.

Note You can also use File > Save Session and File > Save Session As to save a session.

You can load existing sessions into Filter Designer by selecting the Open Session button or File >
Open Session . A Load Filter Design Session browser opens that allows you to select from your
previously saved filter design sessions.
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Importing a Filter Design
In this section...
“Import Filter Panel” on page 5-21
“Filter Structures” on page 5-21

Import Filter Panel
The Import Filter panel allows you to import a filter. You can access this region by clicking the
Import Filter button in the sidebar.

The imported filter can be in any of the representations listed in the Filter Structure pull-down
menu. You can import a filter as second-order sections by selecting the check box.

Specify the filter coefficients in Numerator and Denominator, either by entering them explicitly or
by referring to variables in the MATLAB workspace.

Select the frequency units from the following options in the Units menu, and for any frequency unit
other than Normalized, specify the value or MATLAB workspace variable of the sample rate in the Fs
field.

To import the filter, click the Import Filter button. The display region is automatically updated when
the new filter has been imported.

You can edit the imported filter using the Pole-Zero Editor panel.

Filter Structures
The available filter structures are:

• Direct Form, which includes direct-form I, direct-form II, direct-form I transposed, direct-form II
transposed, and direct-form FIR

• Lattice, which includes lattice allpass, lattice MA min phase, lattice MA max phase, and lattice
ARMA

• Discrete-time Filter (dfilt object)

The structure that you choose determines the type of coefficients that you need to specify in the text
fields to the right.
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Direct-form

For direct-form I, direct-form II, direct-form I transposed, and direct-form II transposed, specify the
filter by its transfer function representation

H(z) = b(1) + b(2)z−1 + b(3)z−2 + …b(m + 1)z−m

a(1) + a(2)z−1 + a(3)Z−3 + …a(n + 1)z−n

• The Numerator field specifies a variable name or value for the numerator coefficient vector b,
which contains m+1 coefficients in descending powers of z.

• The Denominator field specifies a variable name or value for the denominator coefficient vector
a, which contains n+1 coefficients in descending powers of z. For FIR filters, the Denominator
is 1.

Filters in transfer function form can be produced by all of the Signal Processing Toolbox filter design
functions (such as fir1, fir2, firpm, butter, yulewalk). See “Transfer Function” on page 1-32
for more information.

Importing as second-order sections

For all direct-form structures, except direct-form FIR, you can import the filter in its second-order
section representation:

H(z) = G ∏
k = 1

L b0k + b1kz−1 + b2kz−2

a0k + a1kz−1 + a2kz−2

The Gain field specifies a variable name or a value for the gain G, and the SOS Matrix field specifies
a variable name or a value for the L-by-6 SOS matrix

SOS =

b01 b11 b21 1 a11 a22
b02 b12 b22 1 a12 a22

· · · · · ·
· · · · · ·

b0L b1L b2L 1 a1L a2L

whose rows contain the numerator and denominator coefficients bik and aik of the second-order
sections of H(z).

Filters in second-order section form can be produced by functions such as tf2sos, zp2sos, ss2sos,
and sosfilt. See “Second-Order Sections (SOS)” on page 1-34 for more information.

Lattice

For lattice allpass, lattice minimum and maximum phase, and lattice ARMA filters, specify the filter
by its lattice representation:

• For lattice allpass, the Lattice coeff field specifies the lattice (reflection) coefficients, k(1) to
k(N), where N is the filter order.

• For lattice MA (minimum or maximum phase), the Lattice coeff field specifies the lattice
(reflection) coefficients, k(1) to k(N), where N is the filter order.
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• For lattice ARMA, the Lattice coeff field specifies the lattice (reflection) coefficients, k(1) to
k(N), and the Ladder coeff field specifies the ladder coefficients, v(1) to v(N+1), where N is the
filter order.

Filters in lattice form can be produced by tf2latc. See “Lattice Structure” on page 1-35 for more
information.

Discrete-time Filter (dfilt object)

For Discrete-time filter, specify the name of the dfilt object.
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FIR Bandpass Filter with Asymmetric Attenuation
Use the Filter Designer app to create a 50th-order equiripple FIR bandpass filter to be used with
signals sampled at 1 kHz.

N = 50;
Fs = 1e3;

Specify that the passband spans frequencies of 200–300 Hz and that the transition region on either
side has a width of 50 Hz.

Fstop1 = 150;
Fpass1 = 200;
Fpass2 = 300;
Fstop2 = 350;

Specify weights for the optimization fit:

• 3 for the low-frequency stopband
• 1 for the passband
• 100 for the high-frequency stopband

Open the Filter Designer app.

Wstop1 = 3;
Wpass = 1;
Wstop2 = 100;

filterDesigner

Use the app to design the rest of the filter. To specify the frequency constraints and magnitude
specifications, use the variables you created.

1 Set Response Type to Bandpass.
2 Set Design Method to FIR. From the drop-down list, select Equiripple.
3 Under Filter Order, specify the order as N.
4 Under Frequency Specifications, specify Fs as Fs.
5 Click Design Filter.
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See Also
Apps
Filter Designer

Functions
designfilt
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Arbitrary Magnitude Filter
Design an FIR filter with the following piecewise frequency response:

• A sinusoid between 0 and 0.19π rad/sample.

F1 = 0:0.01:0.19;
A1 = 0.5+sin(2*pi*7.5*F1)/4;

• A piecewise linear section between 0.2π rad/sample and 0.78π rad/sample.

F2 = [0.2 0.38 0.4 0.55 0.562 0.585 0.6 0.78];
A2 = [0.5 2.3 1 1 -0.2 -0.2 1 1];

• A quadratic section between 0.79π rad/sample and the Nyquist frequency.

F3 = 0.79:0.01:1;
A3 = 0.2+18*(1-F3).^2;

Specify a filter order of 50. Consolidate the frequency and amplitude vectors. To give all bands equal
weights during the optimization fit, specify a weight vector of all ones. Open the Filter Designer
app.

N = 50;

FreqVect = [F1 F2 F3];
AmplVect = [A1 A2 A3];
WghtVect = ones(1,N/2);

filterDesigner

Use the app to design the filter.

1 Under Response Type, select the button next to Differentiator. From the drop-down list,
choose Arbitrary Magnitude.

2 Set Design Method to FIR. From the drop-down list, select Least-squares.
3 Under Filter Order, specify the order as the variable N.
4 Under Frequency and Magnitude Specifications, specify the variables you created:

• Freq. vector — FreqVect.
• Mag. vector — AmplVect.
• Weight vector — WghtVect.

5 Click Design Filter.
6 Right-click the y-axis of the plot and select Magnitude to express the magnitude response in

linear units.
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See Also
Apps
Filter Designer

Functions
designfilt
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Filter Visualization Tool

• “Modifying the Axes” on page 6-2
• “Modifying the Plot” on page 6-4
• “Controlling FVTool from the MATLAB Command Line” on page 6-6
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Modifying the Axes
You can change the x- or y-axis units by right-clicking the mouse on the axis label or by right-clicking
on the plot and selecting Analysis Parameters. Available options for the axes units are as follows.

Plot X-Axis Units Y-Axis Units
Magnitude Normalized Frequency

Linear Frequency
Magnitude
Magnitude (dB)
Magnitude squared
Zero-Phase

Phase Normalized Frequency
Linear Frequency

Phase
Continuous Phase
Degrees
Radians

Magnitude and Phase Normalized Frequency
Linear Frequency

(y-axis on left side)
Magnitude
Magnitude (dB)
Magnitude squared
Zero-Phase

(y-axis on right side)
Phase
Continuous Phase
Degrees
Radians

Group Delay Normalized Frequency
Linear Frequency

Samples
Time

Phase Delay Normalized Frequency
Linear Frequency

Degrees
Radians

Impulse Response Samples
Time

Amplitude

Step Response Samples
Time

Amplitude

Pole-Zero Real Part Imaginary Part

See Also
Apps
Filter Designer | Signal Analyzer

Functions
designfilt | digitalFilter

Related Examples
• “Filter Analysis using FVTool” on page 24-202
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More About
• “Modifying the Plot” on page 6-4
• “Controlling FVTool from the MATLAB Command Line” on page 6-6

 Modifying the Axes

6-3



Modifying the Plot
You can use any of the plot editing toolbar buttons to change the properties of your plot.

Analysis Parameters are parameters that apply to the displayed analyses. To display them, right-
click in the plot area and select Analysis Parameters from the menu. (Note that you can access the
menu only if the Edit Plot button is inactive.) The following analysis parameters are displayed. (If
more than one response is displayed, parameters applicable to each plot are displayed.) Not all of
these analysis fields are displayed for all types of plots:

• Normalized Frequency — if checked, frequency is normalized between 0 and 1, or if not
checked, frequency is in Hz

• Frequency Scale — y-axis scale (Linear or Log)
• Frequency Range — range of the frequency axis or Specify freq. vector
• Number of Points — number of samples used to compute the response
• Frequency Vector — vector to use for plotting, if Specify freq. vector is selected in

Frequency Range.
• Magnitude Display — y-axis units (Magnitude, Magnitude (dB), Magnitude squared, or

Zero-Phase)
• Phase Units — y-axis units (Degrees or Radians)
• Phase Display — type of phase plot (Phase or Continuous Phase)
• Group Delay Units — y-axis units (Samples or Time)
• Specify Length — length type of impulse or step response (Default or Specified)
• Length — number of points to use for the impulse or step response

In addition to the above analysis parameters, you can change the plot type for Impulse and Step
Response plots by right-clicking and selecting Line with Marker, Stem or Line from the context
menu. You can change the x-axis units by right-clicking the x-axis label and selecting Samples or
Time.

To save the displayed parameters as the default values to use when Filter Designer or FVTool is
opened, click Save as default.

To restore the default values, click Restore original defaults.

Data tips display information about a particular point in the plot. See “Interactively Explore Plotted
Data” for information on data tips.

If you have the DSP System Toolbox software, FVTool displays a specification mask along with your
designed filter on a magnitude plot.

Note To use View > Passband zoom, your filter must have been designed using fdesign or Filter
Designer. Passband zoom is not provided for cascaded integrator-comb (CIC) filters because CICs do
not have conventional passbands.

See Also
Apps
Filter Designer | Signal Analyzer
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Functions
designfilt | digitalFilter

Related Examples
• “Filter Analysis using FVTool” on page 24-202

More About
• “Modifying the Axes” on page 6-2
• “Controlling FVTool from the MATLAB Command Line” on page 6-6
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Controlling FVTool from the MATLAB Command Line
After you obtain the handle for FVTool, you can control some aspects of FVTool from the command
line. In addition to the standard Handle Graphics® properties (see Handle Graphics in the MATLAB
documentation), FVTool has the following properties:

• 'Analysis' — displays the specified type of analysis plot. The following table lists all analysis
types and how to invoke them. Note that the only analyses that use filter internals are magnitude
response estimate and round-off noise power, which are available only with the DSP System
Toolbox product.

Analysis Type Analysis Option
Magnitude plot 'magnitude'
Phase plot 'phase'
Magnitude and phase plot `freq'
Group delay plot 'grpdelay'
Phase delay plot `phasedelay'
Impulse response plot 'impulse'
Step response plot 'step'
Pole-zero plot 'polezero'
Filter coefficients 'coefficients'
Filter information 'info'
Magnitude response estimate

(available only with the DSP System Toolbox
product, see freqrespest for more
information)

'magestimate'

Round-off noise power

(available only with the DSP System Toolbox
product, see noisepsd for more information)

'noisepower'

• 'Grid' — controls whether the grid is 'on' or 'off'
• 'Legend' — controls whether the legend is 'on' or 'off'
• 'Fs' — controls the sampling frequency of filters in FVTool. The sampling frequency vector must

be of the same length as the number of filters or a scalar value. If it is a vector, each value is
applied to its corresponding filter. If it is a scalar, the same value is applied to all filters.

• SosViewSettings — (This option is available only if you have the DSP System Toolbox product.)
For second-order sections filters, this controls how the filter is displayed. The SOSViewSettings
property contains an object so you must use this syntax to set it:
set(h.SOSViewSettings,'View',viewtype), where viewtype is one of the following:

• 'Complete' — Displays the complete response of the overall filter
• 'Individual' — Displays the response of each section separately
• 'Cumulative' — Displays the response for each section accumulated with each prior section. If

your filter has three sections, the first plot shows section one, the second plot shows the
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accumulation of sections one and two, and the third plot show the accumulation of all three
sections.

You can also define whether to use SecondaryScaling, which determines where the sections
should be split. The secondary scaling points are the scaling locations between the recursive
and the nonrecursive parts of the section. The default value is false, which does not use
secondary scaling. To turn on secondary scaling, use this syntax:
set(h.SOSViewSettings,'View','Cumulative',true)

• 'UserDefined' — Allows you to define which sections to display and the order in which to
display them. Enter a cell array where each section is represented by its index. If you enter one
index, only that section is plotted. If you enter a range of indices, the combined response of
that range of sections is plotted. For example, if your filter has four sections, entering {1:4}
plots the combined response for all four sections, and entering {1,2,3,4} plots the response
for each section individually.

Note You can change other properties of FVTool from the command line using the set function. Use
get(h) to view property tags and current property settings.

You can use the following methods with the FVTool handle.

addfilter(h,filtobj) adds a new filter to FVTool. The new filter, filtobj, must be a dfilt
filter object. You can specify the sampling frequency of the new filter with
addfilter(h,filtobj,'Fs',10).

setfilter(h,filtobj) replaces the filter in FVTool with the filter specified in filtobj. You can
set the sampling frequency as described above.

deletefilter(h, index) deletes the filter at the FVTool cell array index location.

legend(h,str1,str2,...) creates a legend in FVTool by associating str1 with filter 1, str2 with
filter 2, etc. See legend.

See Also
Apps
Filter Designer | Signal Analyzer

Functions
designfilt | digitalFilter

Related Examples
• “Filter Analysis using FVTool” on page 24-202

More About
• “Modifying the Axes” on page 6-2
• “Modifying the Plot” on page 6-4
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Statistical Signal Processing

The following chapter discusses statistical signal processing tools and applications, including
correlations, covariance, and spectral estimation.

• “Correlation and Covariance” on page 7-2
• “Spectral Analysis” on page 7-5
• “Nonparametric Methods” on page 7-8
• “Parametric Methods” on page 7-27
• “MUSIC and Eigenvector Analysis Methods” on page 7-37
• “Selected Bibliography” on page 7-39
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Correlation and Covariance
In this section...
“Background Information” on page 7-2
“Using xcorr and xcov Functions” on page 7-2
“Bias and Normalization” on page 7-3
“Multiple Channels” on page 7-3

Background Information
The cross-correlation sequence for two wide-sense stationary random process, x(n) and y(n) is

Rxy(m) = E x(n + m)y*(n) ,

where the asterisk denotes the complex conjugate and the expectation is over the ensemble of
realizations that constitute the random processes.

Note that cross-correlation is not commutative, but a Hermitian (conjugate) symmetry property holds
such that:

Rxy(m) = Ryx* ( −m) .

The cross-covariance between x(n) and y(n) is:

Cxy(m) = E (x(n + m) − μx) (y(n) − μy)* = Rxy(m) − μxμy* .

For zero-mean wide-sense stationary random processes, the cross-correlation and cross-covariance
are equivalent.

In practice, you must estimate these sequences, because it is possible to access only a finite segment
of the infinite-length random processes. Further, it is often necessary to estimate ensemble moments
based on time averages because only a single realization of the random processes are available. A
common estimate based on N samples of x(n) and y(n) is the deterministic cross-correlation sequence
(also called the time-ambiguity function)

R xy(m) =
∑

n = 0

N −m− 1
x(n + m)y*(n), m ≥ 0,

R yx* ( −m), m < 0.

where we assume for this discussion that x(n) and y(n) are indexed from 0 to N – 1, and R xy(m) from –
(N – 1) to N – 1.

Using xcorr and xcov Functions
The functions xcorr and xcov estimate the cross-correlation and cross-covariance sequences of
random processes. They also handle autocorrelation and autocovariance as special cases. The xcorr
function evaluates the sum shown above with an efficient FFT-based algorithm, given inputs x(n) and
y(n) stored in length N vectors x and y. Its operation is equivalent to convolution with one of the two
subsequences reversed in time.
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For example:

x = [1 1 1 1 1]';
y = x;
xyc = xcorr(x,y)

Notice that the resulting sequence length is one less than twice the length of the input sequence.
Thus, the Nth element is the correlation at lag 0. Also notice the triangular pulse of the output that
results when convolving two square pulses.

The xcov function estimates autocovariance and cross-covariance sequences. This function has the
same options and evaluates the same sum as xcorr, but first removes the means of x and y.

Bias and Normalization
An estimate of a quantity is biased if its expected value is not equal to the quantity it estimates. The
expected value of the output of xcorr is

E R xy(m) = (N − m )Rxy(m) .

xcorr provides the unbiased estimate, dividing by N – |m| when you specify an 'unbiased' flag
after the input sequences.

xcorr(x,y,'unbiased')

Although this estimate is unbiased, the end points (near –(N – 1) and N – 1) suffer from large variance
because xcorr computes them using only a few data points. A possible trade-off is to simply divide by
N using the 'biased' flag:

xcorr(x,y,'biased')

With this scheme, only the sample of the correlation at zero lag (the Nth output element) is unbiased.
This estimate is often more desirable than the unbiased one because it avoids random large
variations at the end points of the correlation sequence.

xcorr provides one other normalization scheme. The syntax

xcorr(x,y,'coeff')

divides the output by norm(x)*norm(y) so that, for autocorrelations, the sample at zero lag is 1.

Multiple Channels
For a multichannel signal, xcorr and xcov estimate the autocorrelation and cross-correlation and
covariance sequences for all of the channels at once. If S is an M-by-N signal matrix representing N
channels in its columns, xcorr(S) returns a (2M – 1)-by-N2 matrix with the autocorrelations and
cross-correlations of the channels of S in its N2 columns. If S is a three-channel signal

S = [s1 s2 s3]

then the result of xcorr(S) is organized as

R = [Rs1s1 Rs1s2 Rs1s3 Rs2s1 Rs2s2 Rs2s3 Rs3s1 Rs3s2 Rs3s3]
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Two related functions, cov and corrcoef, are available in the standard MATLAB environment. They
estimate covariance and normalized covariance respectively between the different channels at lag 0
and arrange them in a square matrix.
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Spectral Analysis
In this section...
“Background Information” on page 7-5
“Spectral Estimation Method” on page 7-6

Background Information
The goal of spectral estimation is to describe the distribution (over frequency) of the power contained
in a signal, based on a finite set of data. Estimation of power spectra is useful in a variety of
applications, including the detection of signals buried in wideband noise.

The power spectral density (PSD) of a stationary random process x(n) is mathematically related to the
autocorrelation sequence by the discrete-time Fourier transform. In terms of normalized frequency,
this is given by

Pxx(ω) = 1
2π ∑

m = −∞

∞
Rxx(m)e− jωm .

This can be written as a function of physical frequency f (for example, in hertz) by using the relation
ω = 2πf / fs, where fs is the sampling frequency:

Pxx(f ) = 1
fs

∑
m = −∞

∞
Rxx(m)e− j2πmf / fs .

The correlation sequence can be derived from the PSD by use of the inverse discrete-time Fourier
transform:

Rxx(m) = ∫
−π

π
Pxx(ω) e jωmdω = ∫

− fs/2

fs/2

Pxx(f ) e j2πmf / fsdf .

The average power of the sequence x(n) over the entire Nyquist interval is represented by

Rxx(0) = ∫
−π

π
Pxx(ω)dω = ∫

− fs/2

fs/2

Pxx(f )df .

The average power of a signal over a particular frequency band [ω1, ω2], 0 ≤ ω1 ≤ ω2 ≤ π, can be
found by integrating the PSD over that band:

P[ω1, ω2] =∫ω1

ω2
Pxx(ω) dω =∫−ω2

−ω1
Pxx(ω) dω .

You can see from the above expression that Pxx(ω) represents the power content of a signal in an
infinitesimal frequency band, which is why it is called the power spectral density.

The units of the PSD are power (e.g., watts) per unit of frequency. In the case of Pxx(ω), this is watts/
radian/sample or simply watts/radian. In the case of Pxx(f), the units are watts/hertz. Integration of
the PSD with respect to frequency yields units of watts, as expected for the average power.
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For real–valued signals, the PSD is symmetric about DC, and thus Pxx(ω) for 0 ≤ ω ≤ π is sufficient to
completely characterize the PSD. However, to obtain the average power over the entire Nyquist
interval, it is necessary to introduce the concept of the one-sided PSD.

The one-sided PSD is given by

Pone‐sided(ω) =
0, −π ≤ ω < 0,
2Pxx(ω), 0 ≤ ω ≤ π .

The average power of a signal over the frequency band, [ω1,ω2] with 0 ≤ ω1 ≤ ω2 ≤ π, can be
computed using the one-sided PSD as

P[ω1, ω2] =∫ω1

ω2
Pone‐sided(ω)dω .

Spectral Estimation Method
The various methods of spectrum estimation available in the toolbox are categorized as follows:

• Nonparametric methods
• Parametric methods
• Subspace methods

Nonparametric methods are those in which the PSD is estimated directly from the signal itself. The
simplest such method is the periodogram. Other nonparametric techniques such as Welch's
method [8], the multitaper method (MTM) reduce the variance of the periodogram.

Parametric methods are those in which the PSD is estimated from a signal that is assumed to be
output of a linear system driven by white noise. Examples are the Yule-Walker autoregressive (AR)
method and the Burg method. These methods estimate the PSD by first estimating the parameters
(coefficients) of the linear system that hypothetically generates the signal. They tend to produce
better results than classical nonparametric methods when the data length of the available signal is
relatively short. Parametric methods also produce smoother estimates of the PSD than nonparametric
methods, but are subject to error from model misspecification.

Subspace methods, also known as high-resolution methods or super-resolution methods, generate
frequency component estimates for a signal based on an eigenanalysis or eigendecomposition of the
autocorrelation matrix. Examples are the multiple signal classification (MUSIC) method or the
eigenvector (EV) method. These methods are best suited for line spectra — that is, spectra of
sinusoidal signals — and are effective in the detection of sinusoids buried in noise, especially when
the signal to noise ratios are low. The subspace methods do not yield true PSD estimates: they do not
preserve process power between the time and frequency domains, and the autocorrelation sequence
cannot be recovered by taking the inverse Fourier transform of the frequency estimate.

All three categories of methods are listed in the table below with the corresponding toolbox function
names. More information about each function is on the corresponding function reference page. See
“Parametric Modeling” on page 8-18 for details about lpc and other parametric estimation
functions.
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Spectral Estimation Methods/Functions

Method Description Functions
Periodogram Power spectral density estimate periodogram
Welch Averaged periodograms of

overlapped, windowed signal
sections

pwelch, cpsd, tfestimate,
mscohere

Multitaper Spectral estimate from combination
of multiple orthogonal windows (or
“tapers”)

pmtm

Yule-Walker AR Autoregressive (AR) spectral
estimate of a time-series from its
estimated autocorrelation function

pyulear

Burg Autoregressive (AR) spectral
estimation of a time-series by
minimization of linear prediction
errors

pburg

Covariance Autoregressive (AR) spectral
estimation of a time-series by
minimization of the forward
prediction errors

pcov

Modified Covariance Autoregressive (AR) spectral
estimation of a time-series by
minimization of the forward and
backward prediction errors

pmcov

MUSIC Multiple signal classification pmusic
Eigenvector Pseudospectrum estimate peig
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Nonparametric Methods
The following sections discuss the periodogram on page 7-8, modified periodogram on page 7-15,
Welch on page 7-17, and multitaper on page 7-20 methods of nonparametric estimation, along with
the related CPSD function on page 7-23, transfer function estimate on page 7-24, and coherence
function on page 7-25.

Periodogram
In general terms, one way of estimating the PSD of a process is to simply find the discrete-time
Fourier transform of the samples of the process (usually done on a grid with an FFT) and
appropriately scale the magnitude squared of the result. This estimate is called the periodogram.

The periodogram estimate of the PSD of a signal xL(n) of length L is

Pxx(f ) = 1
LFs

∑
n = 0

L− 1
xL(n)e− j2πfn/Fs

2
,

where Fs is the sampling frequency.

In practice, the actual computation of Pxx(f ) can be performed only at a finite number of frequency
points, and usually employs an FFT. Most implementations of the periodogram method compute the
N-point PSD estimate at the frequencies

fk =
kFs
N , k = 0, 1, …, N − 1 .

In some cases, the computation of the periodogram via an FFT algorithm is more efficient if the
number of frequencies is a power of two. Therefore it is not uncommon to pad the input signal with
zeros to extend its length to a power of two.

As an example of the periodogram, consider the following 1001-element signal xn, which consists of
two sinusoids plus noise:

fs = 1000;                % Sampling frequency
t = (0:fs)/fs;            % One second worth of samples
A = [1 2];                % Sinusoid amplitudes (row vector)
f = [150;140];            % Sinusoid frequencies (column vector)
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
% The three last lines are equivalent to
% xn = sin(2*pi*150*t) + 2*sin(2*pi*140*t) + 0.1*randn(size(t));

The periodogram estimate of the PSD can be computed using periodogram. In this case, the data
vector is multiplied by a Hamming window to produce a modified periodogram.

[Pxx,F] = periodogram(xn,hamming(length(xn)),length(xn),fs);
plot(F,10*log10(Pxx))
xlabel('Hz')
ylabel('dB')
title('Modified Periodogram Power Spectral Density Estimate')
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Algorithm

Periodogram computes and scales the output of the FFT to produce the power vs. frequency plot as
follows.

1 If the input signal is real-valued, the magnitude of the resulting FFT is symmetric with respect to
zero frequency (DC). For an even-length FFT, only the first (1 + nfft/2) points are unique.
Determine the number of unique values and keep only those unique points.

2 Take the squared magnitudes of the unique FFT values. Scale the squared magnitudes (except
for DC) by 2/(FsN), where N is the length of signal prior to any zero padding. Scale the DC value
by 1/(FsN).

3 Create a frequency vector from the number of unique points, the nfft and the sampling frequency.
4 Plot the resulting magnitude squared FFT against the frequency.

Performance of the Periodogram
The following sections discuss the performance of the periodogram with regard to the issues of
leakage, resolution, bias, and variance.

Spectral Leakage

Consider the PSD of a finite-length (length L) signal xL(n). It is frequently useful to interpret xL(n) as
the result of multiplying an infinite signal, x(n), by a finite-length rectangular window, wR(n):
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xL(n) = x(n)wR(n) .

Because multiplication in the time domain corresponds to convolution in the frequency domain, the
expected value of the periodogram in the frequency domain is

E{Pxx(f )} = 1
Fs∫−Fs/2

Fs/2 sin2(Lπ(f − f ′)/Fs)
Lsin2(π(f − f ′)/Fs)

Pxx(f ′) df ′,

showing that the expected value of the periodogram is the convolution of the true PSD with the
square of the Dirichlet kernel.

The effect of the convolution is best understood for sinusoidal data. Suppose that x(n) is composed of
a sum of M complex sinusoids:

x(n) = ∑
k = 1

N
Ake jωkn .

Its spectrum is

X(ω) = ∑
k = 1

N
Akδ(ω− ωk),

which for a finite-length sequence becomes

X(ω) =∫−π

π ∑
k = 1

N
Akδ(ε− ωk) WR(ω− ε) dε .

The preceding equation is equal to

X(ω) = ∑
k = 1

N
AkWR(ω− ωk) .

So in the spectrum of the finite-length signal, the Dirac deltas have been replaced by terms of the
form WR(ω− ωk), which corresponds to the frequency response of a rectangular window centered on
the frequency ωk.

The frequency response of a rectangular window has the shape of a periodic sinc:

L = 32;
[h,w] = freqz(rectwin(L)/L,1);
y = diric(w,L);

plot(w/pi,20*log10(abs(h)))
hold on
plot(w/pi,20*log10(abs(y)),'--')
hold off
ylim([-40,0])
legend('Frequency Response','Periodic Sinc')
xlabel('\omega / \pi')
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The plot displays a mainlobe and several sidelobes, the largest of which is approximately 13.5 dB
below the mainlobe peak. These lobes account for the effect known as spectral leakage. While the
infinite-length signal has its power concentrated exactly at the discrete frequency points fk, the
windowed (or truncated) signal has a continuum of power "leaked" around the discrete frequency
points fk.

Because the frequency response of a short rectangular window is a much poorer approximation to the
Dirac delta function than that of a longer window, spectral leakage is especially evident when data
records are short. Consider the following sequence of 100 samples:

fs = 1000;                 % Sampling frequency
t = (0:fs/10)/fs;          % One-tenth second worth of samples
A = [1 2];                 % Sinusoid amplitudes
f = [150;140];             % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
periodogram(xn,rectwin(length(xn)),1024,fs)
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It is important to note that the effect of spectral leakage is contingent solely on the length of the data
record. It is not a consequence of the fact that the periodogram is computed at a finite number of
frequency samples.

Resolution

Resolution refers to the ability to discriminate spectral features, and is a key concept on the analysis
of spectral estimator performance.

In order to resolve two sinusoids that are relatively close together in frequency, it is necessary for the
difference between the two frequencies to be greater than the width of the mainlobe of the leaked
spectra for either one of these sinusoids. The mainlobe width is defined to be the width of the
mainlobe at the point where the power is half the peak mainlobe power (i.e., 3 dB width). This width
is approximately equal to fs/L.

In other words, for two sinusoids of frequencies f1 and f2, the resolvability condition requires that

f2− f1 >
Fs
L .

In the example above, where two sinusoids are separated by only 10 Hz, the data record must be
greater than 100 samples to allow resolution of two distinct sinusoids by a periodogram.

Consider a case where this criterion is not met, as for the sequence of 67 samples below:

fs = 1000;                  % Sampling frequency
t = (0:fs/15)/fs;           % 67 samples

7 Statistical Signal Processing

7-12



A = [1 2];                  % Sinusoid amplitudes
f = [150;140];              % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
periodogram(xn,rectwin(length(xn)),1024,fs)

The above discussion about resolution did not consider the effects of noise since the signal-to-noise
ratio (SNR) has been relatively high thus far. When the SNR is low, true spectral features are much
harder to distinguish, and noise artifacts appear in spectral estimates based on the periodogram. The
example below illustrates this:

fs = 1000;                  % Sampling frequency
t = (0:fs/10)/fs;           % One-tenth second worth of samples
A = [1 2];                  % Sinusoid amplitudes
f = [150;140];              % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 2*randn(size(t));
periodogram(xn,rectwin(length(xn)),1024,fs)
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Bias of the Periodogram

The periodogram is a biased estimator of the PSD. Its expected value was previously shown to be

E{Pxx(f )} = 1
Fs∫−Fs/2

Fs/2 sin2(Lπ(f − f ′)/Fs)
Lsin2(π(f − f ′)/Fs)

Pxx(f ′) df ′ .

The periodogram is asymptotically unbiased, which is evident from the earlier observation that as the
data record length tends to infinity, the frequency response of the rectangular window more closely
approximates the Dirac delta function. However, in some cases the periodogram is a poor estimator of
the PSD even when the data record is long. This is due to the variance of the periodogram, as
explained below.

Variance of the Periodogram

The variance of the periodogram can be shown to be

Var(Pxx(f )) =
Pxx

2 (f ), 0 < f < Fs/2,

2Pxx
2 (f ), f = 0, Fs/2,

which indicates that the variance does not tend to zero as the data length L tends to infinity. In
statistical terms, the periodogram is not a consistent estimator of the PSD. Nevertheless, the
periodogram can be a useful tool for spectral estimation in situations where the SNR is high, and
especially if the data record is long.
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The Modified Periodogram
The modified periodogram windows the time-domain signal prior to computing the DFT in order to
smooth the edges of the signal. This has the effect of reducing the height of the sidelobes or spectral
leakage. This phenomenon gives rise to the interpretation of sidelobes as spurious frequencies
introduced into the signal by the abrupt truncation that occurs when a rectangular window is used.
For nonrectangular windows, the end points of the truncated signal are attenuated smoothly, and
hence the spurious frequencies introduced are much less severe. On the other hand, nonrectangular
windows also broaden the mainlobe, which results in a reduction of resolution.

The periodogram allows you to compute a modified periodogram by specifying the window to be
used on the data. For example, compare a default rectangular window and a Hamming window.
Specify the same number of DFT points in both cases.

fs = 1000;                  % Sampling frequency
t = (0:fs/10)/fs;           % One-tenth second worth of samples
A = [1 2];                  % Sinusoid amplitudes
f = [150;140];              % Sinusoid frequencies
nfft = 1024;

xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
periodogram(xn,rectwin(length(xn)),nfft,fs)

periodogram(xn,hamming(length(xn)),nfft,fs)
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You can verify that although the sidelobes are much less evident in the Hamming-windowed
periodogram, the two main peaks are wider. In fact, the 3 dB width of the mainlobe corresponding to
a Hamming window is approximately twice that of a rectangular window. Hence, for a fixed data
length, the PSD resolution attainable with a Hamming window is approximately half that attainable
with a rectangular window. The competing interests of mainlobe width and sidelobe height can be
resolved to some extent by using variable windows such as the Kaiser window.

Nonrectangular windowing affects the average power of a signal because some of the time samples
are attenuated when multiplied by the window. To compensate for this, periodogram and pwelch
normalize the window to have an average power of unity. This ensures that the measured average
power is generally independent of window choice. If the frequency components are not well resolved
by the PSD estimators, the window choice does affect the average power.

The modified periodogram estimate of the PSD is

Pxx(f ) = X(f ) 2

FsLU ,

where U is the window normalization constant:

U = 1
L ∑n = 0

N − 1
w(n) 2 .

For large values of L, U tends to become independent of window length. The addition of U as a
normalization constant ensures that the modified periodogram is asymptotically unbiased.
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Welch's Method
An improved estimator of the PSD is the one proposed by Welch. The method consists of dividing the
time series data into (possibly overlapping) segments, computing a modified periodogram of each
segment, and then averaging the PSD estimates. The result is Welch's PSD estimate. The toolbox
function pwelch implements Welch's method.

The averaging of modified periodograms tends to decrease the variance of the estimate relative to a
single periodogram estimate of the entire data record. Although overlap between segments
introduces redundant information, this effect is diminished by the use of a nonrectangular window,
which reduces the importance or weight given to the end samples of segments (the samples that
overlap).

However, as mentioned above, the combined use of short data records and nonrectangular windows
results in reduced resolution of the estimator. In summary, there is a tradeoff between variance
reduction and resolution. One can manipulate the parameters in Welch's method to obtain improved
estimates relative to the periodogram, especially when the SNR is low. This is illustrated in the
following example.

Consider a signal consisting of 301 samples:

fs = 1000;             % Sampling frequency
t = (0:0.3*fs)/fs;     % 301 samples
A = [2 8];             % Sinusoid amplitudes (row vector)
f = [150;140];         % Sinusoid frequencies (column vector)

xn = A*sin(2*pi*f*t) + 5*randn(size(t));
periodogram(xn,rectwin(length(xn)),1024,fs)
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We can obtain Welch's spectral estimate for 3 segments with 50% overlap using a rectangular
window.

pwelch(xn,rectwin(150),50,512,fs)
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In the periodogram above, noise and the leakage make one of the sinusoids essentially
indistinguishable from the artificial peaks. In contrast, although the PSD produced by Welch's method
has wider peaks, you can still distinguish the two sinusoids, which stand out from the "noise floor."

However, if we try to reduce the variance further, the loss of resolution causes one of the sinusoids to
be lost altogether.

pwelch(xn,rectwin(100),75,512,fs)
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Bias and Normalization in Welch's Method
Welch's method yields a biased estimator of the PSD. The expected value of the PSD estimate is:

E PWelch(f ) = 1
FsLU∫−Fs/2

Fs/2
W(f − f ′) 2Pxx(f ′) df ′,

where L is the length of the data segments, U is the same normalization constant present in the
definition of the modified periodogram, and W(f) is the Fourier transform of the window function. As
is the case for all periodograms, Welch's estimator is asymptotically unbiased. For a fixed length data
record, the bias of Welch's estimate is larger than that of the periodogram because the length of the
segments is less than the length of the entire data sample.

The variance of Welch's estimator is difficult to compute because it depends on both the window used
and the amount of overlap between segments. Basically, the variance is inversely proportional to the
number of segments whose modified periodograms are being averaged.

Multitaper Method
The periodogram can be interpreted as filtering a length L signal, xL(n), through a filter bank (a set of
filters in parallel) of L FIR bandpass filters. The 3 dB bandwidth of each of these bandpass filters can
be shown to be approximately equal to fs/L. The magnitude response of each one of these bandpass
filters resembles that of a rectangular window. The periodogram can thus be viewed as a computation
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of the power of each filtered signal (i.e., the output of each bandpass filter) that uses just one sample
of each filtered signal and assumes that the PSD of xL(n) is constant over the bandwidth of each
bandpass filter.

As the length of the signal increases, the bandwidth of each bandpass filter decreases, making it a
more selective filter, and improving the approximation of constant PSD over the bandwidth of the
filter. This provides another interpretation of why the PSD estimate of the periodogram improves as
the length of the signal increases. However, there are two factors apparent from this standpoint that
compromise the accuracy of the periodogram estimate. First, the rectangular window yields a poor
bandpass filter. Second, the computation of the power at the output of each bandpass filter relies on a
single sample of the output signal, producing a very crude approximation.

Welch's method can be given a similar interpretation in terms of a filter bank. In Welch's
implementation, several samples are used to compute the output power, resulting in reduced variance
of the estimate. On the other hand, the bandwidth of each bandpass filter is larger than that
corresponding to the periodogram method, which results in a loss of resolution. The filter bank model
thus provides a new interpretation of the compromise between variance and resolution.

Thompson's multitaper method (MTM) builds on these results to provide an improved PSD estimate.
Instead of using bandpass filters that are essentially rectangular windows (as in the periodogram
method), the MTM method uses a bank of optimal bandpass filters to compute the estimate. These
optimal FIR filters are derived from a set of sequences known as discrete prolate spheroidal
sequences (DPSSs, also known as Slepian sequences).

In addition, the MTM method provides a time-bandwidth parameter with which to balance the
variance and resolution. This parameter is given by the time-bandwidth product, NW and it is directly
related to the number of tapers used to compute the spectrum. There are always 2NW − 1 tapers
used to form the estimate. This means that, as NW increases, there are more estimates of the power
spectrum, and the variance of the estimate decreases. However, the bandwidth of each taper is also
proportional to NW, so as NW increases, each estimate exhibits more spectral leakage (i.e., wider
peaks) and the overall spectral estimate is more biased. For each data set, there is usually a value for
NW that allows an optimal trade-off between bias and variance.

The Signal Processing Toolbox™ function that implements the MTM method is pmtm. Use pmtm to
compute the PSD of a signal.

fs = 1000;                % Sampling frequency
t = (0:fs)/fs;            % One second worth of samples
A = [1 2];                % Sinusoid amplitudes
f = [150;140];            % Sinusoid frequencies

xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
pmtm(xn,4,[],fs)
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By lowering the time-bandwidth product, you can increase the resolution at the expense of larger
variance.

pmtm(xn,1.5,[],fs)
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This method is more computationally expensive than Welch's method due to the cost of computing the
discrete prolate spheroidal sequences. For long data series (10,000 points or more), it is useful to
compute the DPSSs once and save them in a MAT-file. dpsssave, dpssload, dpssdir, and
dpssclear are provided to keep a database of saved DPSSs in the MAT-file dpss.mat.

Cross-Spectral Density Function
The PSD is a special case of the cross spectral density (CPSD) function, defined between two signals
x(n) and y(n) as

Pxy(ω) = 1
2π ∑

m = −∞

∞
Rxy(m)e− jωm .

As is the case for the correlation and covariance sequences, the toolbox estimates the PSD and CPSD
because signal lengths are finite.

To estimate the cross-spectral density of two equal length signals x and y using Welch's method, the
cpsd function forms the periodogram as the product of the FFT of x and the conjugate of the FFT of
y. Unlike the real-valued PSD, the CPSD is a complex function. cpsd handles the sectioning and
windowing of x and y in the same way as the pwelch function:

Sxy = cpsd(x,y,nwin,noverlap,nfft,fs)
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Transfer Function Estimate
One application of Welch's method is nonparametric system identification. Assume that H is a linear,
time invariant system, and x(n) and y(n) are the input to and output of H, respectively. Then the
power spectrum of x(n) is related to the CPSD of x(n) and y(n) by

Pyx(ω) = H(ω)Pxx(ω) .

An estimate of the transfer function between x(n) and y(n) is

H(ω) =
Pyx(ω)
Pxx(ω)

.

This method estimates both magnitude and phase information. The tfestimate function uses
Welch's method to compute the CPSD and power spectrum, and then forms their quotient for the
transfer function estimate. Use tfestimate the same way that you use the cpsd function.

Generate a signal consisting of two sinusoids embedded in white Gaussian noise.

rng('default')

fs = 1000;                % Sampling frequency
t = (0:fs)/fs;            % One second worth of samples
A = [1 2];                % Sinusoid amplitudes
f = [150;140];            % Sinusoid frequencies

xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));

Filter the signal xn with an FIR moving-average filter. Compute the actual magnitude response and
the estimated response.

h = ones(1,10)/10;                % Moving-average filter
yn = filter(h,1,xn);

[HEST,f] = tfestimate(xn,yn,256,128,256,fs);
H = freqz(h,1,f,fs);

Plot the results.

subplot(2,1,1)
plot(f,abs(H))
title('Actual Transfer Function Magnitude')
yl = ylim;
grid
subplot(2,1,2)
plot(f,abs(HEST))
title('Transfer Function Magnitude Estimate')
xlabel('Frequency (Hz)')
ylim(yl)
grid
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Coherence Function
The magnitude-squared coherence between two signals x(n) and y(n) is

Cxy(ω) =
Pxy(ω) 2

Pxx(ω)Pyy(ω) .

This quotient is a real number between 0 and 1 that measures the correlation between x(n) and y(n)
at the frequency ω.

The mscohere function takes sequences xn and yn, computes their power spectra and CPSD, and
returns the quotient of the magnitude squared of the CPSD and the product of the power spectra. Its
options and operation are similar to the cpsd and tfestimate functions.

Generate a signal consisting of two sinusoids embedded in white Gaussian noise. The signal is
sampled at 1 kHz for 1 second.

rng('default')

fs = 1000;
t = (0:fs)/fs;
A = [1 2];                % Sinusoid amplitudes
f = [150;140];            % Sinusoid frequencies

xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
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Filter the signal xn with an FIR moving-average filter. Compute and plot the coherence function of xn
and the filter output yn as a function of frequency.

h = ones(1,10)/10;
yn = filter(h,1,xn);

mscohere(xn,yn,256,128,256,fs)

If the input sequence length, window length, and number of overlapping data points in a window are
such that mscohere operates on only a single record, the function returns all ones. This is because
the coherence function for linearly dependent data is one.

See Also
Apps
Signal Analyzer

Functions
cpsd | mscohere | periodogram | pmtm | pwelch | tfestimate
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Parametric Methods
Parametric methods can yield higher resolutions than nonparametric methods in cases when the
signal length is short. These methods use a different approach to spectral estimation; instead of
trying to estimate the PSD directly from the data, they model the data as the output of a linear system
driven by white noise, and then attempt to estimate the parameters of that linear system.

The most commonly used linear system model is the all-pole model, a filter with all of its zeroes at the
origin in the z-plane. The output of such a filter for white noise input is an autoregressive (AR)
process. For this reason, these methods are sometimes referred to as AR methods of spectral
estimation.

The AR methods tend to adequately describe spectra of data that is “peaky,” that is, data whose PSD
is large at certain frequencies. The data in many practical applications (such as speech) tends to have
“peaky spectra” so that AR models are often useful. In addition, the AR models lead to a system of
linear equations which is relatively simple to solve.

Signal Processing Toolbox AR methods for spectral estimation include:

• Yule-Walker AR method (autocorrelation method) on page 7-28
• Burg method on page 7-30
• Covariance method on page 7-34
• Modified covariance method on page 7-34

All AR methods yield a PSD estimate given by

P (f ) = 1
Fs

εp

1 − ∑
k = 1

p
a p(k)e− j2πkf /Fs

2 .

The different AR methods estimate the parameters slightly differently, yielding different PSD
estimates. The following table provides a summary of the different AR methods.
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AR Methods

 Burg Covariance Modified
Covariance

Yule-Walker

Characteristics Does not apply
window to data

Does not apply
window to data

Does not apply
window to data

Applies window to
data

Minimizes the
forward and
backward prediction
errors in the least
squares sense, with
the AR coefficients
constrained to satisfy
the L-D recursion

Minimizes the
forward prediction
error in the least
squares sense

Minimizes the
forward and
backward prediction
errors in the least
squares sense

Minimizes the
forward prediction
error in the least
squares sense

(also called
“Autocorrelation
method”)

Advantages High resolution for
short data records

Better resolution
than Y-W for short
data records (more
accurate estimates)

High resolution for
short data records

Performs as well as
other methods for
large data records

Always produces a
stable model

Able to extract
frequencies from
data consisting of p
or more pure
sinusoids

Able to extract
frequencies from
data consisting of p
or more pure
sinusoids

Always produces a
stable model

Does not suffer
spectral line-splitting

Disadvantages Peak locations highly
dependent on initial
phase

May produce
unstable models

May produce
unstable models

Performs relatively
poorly for short data
records

May suffer spectral
line-splitting for
sinusoids in noise, or
when order is very
large

Frequency bias for
estimates of
sinusoids in noise

Peak locations
slightly dependent
on initial phase

Frequency bias for
estimates of
sinusoids in noise

Frequency bias for
estimates of
sinusoids in noise

Minor frequency bias
for estimates of
sinusoids in noise

 

Conditions for
Nonsingularity

 Order must be less
than or equal to half
the input frame size

Order must be less
than or equal to 2/3
the input frame size

Because of the
biased estimate, the
autocorrelation
matrix is guaranteed
to positive-definite,
hence nonsingular

Yule-Walker AR Method
The Yule-Walker AR method of spectral estimation computes the AR parameters by solving the
following linear system, which give the Yule-Walker equations in matrix form:
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r 0 r 1 ⋯ r p− 1
r 1 r 0 ⋯ r p− 2
⋮ ⋮ ⋱ ⋮

r p− 1 r p− 2 ⋯ r 0

a 1
a 2
⋮

a p

=

r 1
r 2
⋮

r p

.

In practice, the biased estimate of the autocorrelation is used for the unknown true autocorrelation.
The Yule-Walker AR method produces the same results as a maximum entropy estimator.

The use of a biased estimate of the autocorrelation function ensures that the autocorrelation matrix
above is positive definite. Hence, the matrix is invertible and a solution is guaranteed to exist.
Moreover, the AR parameters thus computed always result in a stable all-pole model. The Yule-Walker
equations can be solved efficiently using Levinson’s algorithm, which takes advantage of the
Hermitian Toeplitz structure of the autocorrelation matrix.

The toolbox function pyulear implements the Yule-Walker AR method. For example, compare the
spectrum of a speech signal using Welch's method and the Yule-Walker AR method. Initially compute
and plot the Welch periodogram.

load mtlb
pwelch(mtlb,hamming(256),128,1024,Fs)

The Yule-Walker AR spectrum is smoother than the periodogram because of the simple underlying all-
pole model.

order = 14;
pyulear(mtlb,order,1024,Fs)
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Burg Method
The Burg method for AR spectral estimation is based on minimizing the forward and backward
prediction errors while satisfying the Levinson-Durbin recursion. In contrast to other AR estimation
methods, the Burg method avoids calculating the autocorrelation function, and instead estimates the
reflection coefficients directly.

The primary advantages of the Burg method are resolving closely spaced sinusoids in signals with low
noise levels, and estimating short data records, in which case the AR power spectral density
estimates are very close to the true values. In addition, the Burg method ensures a stable AR model
and is computationally efficient.

The accuracy of the Burg method is lower for high-order models, long data records, and high signal-
to-noise ratios (which can cause line splitting, or the generation of extraneous peaks in the spectrum
estimate). The spectral density estimate computed by the Burg method is also susceptible to
frequency shifts (relative to the true frequency) resulting from the initial phase of noisy sinusoidal
signals. This effect is magnified when analyzing short data sequences.

The toolbox function pburg implements the Burg method. Compare the spectrum estimates of a
speech signal generated by both the Burg method and the Yule-Walker AR method. Initially compute
and plot the Burg estimate.

load mtlb
order = 14;
pburg(mtlb(1:512),order,1024,Fs)
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The Yule-Walker estimate is very similar if the signal is long enough.

pyulear(mtlb(1:512),order,1024,Fs)
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Compare the spectrum of a noisy signal computed using the Burg method and the Welch method.
Create a two-component sinusoidal signal with frequencies 140 Hz and 150 Hz embedded in white
Gaussian noise of variance 0.1². The second component has twice the amplitude of the first
component. The signal is sampled at 1 kHz for 1 second. Initially compute and plot the Welch
spectrum estimate.

fs = 1000;
t = (0:fs)/fs;
A = [1 2];
f = [140;150];
xn = A*cos(2*pi*f*t) + 0.1*randn(size(t));

pwelch(xn,hamming(256),128,1024,fs)
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Compute and plot the Burg estimate using a model of order 14.

pburg(xn,14,1024,fs)
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Covariance and Modified Covariance Methods
The covariance method for AR spectral estimation is based on minimizing the forward prediction
error. The modified covariance method is based on minimizing the forward and backward prediction
errors. The toolbox functions pcov and pmcov implement the respective methods.

Compare the spectrum of a speech signal generated by both the covariance method and the modified
covariance method. First compute and plot the covariance method estimate.

load mtlb
pcov(mtlb(1:64),14,1024,Fs)
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The modified covariance method estimate is nearly identical, even for a short signal length.

pmcov(mtlb(1:64),14,1024,Fs)
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See Also
Functions
pburg | pcov | pmcov | pyulear
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MUSIC and Eigenvector Analysis Methods
The pmusic and peig functions provide two related spectral analysis methods:

• pmusic provides the multiple signal classification (MUSIC) method developed by Schmidt.
• peig provides the eigenvector (EV) method developed by Johnson.

Both of these methods are frequency estimator techniques based on eigenanalysis of the
autocorrelation matrix. This type of spectral analysis categorizes the information in a correlation or
data matrix, assigning information to either a signal subspace or a noise subspace.

Eigenanalysis Overview
Consider a number of complex sinusoids embedded in white noise. You can write the autocorrelation
matrix R for this system as the sum of the signal autocorrelation matrix (S) and the noise
autocorrelation matrix (W): R = S + W. There is a close relationship between the eigenvectors of the
signal autocorrelation matrix and the signal and noise subspaces. The eigenvectors v of S span the
same signal subspace as the signal vectors. If the system contains M complex sinusoids and the order
of the autocorrelation matrix is p, eigenvectors vM+1 through vp+1 span the noise subspace of the
autocorrelation matrix.

Frequency Estimator Functions
To generate their frequency estimates, eigenanalysis methods calculate functions of the vectors in the
signal and noise subspaces. Both the MUSIC and EV techniques choose a function that goes to
infinity (denominator goes to zero) at one of the sinusoidal frequencies in the input signal. Using
digital technology, the resulting estimate has sharp peaks at the frequencies of interest; this means
that there might not be infinity values in the vectors.

The MUSIC estimate is given by the formula

P MUSIC(f ) = 1

∑
k = p + 1

M
vk

He(f ) 2
,

where the vk are the eigenvectors of the noise subspace and e(f) is a vector of complex sinusoids:

e(f ) = [1 e j2πf e j4πf … e j2(M − 1)πf ]T .

Here v represents the eigenvectors of the input signal's correlation matrix; vk is the kth eigenvector.
H is the conjugate transpose operator. The eigenvectors used in the sum correspond to the smallest
eigenvalues and span the noise subspace (p is the size of the signal subspace).

The expression vk
He(f) is equivalent to a Fourier transform (the vector e(f) consists of complex

exponentials). This form is useful for numeric computation because the FFT can be computed for
each vk and then the squared magnitudes can be summed.

The EV method weights the summation by the eigenvalues of the correlation matrix:

P EV(f ) = 1

∑
k = p + 1

M 1
λk

vk
He(f ) 2

.
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The pmusic and peig functions interpret their first input either as a signal matrix or as a correlation
matrix (if the 'corr' input flag is set). In the former case, the singular value decomposition of the
signal matrix is used to determine the signal and noise subspaces. In the latter case, the eigenvalue
decomposition of the correlation matrix is used to determine the signal and noise subspaces.

See Also
Functions
peig | pmusic
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Windows
In this section...
“Why Use Windows?” on page 8-2
“Available Window Functions” on page 8-2
“Graphical User Interface Tools” on page 8-2
“Basic Shapes” on page 8-3

Why Use Windows?
In both digital filter design and spectral estimation, the choice of a windowing function can play an
important role in determining the quality of overall results. The main role of the window is to damp
out the effects of the Gibbs phenomenon that results from truncation of an infinite series.

Available Window Functions
Window Function
Bartlett-Hann window barthannwin
Bartlett window bartlett
Blackman window blackman
Blackman-Harris window blackmanharris
Bohman window bohmanwin
Chebyshev window chebwin
Flat Top window flattopwin
Gaussian window gausswin
Hamming window hamming
Hann window hann
Kaiser window kaiser
Nuttall's Blackman-Harris window nuttallwin
Parzen (de la Vallée-Poussin) window parzenwin
Rectangular window rectwin
Tapered cosine window tukeywin
Triangular window triang

Graphical User Interface Tools
Two graphical user interface tools are provided for working with windows in the Signal Processing
Toolbox product:

• Window Designer app
• Window Visualization Tool (WVTool)

Refer to the reference pages for detailed information.
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Basic Shapes
The basic window is the rectangular window, a vector of ones of the appropriate length. A
rectangular window of length 50 is

n = 50;
w = rectwin(n);

Signal Processing Toolbox stores windows in column vectors by convention, so an equivalent
expression is

w = ones(50,1);

To use the Window Designer app to create this window, type

windowDesigner

The app opens with a default Hamming window. To visualize the rectangular window, set Type =
Rectangular and Length = 50 in the Current Window Information panel and then press Apply.

The Bartlett (or triangular) window is the convolution of two rectangular windows. The functions
bartlett and triang compute similar triangular windows, with three important differences. The
bartlett function always returns a window with two zeros on the ends of the sequence, so that for n
odd, the center section of bartlett(n+2) is equivalent to triang(n):

Bartlett = bartlett(7);
isequal(Bartlett(2:end-1),triang(5))

ans =
     1

For n even, bartlett is still the convolution of two rectangular sequences. There is no standard
definition for the triangular window for n even; the slopes of the line segments of the triang result
are slightly steeper than those of bartlett in this case:

w = bartlett(8); 
[w(2:7) triang(6)]

You can see the difference between odd and even Bartlett windows in Window Designer.
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The final difference between the Bartlett and triangular windows is evident in the Fourier transforms
of these functions. The Fourier transform of a Bartlett window is negative for n even. The Fourier
transform of a triangular window, however, is always nonnegative.

The following figure, which plots the zero-phase responses of 8-point Bartlett and Triangular
windows, illustrates the difference.

zerophase(bartlett(8))
hold on
zerophase(triang(8))
legend('Bartlett','Triangular')
axis([0.3 1 -0.2 0.5])
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This difference can be important when choosing a window for some spectral estimation techniques,
such as the Blackman-Tukey method. Blackman-Tukey forms the spectral estimate by calculating the
Fourier transform of the autocorrelation sequence. The resulting estimate might be negative at some
frequencies if the window's Fourier transform is negative.

See Also
Apps
Window Designer

Functions
WVTool | bartlett | rectwin | triang
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Get Started with Window Designer
Typing windowDesigner at the command line opens the Window Designer app for designing and
analyzing spectral windows. The app opens with a default 64-point Hamming window.

Note A related tool, WVTool, is available for displaying, annotating, or printing windows.

The app has three panels:
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• Window Viewer displays the time domain and frequency domain representations of the selected
window(s). The currently active window is shown in bold. Three window measurements are shown
below the plots.

• Leakage factor — ratio of power in the sidelobes to the total window power
• Relative sidelobe attenuation — difference in height from the mainlobe peak to the highest

sidelobe peak
• Mainlobe width (–3dB) — width of the mainlobe at 3 dB below the mainlobe peak

• Window List lists the windows available for display in the Window Viewer. Highlight one or more
windows to display them. The Window List buttons are:

• Add a new window — Adds a default Hamming window with length 64 and symmetric
sampling. You can change the information for this window by applying changes made in the
Current Window Information panel.

• Copy window — Copies the selected window(s).
• Save to workspace — Saves the selected window(s) as vector(s) to the MATLAB workspace.

The name of the window is used as the vector name.
• Delete — Removes the selected window(s) from the window list.

• Current Window Information displays information about the currently active window. The active
window name is shown in the Name field. To make another window active, select its name from the
Name menu.

Window Parameters
Each window is defined by the parameters in the Current Window Information panel. You can change
the current window's characteristics by changing its parameters and clicking Apply. The parameters
of the current window are

• Name — Name of the window. The name is used for the legend in the Window Viewer, in the
Window List, and for the vector saved to the workspace. You can either select a name from the
menu or type the desired name in the edit box.

• Type — Algorithm for the window. Select the type from the menu. All Signal Processing Toolbox
windows are available.

• MATLAB code — Any valid MATLAB expression that returns a vector defining the window if
Type = User Defined.

• Length — Number of samples.
• Parameter — Additional parameter for windows that require it, such as Chebyshev, which

requires you to specify the sidelobe attenuation. Note that the title “Parameter” changes to the
appropriate parameter name.

• Sampling — Type of sampling to use for generalized cosine windows (Hamming, Hann, and
Blackman) — Periodic or Symmetric. Periodic computes a length n+1 window and returns
the first n points, and Symmetric computes and returns the n points specified in Length.

Window Designer Menus
In addition to the usual menu items, Window Designer contains these menu commands:

File menu:

 Get Started with Window Designer
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• Export — Exports window coefficient vectors to the MATLAB workspace, a text file, or a MAT-file.

In the Window List in, highlight the window(s) you want to export and then select File > Export.
For exporting to the workspace or a MAT-file, specify the variable name for each set of window
coefficients. To overwrite variables in the workspace, select the Overwrite variables check box.

• Full View Analysis — Copies the windows shown in both plots to a separate WVTool figure
window. This is useful for printing and annotating. This option is also available with the Full View
Analysis toolbar button.

View menu:

• Time domain — Select to show the time domain plot in the Window Viewer panel.
• Frequency domain — Select to show the frequency domain plot in the Window Viewer panel.
• Legend — Toggles the window name legend on and off. This option is also available with the

Legend toolbar button.
• Analysis Parameters — Controls the response plot parameters, including number of points,

range, x- and y-axis units, sampling frequency, and normalized magnitude.

You can also access the Analysis Parameters by right-clicking the x-axis label of a plot in the
Window Viewer panel. The x-axis units for the time domain plot depend on the selected Sampling
Frequency units.

Frequency Domain Time Domain
Hz s
kHz ms
MHz µs
GHz ns

Tools menu:

• Zoom In — Zooms in along both x- and y-axes.
• Zoom X — Zooms in along the x-axis only. Drag the mouse in the x direction to select the zoom

area.
• Zoom Y — Zooms in along the y-axis only. Drag the mouse in the y direction to select the zoom

area.
• Full View — Returns to full view.

See Also
Functions
WVTool
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Generalized Cosine Windows
Blackman, flat top, Hamming, Hann, and rectangular windows are all special cases of the generalized
cosine window. These windows are combinations of sinusoidal sequences with frequencies that are
multiples of 2π/(N – 1), where N is the window length. One special case is the Blackman window:

N = 128;
A = 0.42;
B = 0.5;
C = 0.08;
ind = (0:N-1)'*2*pi/(N-1);
w = A - B*cos(ind) + C*cos(2*ind);

Changing the values of the constants A, B, and C in the previous expression generates different
generalized cosine windows like the Hamming and Hann windows. Adding additional cosine terms of
higher frequency generates the flat top window. The concept behind these windows is that by
summing the individual terms to form the window, the low frequency peaks in the frequency domain
combine in such a way as to decrease sidelobe height. This has the side effect of increasing the
mainlobe width.

The Hamming and Hann windows are two-term generalized cosine windows, given by A = 0.54,
B = 0.46 for the Hamming and A = 0.5, B = 0.5 for the Hann.

Note that the definition of the generalized cosine window shown in the earlier MATLAB code yields
zeros at samples 1 and n for A = 0.5 and B = 0.5.

This Window Designer screen shot compares Blackman, Hamming, Hann, and Flat Top windows.

 Generalized Cosine Windows
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See Also
Apps
Window Designer

Functions
WVTool | blackman | flattopwin | hamming | hann
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Kaiser Window
The Kaiser window is an approximation to the prolate spheroidal window, for which the ratio of the
mainlobe energy to the sidelobe energy is maximized. For a Kaiser window of a particular length, the
parameter β controls the relative sidelobe attenuation. For a given β, the relative sidelobe attenuation
is fixed with respect to window length. The statement kaiser(n,beta) computes a length n Kaiser
window with parameter beta.

As β increases, the relative sidelobe attenuation decreases and the mainlobe width increases. This
screen shot shows how the relative sidelobe attenuation stays approximately the same for a fixed β
parameter as the length is varied.

Examples of Kaiser windows with length 50 and β parameters of 1, 4, and 9 are shown in this
example.

 Kaiser Window
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To create these Kaiser windows using the MATLAB command line, type the following:

n = 50;
w1 = kaiser(n,1);
w2 = kaiser(n,4);
w3 = kaiser(n,9);
[W1,f] = freqz(w1/sum(w1),1,512,2);
[W2,f] = freqz(w2/sum(w2),1,512,2);
[W3,f] = freqz(w3/sum(w3),1,512,2);
plot(f,20*log10(abs([W1 W2 W3])))
grid
legend('\beta = 1','\beta = 4','\beta = 9')
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To create these Kaiser windows using the MATLAB command line, type the following:

w1 = kaiser(50,4);
w2 = kaiser(20,4);
w3 = kaiser(101,4);
[W1,f] = freqz(w1/sum(w1),1,512,2);
[W2,f] = freqz(w2/sum(w2),1,512,2);
[W3,f] = freqz(w3/sum(w3),1,512,2);
plot(f,20*log10(abs([W1 W2 W3])))
grid
legend('length = 50','length = 20','length = 101')
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Kaiser Windows in FIR Design
There are two design formulas that can help you design FIR filters to meet a set of filter
specifications using a Kaiser window. To achieve a relative sidelobe attenuation of –α dB, the β (beta)
parameter is

β =
0 . 1102 α− 8 . 7 , α > 50,

0 . 5842 α− 21 0 . 4 + 0 . 7886 α− 21 , 50 ≥ α ≥ 21,
0, α < 21 .

For a transition width of Δω rad/sample, use the length

n = α− 8
2 . 285Δω + 1.

Filters designed using these heuristics will meet the specifications approximately, but you should
verify this. To design a lowpass filter with cutoff frequency 0.5π rad/sample, transition width 0.2
π rad/sample, and 40 dB of attenuation in the stopband, try

 Kaiser Window
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[n,wn,beta] = kaiserord([0.4 0.6]*pi,[1 0],[0.01 0.01],2*pi);
h = fir1(n,wn,kaiser(n+1,beta),'noscale');

The kaiserord function estimates the filter order, cutoff frequency, and Kaiser window beta
parameter needed to meet a given set of frequency domain specifications.

The ripple in the passband is roughly the same as the ripple in the stopband. As you can see from the
frequency response, this filter nearly meets the specifications:

fvtool(h,1)

See Also
Apps
Window Designer

Functions
WVTool | freqz | kaiser | kaiserord
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Chebyshev Window
The Chebyshev window minimizes the mainlobe width, given a particular sidelobe height. It is
characterized by an equiripple behavior. Its sidelobes all have the same height.

Generate and display a 50-point Chebyshev window with a sidelobe attenuation of 40 dB.

w = chebwin(50,40);
wvtool(w)

As shown in the time-domain plot, the Chebyshev window has large spikes at its outer samples.

See Also
Apps
Window Designer

Functions
WVTool | chebwin
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Parametric Modeling
In this section...
“What is Parametric Modeling” on page 8-18
“Available Parametric Modeling Functions” on page 8-18
“Time-Domain Based Modeling” on page 8-19
“Frequency-Domain Based Modeling” on page 8-21

What is Parametric Modeling
Parametric modeling techniques find the parameters for a mathematical model describing a signal,
system, or process. These techniques use known information about the system to determine the
model. Applications for parametric modeling include speech and music synthesis, data compression,
high-resolution spectral estimation, communications, manufacturing, and simulation.

Available Parametric Modeling Functions
The toolbox parametric modeling functions operate with the rational transfer function model. Given
appropriate information about an unknown system (impulse or frequency response data, or input and
output sequences), these functions find the coefficients of a linear system that models the system.

One important application of the parametric modeling functions is in the design of filters that have a
prescribed time or frequency response.

Here is a summary of the parametric modeling functions in this toolbox.

Domain Functions Description
Time arburg Generate all-pole filter coefficients that model an input

data sequence using the Levinson-Durbin algorithm.
arcov Generate all-pole filter coefficients that model an input

data sequence by minimizing the forward prediction
error.

armcov Generate all-pole filter coefficients that model an input
data sequence by minimizing the forward and backward
prediction errors.

aryule Generate all-pole filter coefficients that model an input
data sequence using an estimate of the autocorrelation
function.

lpc, levinson Linear Predictive Coding. Generate all-pole recursive
filter whose impulse response matches a given sequence.

prony Generate IIR filter whose impulse response matches a
given sequence.

stmcb Find IIR filter whose output, given a specified input
sequence, matches a given output sequence.

Frequency invfreqz, invfreqs Generate digital or analog filter coefficients given
complex frequency response data.
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Time-Domain Based Modeling
The lpc, prony, and stmcb functions find the coefficients of a digital rational transfer function that
approximates a given time-domain impulse response. The algorithms differ in complexity and
accuracy of the resulting model.

Linear Prediction

Linear prediction modeling assumes that each output sample of a signal, x(k), is a linear
combination of the past n outputs (that is, it can be linearly predicted from these outputs), and that
the coefficients are constant from sample to sample:

x k = − a 2 x k− 1 − a 3 x k− 2 −⋯− a n + 1 x k− n .

An nth-order all-pole model of a signal x is

a = lpc(x,n)

To illustrate lpc, create a sample signal that is the impulse response of an all-pole filter with additive
white noise:

x = impz(1,[1 0.1 0.1 0.1 0.1],10) + randn(10,1)/10;

The coefficients for a fourth-order all-pole filter that models the system are

a = lpc(x,4)

lpc first calls xcorr to find a biased estimate of the correlation function of x, and then uses the
Levinson-Durbin recursion, implemented in the levinson function, to find the model coefficients a.
The Levinson-Durbin recursion is a fast algorithm for solving a system of symmetric Toeplitz linear
equations. lpc's entire algorithm for n = 4 is

r = xcorr(x);
r(1:length(x)-1) = [];      % Remove corr. at negative lags
a = levinson(r,4)

You could form the linear prediction coefficients with other assumptions by passing a different
correlation estimate to levinson, such as the biased correlation estimate:

r = xcorr(x,'biased');
r(1:length(x)-1) = [];      % Remove corr. at negative lags
a = levinson(r,4)

Prony's Method (ARMA Modeling)

The prony function models a signal using a specified number of poles and zeros. Given a sequence x
and numerator and denominator orders n and m, respectively, the statement

[b,a] = prony(x,n,m)

finds the numerator and denominator coefficients of an IIR filter whose impulse response
approximates the sequence x.

The prony function implements the method described in [4] Parks and Burrus. This method uses a
variation of the covariance method of AR modeling to find the denominator coefficients a, and then
finds the numerator coefficients b for which the resulting filter's impulse response matches exactly
the first n + 1 samples of x. The filter is not necessarily stable, but it can potentially recover the
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coefficients exactly if the data sequence is truly an autoregressive moving-average (ARMA) process of
the correct order.

Note The functions prony and stmcb (described next) are more accurately described as ARX models
in system identification terminology. ARMA modeling assumes noise only at the inputs, while ARX
assumes an external input. prony and stmcb know the input signal: it is an impulse for prony and is
arbitrary for stmcb.

A model for the test sequence x (from the earlier lpc example) using a third-order IIR filter is

[b,a] = prony(x,3,3)

The impz command shows how well this filter's impulse response matches the original sequence:

format long
[x impz(b,a,10)]

Notice that the first four samples match exactly. For an example of exact recovery, recover the
coefficients of a Butterworth filter from its impulse response:

[b,a] = butter(4,.2);
h = impz(b,a,26);
[bb,aa] = prony(h,4,4);

Try this example; you'll see that bb and aa match the original filter coefficients to within a tolerance
of 10-13.

Steiglitz-McBride Method (ARMA Modeling)

The stmcb function determines the coefficients for the system b(z)/a(z) given an approximate impulse
response x, as well as the desired number of zeros and poles. This function identifies an unknown
system based on both input and output sequences that describe the system's behavior, or just the
impulse response of the system. In its default mode, stmcb works like prony.

[b,a] = stmcb(x,3,3)

stmcb also finds systems that match given input and output sequences:

y = filter(1,[1 1],x);     % Create an output signal.
[b,a] = stmcb(y,x,0,1)

In this example, stmcb correctly identifies the system used to create y from x.

The Steiglitz-McBride method is a fast iterative algorithm that solves for the numerator and
denominator coefficients simultaneously in an attempt to minimize the signal error between the filter
output and the given output signal. This algorithm usually converges rapidly, but might not converge
if the model order is too large. As for prony, stmcb's resulting filter is not necessarily stable due to
its exact modeling approach.

stmcb provides control over several important algorithmic parameters; modify these parameters if
you are having trouble modeling the data. To change the number of iterations from the default of five
and provide an initial estimate for the denominator coefficients:
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n = 10;             % Number of iterations
a = lpc(x,3);       % Initial estimates for denominator
[b,a] = stmcb(x,3,3,n,a);

The function uses an all-pole model created with prony as an initial estimate when you do not
provide one of your own.

To compare the functions lpc, prony, and stmcb, compute the signal error in each case:

a1 = lpc(x,3);
[b2,a2] = prony(x,3,3);
[b3,a3] = stmcb(x,3,3);
[x-impz(1,a1,10)  x-impz(b2,a2,10)  x-impz(b3,a3,10)]

In comparing modeling capabilities for a given order IIR model, the last result shows that for this
example, stmcb performs best, followed by prony, then lpc. This relative performance is typical of
the modeling functions.

Frequency-Domain Based Modeling
The invfreqs and invfreqz functions implement the inverse operations of freqs and freqz; they
find an analog or digital transfer function of a specified order that matches a given complex
frequency response. Though the following examples demonstrate invfreqz, the discussion also
applies to invfreqs.

To recover the original filter coefficients from the frequency response of a simple digital filter:

[b,a] = butter(4,0.4)         % Design Butterworth lowpass
[h,w] = freqz(b,a,64);        % Compute frequency response
[b4,a4] = invfreqz(h,w,4,4)   % Model: n = 4, m = 4

The vector of frequencies w has the units in rad/sample, and the frequencies need not be equally
spaced. invfreqz finds a filter of any order to fit the frequency data; a third-order example is

[b4,a4] = invfreqz(h,w,3,3)   % Find third-order IIR

Both invfreqs and invfreqz design filters with real coefficients; for a data point at positive
frequency f, the functions fit the frequency response at both f and -f.

By default invfreqz uses an equation error method to identify the best model from the data. This
finds b and a in

by creating a system of linear equations and solving them with the MATLAB \ operator. Here A(w(k))
and B(w(k)) are the Fourier transforms of the polynomials a and b respectively at the frequency w(k),
and n is the number of frequency points (the length of h and w). wt(k) weights the error relative to the
error at different frequencies. The syntax

invfreqz(h,w,n,m,wt)

includes a weighting vector. In this mode, the filter resulting from invfreqz is not guaranteed to be
stable.
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invfreqz provides a superior ("output-error") algorithm that solves the direct problem of minimizing
the weighted sum of the squared error between the actual frequency response points and the desired
response

To use this algorithm, specify a parameter for the iteration count after the weight vector parameter:

wt = ones(size(w));   % Create unit weighting vector
[b30,a30] = invfreqz(h,w,3,3,wt,30)  % 30 iterations

The resulting filter is always stable.

Graphically compare the results of the first and second algorithms to the original Butterworth filter
with FVTool (and select the Magnitude and Phase Responses):

fvtool(b,a,b4,a4,b30,a30)

To verify the superiority of the fit numerically, type
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sum(abs(h-freqz(b4,a4,w)).^2)    % Total error, algorithm 1
sum(abs(h-freqz(b30,a30,w)).^2)  % Total error, algorithm 2
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Resampling

In this section...
“resample Function” on page 8-24
“decimate and interp Functions” on page 8-25
“upfirdn Function” on page 8-25
“spline Function” on page 8-25

Signal Processing Toolbox provides a number of functions that resample a signal at a higher or lower
rate.

Operation Function
Apply FIR filter with resampling upfirdn
Cubic spline interpolation spline
Decimation decimate
Interpolation interp
Other 1-D interpolation interp1
Resample at new rate resample

For examples, see

• “Reconstructing Missing Data” on page 24-27
• “Resampling Uniformly Sampled Signals” on page 24-38
• “Resampling Nonuniformly Sampled Signals” on page 24-46
• “Resample and Filter a Nonuniformly Sampled Signal” on page 21-84

resample Function
The resample function changes the sample rate for a sequence to any rate that is proportional to the
original by a ratio of two integers. The basic syntax for resample is

y = resample(x,p,q)

where the function resamples the sequence x at p/q times the original sample rate. The length of the
result y is p/q times the length of x.

One resampling application is the conversion of digitized audio signals from one sample rate to
another, such as from 48 kHz (the digital audio tape standard) to 44.1 kHz (the compact disc
standard). See “Convert from DAT Rate to CD Sample Rate” for an example.

resample applies a lowpass filter to the input sequence to prevent aliasing during resampling. The
function designs this filter using the firls function with a Kaiser window. You can control the filter
length and the beta parameter of the Kaiser window. Alternatively, you can use the function intfilt
to design an interpolation filter.
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decimate and interp Functions
The decimate and interp functions are equivalent to resample with p = 1 and q = 1, respectively.
These functions provide different antialiasing filtering options, and they incur a slight signal delay
due to filtering.

upfirdn Function
The toolbox also contains a function, upfirdn, that applies an FIR filter to an input sequence and
outputs the filtered sequence at a sample rate different than its original. See “Multirate Filter Bank
Implementation” on page 1-6.

spline Function
The standard MATLAB environment contains a function, spline, that works with irregularly spaced
data. The function interp1 performs interpolation, or table lookup, using various methods including
linear and cubic interpolation.

See Also
Apps
Signal Analyzer

Functions
decimate | interp | interp1 | resample | spline | upfirdn
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Cepstrum Analysis
What Is a Cepstrum?

Cepstrum analysis is a nonlinear signal processing technique with a variety of applications in areas
such as speech and image processing.

The complex cepstrum of a sequence x is calculated by finding the complex natural logarithm of the
Fourier transform of x, then the inverse Fourier transform of the resulting sequence:

x = 1
2π∫−π

π
log[X(e jω)]e jωn dω .

The toolbox function cceps performs this operation, estimating the complex cepstrum for an input
sequence. It returns a real sequence the same size as the input sequence.

Try using cceps in an echo detection application. First, create a 45 Hz sine wave sampled at 100 Hz.
Add an echo of the signal, with half the amplitude, 0.2 seconds after the beginning of the signal.

t = 0:0.01:1.27;
s1 = sin(2*pi*45*t);
s2 = s1 + 0.5*[zeros(1,20) s1(1:108)];

Compute and plot the complex cepstrum of the new signal.

c = cceps(s2);
plot(t,c)
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The complex cepstrum shows a peak at 0.2 seconds, indicating the echo.

The real cepstrum of a signal x, sometimes called simply the cepstrum, is calculated by determining
the natural logarithm of magnitude of the Fourier transform of x, then obtaining the inverse Fourier
transform of the resulting sequence:

cx = 1
2π∫−π

π
log X(e jω) e jωn dω .

The toolbox function rceps performs this operation, returning the real cepstrum for a sequence. The
returned sequence is a real-valued vector the same size as the input vector.

The rceps function also returns a unique minimum-phase sequence that has the same real cepstrum
as the input. To obtain both the real cepstrum and the minimum-phase reconstruction for a sequence,
use [y,ym] = rceps(x), where y is the real cepstrum and ym is the minimum phase reconstruction
of x. The following example shows that one output of rceps is a unique minimum-phase sequence
with the same real cepstrum as x.

y = [4 1 5];                 % Non-minimum phase sequence
[xhat,yhat] = rceps(y);
xhat2 = rceps(yhat); 
[xhat' xhat2']

ans = 3×2

    1.6225    1.6225
    0.3400    0.3400
    0.3400    0.3400

Inverse Complex Cepstrum

To invert the complex cepstrum, use the icceps function. Inversion is complicated by the fact that
the cceps function performs a data-dependent phase modification so that the unwrapped phase of its
input is continuous at zero frequency. The phase modification is equivalent to an integer delay. This
delay term is returned by cceps if you ask for a second output:

x = 1:10;
[xhat,delay] = cceps(x)

xhat = 1×10

    2.2428   -0.0420   -0.0210    0.0045    0.0366    0.0788    0.1386    0.2327    0.4114    0.9249

delay = 1

To invert the complex cepstrum, use icceps with the original delay parameter:

icc = icceps(xhat,2)

icc = 1×10

    2.0000    3.0000    4.0000    5.0000    6.0000    7.0000    8.0000    9.0000   10.0000    1.0000
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As shown in the above example, with any modification of the complex cepstrum, the original delay
term may no longer be valid. You will not be able to invert the complex cepstrum exactly.

See Also
cceps | icceps | rceps
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FFT-Based Time-Frequency Analysis
The Signal Processing Toolbox™ product provides functions that return the time-dependent Fourier
transform for a sequence, or displays this information as a spectrogram. The time-dependent Fourier
transform is the discrete-time Fourier transform for a sequence, computed using a sliding window.
This form of the Fourier transform, also known as the short-time Fourier transform (STFT), has
numerous applications in speech, sonar, and radar processing. The spectrogram of a sequence is the
magnitude of the time-dependent Fourier transform versus time.

To display the spectrogram of a signal, you can use the pspectrum function. For example, generate
two seconds of a signal sampled at 10 kHz. Specify the instantaneous frequency of the signal as a
triangular function of time. To compute the spectrogram, divide the signal into segments of duration
0.0256 second and specify 86% segment-to-segment overlap. The leakage measures the ability of the
sliding window to detect a weak tone from noise in the presence of a neighboring strong tone. Specify
a leakage of 0.875.

fs = 10000;
t = 0:1/fs:2;
x = vco(sawtooth(2*pi*t,0.75),[0.1 0.4]*fs,fs);

pspectrum(x,fs,'spectrogram', ...
    'TimeResolution',0.0256,'Overlap',86,'Leakage',0.875)

The persistence spectrum of a signal is a time-frequency view that shows the percentage of the time
that a given frequency is present in a signal. The persistence spectrum is a histogram in power-
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frequency space. The longer a particular frequency persists in a signal as the signal evolves, the
higher its time percentage and thus the brighter or "hotter" its color in the display.

Compute and display the persistence spectrum of the signal. Specify a time resolution of 0.01 second,
50% overlap between adjoining segments, and a leakage of 0.5.

pspectrum(x,fs,'persistence', ...
    'TimeResolution',0.01,'Overlap',50,'Leakage',0.5)

See Also
Apps
Signal Analyzer

Functions
fsst | ifsst | pspectrum | spectrogram | tfridge | xspectrogram

Related Examples
• “Practical Introduction to Time-Frequency Analysis” on page 24-267
• “Detect Closely Spaced Sinusoids” on page 16-25
• “Hilbert Transform and Instantaneous Frequency” on page 16-18
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Cross-Spectrogram of Complex Signals
Generate two signals, each sampled at 3 kHz for 1 second. The first signal is a quadratic chirp whose
frequency increases from 300 Hz to 1300 Hz during the measurement. The chirp is embedded in
white Gaussian noise. The second signal, also embedded in white noise, is a chirp with sinusoidally
varying frequency content.

fs = 3000;
t = 0:1/fs:1-1/fs;

x1 = chirp(t,300,t(end),1300,'quadratic')+randn(size(t))/100;

x2 = exp(2j*pi*100*cos(2*pi*2*t))+randn(size(t))/100;

Compute and plot the cross-spectrogram of the two signals. Divide the signals into 256-sample
segments with 255 samples of overlap between adjoining segments. Use a Kaiser window with shape
factor β = 30 to window the segments. Use the default number of DFT points. Center the cross-
spectrogram at zero frequency.

nwin = 256;

xspectrogram(x1,x2,kaiser(nwin,30),nwin-1,[],fs,'centered','yaxis')

Compute the power spectrum instead of the power spectral density. Set to zero the values smaller
than –40 dB. Center the plot at the Nyquist frequency.
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xspectrogram(x1,x2,kaiser(nwin,30),nwin-1,[],fs, ...
    'power','MinThreshold',-40,'yaxis')
title('Cross-Spectrogram of Quadratic Chirp and Complex Chirp')

The thresholding further highlights the regions of common frequency.

See Also
spectrogram | xspectrogram
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Median Filtering
The function medfilt1 implements one-dimensional median filtering, a nonlinear technique that
applies a sliding window to a sequence. The median filter replaces the center value in the window
with the median value of all the points within the window [5]. In computing this median, medfilt1
assumes zeros beyond the input points.

When the number of elements n in the window is even, medfilt1 sorts the numbers, then takes the
average of the n/2 and n/2 + 1 elements.

Two simple examples with fourth- and third-order median filters are

medfilt1([4 3 5 2 8 9 1],4)
ans =
    1.500 3.500 3.500 4.000 6.500 5.000 4.500
medfilt1([4 3 5 2 8 9 1],3)
ans =
     3     4     3     5     8     8     1

See the medfilt2 function in the Image Processing Toolbox™ for information on two-dimensional
median filtering.
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Communications Applications

In this section...
“Modulation” on page 8-34
“Demodulation” on page 8-35
“Voltage Controlled Oscillator” on page 8-36

Modulation
Modulation varies the amplitude, phase, or frequency of a carrier signal with reference to a message
signal. The modulate function modulates a message signal with a specified modulation method.

The basic syntax for the modulate function is

y = modulate(x,fc,fs,'method',opt)

where:

• x is the message signal.
• fc is the carrier frequency.
• fs is the sampling frequency.
• method is a flag for the desired modulation method.
• opt is any additional argument that the method requires. (Not all modulation methods require an

option argument.)

The table below summarizes the modulation methods provided; see the documentation for modulate,
demod, and vco for complete details on each.

Method Description
amdsb-sc or am Amplitude modulation, double sideband, suppressed carrier
amdsb-tc Amplitude modulation, double sideband, transmitted carrier
amssb Amplitude modulation, single sideband
fm Frequency modulation
pm Phase modulation
ppm Pulse position modulation
pwm Pulse width modulation
qam Quadrature amplitude modulation

If the input x is an array rather than a vector, modulate modulates each column of the array.

To obtain the time vector that modulate uses to compute the modulated signal, specify a second
output parameter:

[y,t] = modulate(x,fc,fs,'method',opt)
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Demodulation
The demod function performs demodulation, that is, it obtains the original message signal from the
modulated signal:

The syntax for demod is

x = demod(y,fc,fs,'method',opt)

demod uses any of the methods shown for modulate, but the syntax for quadrature amplitude
demodulation requires two output parameters:

[X1,X2] = demod(y,fc,fs,'qam')

If the input y is an array, demod demodulates all columns.

Try modulating and demodulating a signal. A 50 Hz sine wave sampled at 1000 Hz is

t = (0:1/1000:2);
x = sin(2*pi*50*t);

With a carrier frequency of 200 Hz, the modulated and demodulated versions of this signal are

y = modulate(x,200,1000,'am');
z = demod(y,200,1000,'am');

To plot portions of the original, modulated, and demodulated signal:

figure; plot(t(1:150),x(1:150)); title('Original Signal');
figure; plot(t(1:150),y(1:150)); title('Modulated Signal');
figure; plot(t(1:150),z(1:150)); title('Demodulated Signal');

Original Signal
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Modulated Signal

Demodulated Signal

Note The demodulated signal is attenuated because demodulation includes two steps: multiplication
and lowpass filtering. The multiplication produces a component with frequency centered at 0 Hz and
a component with frequency at twice the carrier frequency. The filtering removes the higher
frequency component of the signal, producing the attenuated result.

Voltage Controlled Oscillator
The voltage controlled oscillator function vco creates a signal that oscillates at a frequency
determined by the input vector. The basic syntax for vco is

y = vco(x,fc,fs)
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where fc is the carrier frequency and fs is the sampling frequency.

To scale the frequency modulation range, use

y = vco(x,[Fmin Fmax],fs)

In this case, vco scales the frequency modulation range so values of x on the interval [-1 1] map to
oscillations of frequency on [Fmin Fmax].

If the input x is an array, vco produces an array whose columns oscillate according to the columns
of x.

See “FFT-Based Time-Frequency Analysis” on page 8-29 for an example using the vco function.
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Deconvolution
Deconvolution, or polynomial division, is the inverse operation of convolution. Deconvolution is useful
in recovering the input to a known filter, given the filtered output. This method is very sensitive to
noise in the coefficients, however, so use caution in applying it.

The syntax for deconv is

[q,r] = deconv(b,a)

where b is the polynomial dividend, a is the divisor, q is the quotient, and r is the remainder.

To try deconv, first convolve two simple vectors a and b.

a = [1 2 3];
b = [4 5 6];
c = conv(a,b)

c = 
    4   13   28   27   18

Now use deconv to deconvolve b from c:

[q,r] = deconv(c,a)

q = 
    4    5    6
r = 
    0    0    0    0    0
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Chirp Z-Transform
The chirp Z-transform (CZT) is useful in evaluating the Z-transform along contours other than the
unit circle. The chirp Z-transform is also more efficient than the DFT algorithm for the computation of
prime-length transforms, and it is useful in computing a subset of the DFT for a sequence. The chirp
Z-transform, or CZT, computes the Z-transform along spiral contours in the z-plane for an input
sequence. Unlike the DFT, the CZT is not constrained to operate along the unit circle, but can
evaluate the Z-transform along contours described by zℓ = AW−ℓ, ℓ = 0,⋯, M − 1, where A is the
complex starting point, W is a complex scalar describing the complex ratio between points on the
contour, and M is the length of the transform.

One possible spiral is

a = 0.8*exp(1j*pi/6);
w = 0.995*exp(-1j*pi*.05);
m = 91;
z = a*(w.^(-(0:m-1)'));
zplane(z)

czt(x,m,w,a) computes the Z-transform of x on these points.

An interesting and useful spiral set is m evenly spaced samples around the unit circle, parameterized
by A = 1 and W = exp( − jπ/M). The Z-transform on this contour is simply the DFT, obtained by czt:

M = 64;
m = 0:M-1;
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x = sin(2*pi*m/15);
FFT = fft(x);
CZT = czt(x,M,exp(-2j*pi/M),1);

stem(m,abs(FFT))
hold on
stem(m,abs(CZT),'*')
hold off
legend('fft','czt','Location','north')

czt may be faster than the fft function for computing the DFT of sequences with certain odd
lengths, particularly long prime-length sequences.

See Also
czt | fft
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Discrete Cosine Transform
The discrete cosine transform (DCT) is closely related to the discrete Fourier transform (DFT). The
DFT is actually one step in the computation of the DCT for a sequence. The DCT, however, has better
energy compaction than the DFT, with just a few of the transform coefficients representing the
majority of the energy in the sequence. This property of the DCT makes it useful in applications such
as data communications and signal coding.

DCT Variants

The DCT has four standard variants. For a signal x of length N, and with δkℓ the Kronecker delta, the
transforms are defined by:

• DCT-1:

y(k) = 2
N − 1 ∑n = 1

N
x(n) 1

1 + δn1 + δnN

1
1 + δk1 + δkN

cos π
N − 1(n− 1)(k− 1)

• DCT-2:

y(k) = 2
N ∑

n = 1

N
x(n) 1

1 + δk1
cos π

2N (2n− 1)(k− 1)

• DCT-3:

y(k) = 2
N ∑

n = 1

N
x(n) 1

1 + δn1
cos π

2N (n− 1)(2k− 1)

• DCT-4:

y(k) = 2
N ∑

n = 1

N
x(n)cos π

4N (2n− 1)(2k− 1)

The Signal Processing Toolbox function dct computes the unitary DCT of an input array.

Inverse DCT Variants

All variants of the DCT are unitary (or, equivalently, orthogonal): To find their inverses, switch k and n
in each definition. DCT-1 and DCT-4 are their own inverses. DCT-2 and DCT-3 are inverses of each
other:

• Inverse of DCT-1:

x(n) = 2
N − 1 ∑k = 1

N
y(k) 1

1 + δk1 + δkN

1
1 + δn1 + δnN

cos π
N − 1(k− 1)(n− 1)

• Inverse of DCT-2:

x(n) = 2
N ∑

k = 1

N
y(k) 1

1 + δk1
cos π

2N (k− 1)(2n− 1)
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• Inverse of DCT-3:

x(n) = 2
N ∑

k = 1

N
y(k) 1

1 + δn1
cos π

2N (2k− 1)(n− 1)

• Inverse of DCT-4:

x(n) = 2
N ∑

k = 1

N
y(k)cos π

4N (2k− 1)(2n− 1)

The function idct computes the inverse DCT for an input sequence, reconstructing a signal from a
complete or partial set of DCT coefficients.

Signal Reconstruction Using DCT

Because of the energy compaction property of the DCT, you can reconstruct a signal from only a
fraction of its DCT coefficients. For example, generate a 25 Hz sinusoidal sequence sampled at 1000
Hz.

t = 0:1/1000:1;
x = sin(2*pi*25*t);

Compute the DCT of this sequence and reconstruct the signal using only those components with value
greater than 0.1. Determine how many coefficients out of the original 1000 satisfy the requirement.

y = dct(x);
y2 = find(abs(y) < 0.1);
y(y2) = zeros(size(y2));
z = idct(y);

howmany = length(find(y))

howmany = 64

Plot the original and reconstructed sequences.

subplot(2,1,1)
plot(t,x)
ax = axis;
title('Original Signal')

subplot(2,1,2)
plot(t,z)
axis(ax)
title('Reconstructed Signal')
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One measure of the accuracy of the reconstruction is the norm of the difference between the original
and reconstructed signals, divided by the norm of the original signal. Compute this estimate and
express it as a percentage.

norm(x-z)/norm(x)*100

ans = 1.9437

The reconstructed signal retains approximately 98% of the energy in the original signal.

See Also
dct | idct

Related Examples
• “DCT for Speech Signal Compression” on page 16-42
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Hilbert Transform
The Hilbert transform facilitates the formation of the analytic signal. The analytic signal is useful in
the area of communications, particularly in bandpass signal processing. The toolbox function
hilbert computes the Hilbert transform for a real input sequence x and returns a complex result of
the same length, y = hilbert(x), where the real part of y is the original real data and the
imaginary part is the actual Hilbert transform. y is sometimes called the analytic signal, in reference
to the continuous-time analytic signal. A key property of the discrete-time analytic signal is that its Z-
transform is 0 on the lower half of the unit circle. Many applications of the analytic signal are related
to this property; for example, the analytic signal is useful in avoiding aliasing effects for bandpass
sampling operations. The magnitude of the analytic signal is the complex envelope of the original
signal.

The Hilbert transform is related to the actual data by a 90-degree phase shift; sines become cosines
and vice versa. To plot a portion of data and its Hilbert transform, use

t = 0:1/1024:1;
x = sin(2*pi*60*t);
y = hilbert(x);

plot(t(1:50),real(y(1:50)))
hold on
plot(t(1:50),imag(y(1:50)))
hold off
axis([0 0.05 -1.1 2])
legend('Real Part','Imaginary Part')
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The analytic signal is useful in calculating instantaneous attributes of a time series, the attributes of
the series at any point in time. The procedure requires that the signal be monocomponent.

See Also
hilbert

Related Examples
• “Analytic Signal for Cosine” on page 16-5
• “Envelope Extraction” on page 16-7
• “Analytic Signal and Hilbert Transform” on page 16-13
• “Hilbert Transform and Instantaneous Frequency” on page 16-18

 Hilbert Transform

8-45



Walsh-Hadamard Transform
The Walsh-Hadamard transform is a non-sinusoidal, orthogonal transformation technique that
decomposes a signal into a set of basis functions. These basis functions are Walsh functions, which
are rectangular or square waves with values of +1 or –1. Walsh-Hadamard transforms are also known
as Hadamard (see the hadamard function in the MATLAB software), Walsh, or Walsh-Fourier
transforms.

The first eight Walsh functions have these values:

Index Walsh Function Values
0 1 1 1 1 1 1 1 1
1 1 1 1 1 -1 -1 -1 -1
2 1 1 -1 -1 -1 -1 1 1
3 1 1 -1 -1 1 1 -1 -1
4 1 -1 -1 1 1 -1 -1 1
5 1 -1 -1 1 -1 1 1 -1
6 1 -1 1 -1 -1 1 -1 1
7 1 -1 1 -1 1 -1 1 -1

The Walsh-Hadamard transform returns sequency values. Sequency is a more generalized notion of
frequency and is defined as one half of the average number of zero-crossings per unit time interval.
Each Walsh function has a unique sequency value. You can use the returned sequency values to
estimate the signal frequencies in the original signal.

Three different ordering schemes are used to store Walsh functions: sequency, Hadamard, and
dyadic. Sequency ordering, which is used in signal processing applications, has the Walsh functions in
the order shown in the table above. Hadamard ordering, which is used in controls applications,
arranges them as 0, 4, 6, 2, 3, 7, 5, 1. Dyadic or gray code ordering, which is used in mathematics,
arranges them as 0, 1, 3, 2, 6, 7, 5, 4.

The Walsh-Hadamard transform is used in a number of applications, such as image processing,
speech processing, filtering, and power spectrum analysis. It is very useful for reducing bandwidth
storage requirements and spread-spectrum analysis. Like the FFT, the Walsh-Hadamard transform
has a fast version, the fast Walsh-Hadamard transform (fwht). Compared to the FFT, the FWHT
requires less storage space and is faster to calculate because it uses only real additions and
subtractions, while the FFT requires complex values. The FWHT is able to represent signals with
sharp discontinuities more accurately using fewer coefficients than the FFT. Both the FWHT and the
inverse FWHT (ifwht) are symmetric and thus, use identical calculation processes. The FWHT and
IFWHT for a signal x(t) of length N are defined as:

yn = 1
N ∑

i = 0

N − 1
xiWAL(n, i),

xi = ∑
i = 0

N − 1
ynWAL(n, i),

where i = 0,1, …, N – 1 and WAL(n,i) are Walsh functions. Similar to the Cooley-Tukey algorithm for
the FFT, the N elements are decomposed into two sets of N/2 elements, which are then combined
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using a butterfly structure to form the FWHT. For images, where the input is typically a 2-D signal,
the FWHT coefficients are calculated by first evaluating across the rows and then evaluating down
the columns.

For the following simple signal, the resulting FWHT shows that x was created using Walsh functions
with sequency values of 0, 1, 3, and 6, which are the nonzero indices of the transformed x. The
inverse FWHT recreates the original signal.

x = [4 2 2 0 0 2 -2 0]
y = fwht(x)

x =

     4     2     2     0     0     2    -2     0

y =

     1     1     0     1     0     0     1     0

x1 = ifwht(y)

x1 =

     4     2     2     0     0     2    -2     0

See Also
fwht | ifwht

Related Examples
• “Walsh-Hadamard Transform for Spectral Analysis and Compression of ECG Signals” on page 8-

48
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Walsh-Hadamard Transform for Spectral Analysis and
Compression of ECG Signals

Use an electrocardiogram (ECG) signal to illustrate working with the Walsh-Hadamard transform.
ECG signals typically are very large and need to be stored for analysis and retrieval at a future time.
Walsh-Hadamard transforms are particularly well-suited to this application because they provide
compression and thus require less storage space. They also provide rapid signal reconstruction.

Start with an ECG signal. Replicate it to create a longer signal and insert some additional random
noise.

xe = ecg(512);
xr = repmat(xe,1,8);
x = xr + 0.1.*randn(1,length(xr));

Transform the signal using the fast Walsh-Hadamard transform. Plot the original signal and the
transformed signal.

y = fwht(x);

subplot(2,1,1)
plot(x)
xlabel('Sample index')
ylabel('Amplitude')
title('ECG Signal')

subplot(2,1,2)
plot(abs(y))
xlabel('Sequency index')
ylabel('Magnitude')
title('WHT Coefficients')
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The plot shows that most of the signal energy is in the lower sequency values, below approximately
1100. Store only the first 1024 coefficients (out of 4096). Try to reconstruct the signal accurately
from only these stored coefficients.

y(1025:length(x)) = 0;
xHat = ifwht(y);

figure
plot(x)
hold on
plot(xHat)
xlabel('Sample Index')
ylabel('ECG Signal Amplitude')
legend('Original','Reconstructed')
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The reproduced signal is very close to the original but has been compressed to a quarter of the size.
Storing more coefficients is a tradeoff between increased resolution and increased noise, while
storing fewer coefficients can cause loss of peaks.

See Also
fwht | ifwht
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Eliminate Outliers Using Hampel Identifier
This example shows a naive implementation of the procedure used by hampel to detect and remove
outliers. The actual function is much faster.

Generate a random signal, x, containing 24 samples. Reset the random number generator for
reproducible results.

rng default

lx = 24;
x = randn(1,lx);

Generate an observation window around each element of x. Take k = 2 neighbors at either side of the
sample. The moving window that results has a length of 2 × 2 + 1 = 5 samples.

k = 2;

iLo = (1:lx)-k;
iHi = (1:lx)+k;

Truncate the window so that the function computes medians of smaller segments as it reaches the
signal edges.

iLo(iLo<1) = 1;
iHi(iHi>lx) = lx;

Record the median of each surrounding window. Find the median of the absolute deviation of each
element with respect to the window median.

for j = 1:lx
    w = x(iLo(j):iHi(j));
    medj = median(w);
    mmed(j) = medj;
    mmad(j) = median(abs(w-medj));
end

Scale the median absolute deviation with

1
2 erf−1(1/2)

≈ 1 . 4826

to obtain an estimate of the standard deviation of a normal distribution.

sd = mmad/(erfinv(1/2)*sqrt(2));

Find the samples that differ from the median by more than nd = 2 standard deviations. Replace each
of those outliers by the value of the median of its surrounding window. This is the essence of the
Hampel algorithm.

nd = 2;
ki = abs(x-mmed) > nd*sd;

yu = x;
yu(ki) = mmed(ki);
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Use the hampel function to compute the filtered signal and annotate the outliers. Overlay the filtered
values computed in this example.

hampel(x,k,nd)

hold on
plot(yu,'o','HandleVisibility','off')
hold off

See Also
hampel
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SPTool: A Signal Processing GUI Suite

• “SPTool: An Interactive Signal Processing Environment” on page 9-2
• “Opening SPTool” on page 9-3
• “Getting Context-Sensitive Help” on page 9-4
• “Signal Browser” on page 9-5
• “Filter Visualization Tool” on page 9-7
• “Spectrum Viewer” on page 9-9
• “Filtering and Analysis of Noise” on page 9-11
• “Exporting Signals, Filters, and Spectra” on page 9-19
• “Accessing Filter Parameters” on page 9-20
• “Importing Filters and Spectra” on page 9-22
• “Loading Variables from the Disk” on page 9-25
• “Saving and Loading Sessions” on page 9-26
• “Selecting Signals, Filters, and Spectra” on page 9-28
• “Editing Signals, Filters, or Spectra” on page 9-29
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SPTool: An Interactive Signal Processing Environment
In this section...
“SPTool Overview” on page 9-2
“SPTool Data Structures” on page 9-2

SPTool Overview
SPTool is an interactive GUI for digital signal processing used to

• Analyze signals
• Design filters
• Analyze (view) filters
• Filter signals
• Analyze signal spectra

You can accomplish these tasks using four GUIs that you access from within SPTool:

• The “Signal Browser” on page 9-5 is for analyzing signals. You can also play signals using your
computer's audio hardware.

• Filter Designer is available for designing or editing FIR and IIR digital filters. Most Signal
Processing Toolbox filter design methods available at the command line are also available in Filter
Designer.

• The “Filter Visualization Tool” on page 9-7 (FVTool) is for analyzing filter characteristics.
• The “Spectrum Viewer” on page 9-9 is for spectral analysis. You can use Signal Processing

Toolbox spectral estimation methods to estimate the power spectral density of a signal.

SPTool Data Structures
You can use SPTool to analyze signals, filters, or spectra that you create at the MATLAB command
line.

You can bring signals, filters, or spectra from the MATLAB workspace into the SPTool workspace
using File > Import. For more information, see “Importing Filters and Spectra” on page 9-22.
Signals, filters, or spectra that you create in (or import into) the SPTool workspace exist as MATLAB
structures. See the MATLAB documentation for more information on MATLAB structures.

When you use File > Export to save signals, filters, and spectra that you create or modify in SPTool,
these are also saved as MATLAB structures. For more information on exporting, see “Exporting
Signals, Filters, and Spectra” on page 9-19.
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Opening SPTool
To open SPTool, type

sptool

When you first open SPTool, it contains a collection of default signals, filters, and spectra. To specify
your own preferences for what signals, filters, and spectra to see when SPTool opens see “Setting
Preferences” on page 9-32.

You can access these three GUIs from SPTool by selecting a signal, filter, or spectrum and clicking the
appropriate View button:

• Signal Browser on page 9-5
• Filter Visualization Tool on page 9-7
• Spectrum Viewer on page 9-9

You can access Filter Designer by clicking New to create a new filter or Edit to edit a selected
filter. Clicking Apply applies a selected filter to a selected signal.

Create opens the Spectrum Viewer and creates the power spectral density of the selected signal.
Update opens the Spectrum Viewer for the selected spectrum.

 Opening SPTool
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Getting Context-Sensitive Help
To find information on a particular feature or setting of the “Signal Browser” on page 9-5:

• In any Measurements panel, right-click anywhere on the panel and select What's this?.
•

In any dialog box where you see the  icon in the lower left corner, right-click on any
parameter and select What's this?.

To find information on a particular region of Filter Designer or “Spectrum Viewer” on page 9-9:

1
Click What's this? .

2 Click on the region of the GUI you want information on.

You can also use Help > What's This? to launch context-sensitive help.
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Signal Browser
In this section...
“Overview of the Signal Browser” on page 9-5
“Opening the Signal Browser” on page 9-5

Overview of the Signal Browser
You can use the Signal Browser to display and analyze signals listed in the Signals list box in SPTool.

Using the Signal Browser, you can:

• Analyze and compare vector or array (matrix) signals.
• Zoom in on portions of signal data.
• Measure a variety of characteristics of signal data.
• Compare multiple signals.
• Play portions of signal data on audio hardware.
• Print signal plots.

Opening the Signal Browser
To open the Signal Browser from SPTool:

1 Select one or more signals in the Signals list in SPTool.
2 Click View under the Signals list.

The Signal Browser has the following components:

 Signal Browser
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• A display region for analyzing signals
• A panels section on the right side of the scope window, which shows statistics and information

about your signals
• A toolbar with buttons for convenient access to frequently used functions

For more information on the Signal Browser, see the sptool function reference page.

9 SPTool: A Signal Processing GUI Suite

9-6



Filter Visualization Tool
In this section...
“Connection between FVTool and SPTool” on page 9-7
“Opening the Filter Visualization Tool” on page 9-7
“Analysis Parameters” on page 9-8

Connection between FVTool and SPTool
You can use the Filter Visualization Tool to analyze response characteristics of the selected filter(s).
See FVTool for detailed information about FVTool.

If you start FVTool by clicking the SPTool Filter View button, that FVTool is linked to SPTool. Any
changes made in SPTool to the filter are immediately reflected in FVTool. The FVTool title bar
includes "SPTool" to indicate the link.

If you start an FVTool by clicking the New button or by selecting File > New from within FVTool, that
FVTool is a standalone version and is not linked to SPTool.

Note Every time you click the Filter View button a new, linked FVTool starts. This allows you to view
multiple analyses simultaneously.

Opening the Filter Visualization Tool
You open FVTool from SPTool as follows.

1 Select one or more filters in the Filters list in SPTool.
2 Click the View button under the Filters list.

When you first open FVTool, it displays the selected filter's magnitude plot.

 Filter Visualization Tool
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Analysis Parameters
In the plot area of any filter response plot, right-click and select Analysis Parameters to display
details about the displayed plot. See “Analysis Parameters” in the Filter Designer online help for
more information.

You can change any parameter in a linked FVTool, except the sampling frequency. You can only
change the sampling frequency using the SPTool Edit > Sampling Frequency or the SPTool Filters
Edit button.
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Spectrum Viewer
In this section...
“Spectrum Viewer Overview” on page 9-9
“Opening the Spectrum Viewer” on page 9-9

Spectrum Viewer Overview
You can use the Spectrum Viewer for estimating and analyzing a signal's power spectral density
(PSD). You can use the PSD estimates to understand a signal's frequency content.

The Spectrum Viewer provides the following functionality.

• Analyze and compare spectral density plots.
• Use different spectral estimation methods to create spectra:

• Burg (pburg)
• Covariance (pcov)
• FFT (fft)
• Modified covariance (pmcov)
• MTM (multitaper method) (pmtm)
• MUSIC (pmusic)
• Welch (pwelch)
• Yule-Walker AR (pyulear)

• Modify power spectral density parameters such as FFT length, window type, and sample
frequency.

• Print spectral plots.

Opening the Spectrum Viewer
To open the Spectrum Viewer and create a PSD estimate from SPTool:

1 Select a signal from the Signal list box in SPTool.
2 Click Create in the Spectra list.
3 Click Apply in the Spectrum Viewer.

To open the Spectrum Viewer with a PSD estimate already listed in SPTool:

1 Select a PSD estimate from the Spectra list box in SPTool.
2 Click View in the Spectra list.

For example:

1 Select mtlb in the default Signals list in SPTool.
2 Click Create in SPTool to open the Spectrum Viewer.
3 Click Apply in the Spectrum Viewer to plot the spectrum.

 Spectrum Viewer
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The Spectrum Viewer has the following components:

• A signal identification region that provides information about the signal whose power spectral
density estimate is displayed

• A Parameters region for modifying the PSD parameters
• A display region for analyzing spectra and an Options menu for modifying display characteristics
• Spectrum management controls

• Inherit from menu to inherit PSD specifications from another PSD object listed in the menu
• Revert button to revert to the named PSD's original specifications
• Apply button for creating or updating PSD estimates

• A toolbar with buttons for convenient access to frequently used functions

Icon Description
Print and print preview

Zoom the signal in and out

Select one of several loaded signals

Set the display color and line style of a signal

Toggle the markers on and off

Set marker types

Turn on the What's This help

9 SPTool: A Signal Processing GUI Suite
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Filtering and Analysis of Noise
In this section...
“Overview” on page 9-11
“Importing a Signal into SPTool” on page 9-11
“Designing a Filter” on page 9-12
“Applying a Filter to a Signal” on page 9-14
“Analyzing a Signal” on page 9-15
“Spectral Analysis in the Spectrum Viewer” on page 9-17

Overview
The following sections provide an example of using the GUI-based interactive tools to:

• Design and implement an FIR bandpass digital filter
• Apply the filter to a noisy signal
• Analyze signals and their spectra

The steps include:

1 “Importing a Signal into SPTool” on page 9-11
2 Designing a bandpass filter using Filter Designer on page 9-12
3 Applying the filter to the original noise signal to create a bandlimited noise signal on page 9-14
4 Comparing the time domain information of the original and filtered signals using the Signal

Browser on page 9-15
5 Comparing the spectra of both signals using the Spectrum Viewer on page 9-17

Importing a Signal into SPTool
To import a signal into SPTool from the workspace or disk, the signal must be either:

• A special MATLAB signal structure, such as that saved from a previous SPTool session
• A signal created as a variable (vector or matrix) in the MATLAB workspace

For this example, create a new signal at the command line and then import it as a structure into
SPTool:

1 Create a random signal in the MATLAB workspace by typing

x = randn(5000,1);
2 If SPTool is not already open, open SPTool by typing

sptool

The SPTool window is displayed.
3 Select File > Import. The Import to SPTool dialog opens.

 Filtering and Analysis of Noise
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The variable x is displayed in the Workspace Contents list. (If it is not, select the From
Workspace radio button to display the contents of the workspace.)

4 Select the signal and import it into the Data field:

a Select the signal variable x in the Workspace Contents list.
b Make sure that Signal is selected in the Import As pull-down menu.
c Click on the arrow to the left of the Data field or type x in the Data field.
d Type 5000 in the Sampling Frequency field.
e Name the signal by typing noise in the Name field.
f Click OK.

The signal noise[vector] appears and is selected in SPTool's Signals list.

Note You can import filters on page 9-22 and spectra on page 9-23 into SPTool in much the same
way as you import signals. See “Importing Filters and Spectra” on page 9-22 for specific details.

You can also import signals from MAT-files on your disk, rather than from the workspace. See
“Loading Variables from the Disk” on page 9-25 for more information.

Type help sptool for information about importing from the command line.

Designing a Filter
You can import an existing filter into SPTool, or you can design and edit a new filter using Filter
Designer.

In this example, you

1 Open a default filter in Filter Designer.
2 Specify an equiripple bandpass FIR filter.
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Opening Filter Designer

To open Filter Designer, click New in SPTool. Filter Designer opens with a default filter named
filt1.

Specifying the Bandpass Filter

Design an equiripple bandpass FIR filter with the following characteristics:

• Sampling frequency of 5000 Hz
• Stopband frequency ranges of [0 500] Hz and [1500 2500] Hz
• Passband frequency range of [750 1250] Hz
• Ripple in the passband of 0.01 dB
• Stopband attenuation of 75 dB

To modify the filter in Filter Designer to meet these specifications, you need to

1 Select Bandpass from the Response Type list.
2 Verify that FIR Equiripple is selected as the Design Method.
3 Verify that Minimum order is selected as the Filter Order and that the Density Factor is set to

20.
4 Under Frequency Specifications, set the sampling frequency (Fs) and the passband (Fpass1,

Fpass2) and stopband (Fstop1, Fstop2) edges:

Units Hz
Fs 5000
Fstop1 500
Fpass1 750
Fpass2 1250
Fstop2 1500

5 Under Magnitude Specifications, set the stopband attenuation (Astop1, Astop2) and the
maximum passband ripple (Apass):

Units dB
Astop1 75
Apass 0.01
Astop2 75

6 Click Design Filter to design the new filter. When the new filter is designed, the magnitude
response of the filter is displayed.

 Filtering and Analysis of Noise
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The resulting filter is an order-78 bandpass equiripple filter.

Applying a Filter to a Signal
When you apply a filter to a signal, you create a new signal in SPTool representing the filtered signal.

To apply the filter filt1 you just created to the signal noise,

1 In SPTool, select the signal noise[vector] from the Signals list and select the filter (named
filt1[design]) from the Filters list.
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2 Click Apply under the Filters list.

3 Leave the Algorithm as Direct-Form FIR.

Note You can apply one of two filtering algorithms to FIR filters. The default algorithm is specific
to the filter structure, which is shown in the Filter Designer Current Filter Info frame.
Alternately for FIR filters, FFT based FIR (fftfilt) uses the algorithm described in
fftfilt.

For IIR filters, the alternate algorithm is a zero-phase IIR that uses the algorithm described in
filtfilt.

4 Enter blnoise as the Output Signal name.
5 Click OK to close the Apply Filter dialog box.

The filter is applied to the selected signal, and the filtered signal blnoise[vector] is listed in
the Signals list in SPTool.

Analyzing a Signal
You can analyze and print signals using the Signal Browser. You can also play the signals if your
computer has audio output capabilities.
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For example, compare the signal noise on page 9-11 to the filtered signal blnoise on page 9-
14:

1 Shift+click on the noise and blnoise signals in the Signals list of SPTool to select both
signals.

2 Click View under the Signals list.

The Signal Browser is activated, and both signals are displayed in the display region. (The names
of both signals are shown above the display region.) Initially, the original noise signal covers up
the bandlimited blnoise signal.

3
Push the selection button  on the toolbar to select the blnoise signal.

The display area is updated. Now you can see the blnoise signal superimposed on top of the
noise signal. The signals are displayed in different colors in both the display region and the
panner. You can change the color of the selected signal using the Line Properties button on the

toolbar, .

Playing a Signal

When you click Play in the Signal Browser toolbar, , the active signal is played on the computer's
audio hardware.

1 To hear a portion of the active (selected) signal

a Use the vertical markers on page 9-30to select a portion of the signal you want to play.

Vertical markers are enabled by the  and  buttons.
b Click Play.

2 To hear the other signal
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a Select the signal using the selection button on the toolbar. You can also select the signal
directly in the display region.

b Click Play again.

Printing a Signal

You can print from the Signal Browser using the Print button, .

You can use the line display buttons to maximize the visual contrast between the signals by setting
the line color for noise on page 9-11 to gray and the line color for blnoise on page 9-11 to white. Do
this before printing two signals together.

Note You can follow the same rules to print spectra, but you can't print filter responses directly from
SPTool.

Use the Signal Browser region in the Preferences dialog box in SPTool to suppress printing of both
the panner and the marker settings.

To print both signals, click Print in the Signal Browser toolbar.

Spectral Analysis in the Spectrum Viewer
You can analyze the frequency content of a signal using the Spectrum Viewer, which estimates and
displays a signal's power spectral density.

For example, to analyze and compare the spectra of noise and blnoise:

1 Create a power spectral density (PSD) object on page 9-17, spect1, that is associated with the
signal noise, and a second PSD object, spect2, that is associated with the signal blnoise.

2 Open the Spectrum Viewer to analyze both of these spectra on page 9-17.
3 Print both spectra on page 9-17.

Creating a PSD Object From a Signal

1 Click on SPTool, or select Window > SPTool in any active open GUI. SPTool is now the active
window.

2 Select the noise[vector] on page 9-11 signal in the Signals list of SPTool.
3 Click Create in the Spectra list.

The Spectrum Viewer is activated, and a PSD (spect1) corresponding to the noise signal is
created in the Spectra list. The PSD is not computed or displayed yet.

4 Click Apply in the Spectrum Viewer to compute and display the PSD estimate spect1 using the
default parameters.

The PSD of the noise signal is displayed in the display region. The identifying information for
the PSD's associated signal (noise) is displayed above the Parameters region.

The PSD estimate spect1 is within 2 or 3 dB of 0, so the noise has a fairly "flat" power spectral
density.
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5 Follow steps 1 through 4 for the bandlimited noise signal blnoise on page 9-14 to create a second
PSD estimate spect2.

The PSD estimate spect2 is flat between 750 and 1250 Hz and has 75 dB less power in the
stopband regions of filt1.

Opening the Spectrum Viewer with Two Spectra

1 Reactivate SPTool again, as in step 1 above.
2 Shift+click on spect1 and spect2 in the Spectra list to select them both.
3 Click View in the Spectra list to reactivate the Spectrum Viewer and display both spectra

together.

Printing the Spectra

Before printing the two spectra together, use the color and line style selection button, , to
differentiate the two plots by line style, rather than by color.

To print both spectra:

1
Click Print Preview  in the toolbar on the Spectrum Viewer.

2 From the Spectrum Viewer Print Preview window, drag the legend out of the display region so
that it doesn't obscure part of the plot.

3 Click Print in the Spectrum Viewer Print Preview window.
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Exporting Signals, Filters, and Spectra
In this section...
“Opening the Export Dialog Box” on page 9-19
“Exporting a Filter to the MATLAB Workspace” on page 9-19

Opening the Export Dialog Box
To save the filter filt1 you just created in this example, open the Export dialog box with filt1
preselected:

1 Select filt1 in the SPTool Filters list.
2 Select File > Export.

The Export dialog box opens with filt1 preselected.

Exporting a Filter to the MATLAB Workspace
To export the filter filt1 to the MATLAB workspace:

1 Select filt1 from the Export List and deselect all other items using Ctrl+click.
2 Click Export to Workspace.
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Accessing Filter Parameters
In this section...
“Accessing Filter Parameters in a Saved Filter” on page 9-20
“Accessing Parameters in a Saved Spectrum” on page 9-20

Accessing Filter Parameters in a Saved Filter
The MATLAB structures created by SPTool have several associated fields, many of which are also
MATLAB structures. See the MATLAB documentation for general information about MATLAB
structures.

For example, after exporting on page 9-19 a filter filt1 to the MATLAB workspace, type

filt1

to display the fields of the MATLAB filter structure. The tf field of the structure contains information
that describes the filter.

The tf Field: Accessing Filter Coefficients

The tf field is a structure containing the transfer function representation of the filter. Use this field
to obtain the filter coefficients;

• filt1.tf.num contains the numerator coefficients.
• filt1.tf.den contains the denominator coefficients.

The vectors contained in these structures represent polynomials in descending powers of z. The
numerator and denominator polynomials are used to specify the transfer function

H(z) = B(z)
A(z) = b(1) + b(2)z−1 +⋯+ b(nb + 1)z−m

a(1) + a(2)z−1 +⋯+ a(na + 1)z−n

where:

• b is a vector containing the coefficients from the tf.num field.
• a is a vector containing the coefficients from the tf.den field.
• m is the numerator order.
• n is the denominator order.

You can change the filter representation from the default transfer function to another form by using
the tf2ss or tf2zp functions.

Note The FDAspecs field of your filter contains internal information about Filter Designer and
should not be changed.

Accessing Parameters in a Saved Spectrum
The following structure fields describe the spectra saved by SPTool.
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Field Description
P The spectral power vector.
f The spectral frequency vector.
confid A structure containing the confidence intervals data

• The confid.level field contains the chosen confidence level.
• The confid.Pc field contains the spectral power data for the
confidence intervals.

• The confid.enable field contains a 1 if confidence levels are
enabled for the power spectral density.

signalLabel The name of the signal from which the power spectral density was
generated.

Fs The associated signal's sample rate.

You can access the information in these fields as you do with every MATLAB structure.

For example, if you export an SPTool PSD estimate spect1 to the workspace, type

spect1.P 

to obtain the vector of associated power values.
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Importing Filters and Spectra
In this section...
“Similarities to Other Procedures” on page 9-22
“Importing Filters” on page 9-22
“Importing Spectra” on page 9-23

Similarities to Other Procedures
The procedures are very similar to those explained in

• “Importing a Signal into SPTool” on page 9-11 for loading variables from the workspace
• “Loading Variables from the Disk” on page 9-25 for loading variables from your disk

Importing Filters
When you import filters, first select the appropriate filter form from the Form list. SPTool does not
currently support the import of filter objects.

For every filter you specify a variable name or a value for the filter's sampling frequency in the
Sampling Frequency field. Each filter form requires different variables.

Transfer Function

For Transfer Function, you specify the filter by its transfer function representation:

H(z) = B(z)
A(z) = b(1) + b(2)z−1 +⋯+ b(m + 1)z−m

a(1) + a(2)z−1 +⋯+ a(n + 1)z−n

• The Numerator field specifies a variable name or value for the numerator coefficient vector b,
which contains m+1 coefficients in descending powers of z.

• The Denominator field specifies a variable name or value for the denominator coefficient vector
a, which contains n+1 coefficients in descending powers of z.
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State Space

For State Space, you specify the filter by its state-space representation:

ẋ = Ax + Bu
y = Cx + Du

The A-Matrix, B-Matrix, C-Matrix, and D-Matrix fields specify a variable name or a value for each
matrix in this system.

Zeros, Poles, Gain

For Zeros, Poles, Gain, you specify the filter by its zero-pole-gain representation:

H(z) = Z(z)
P(z) = k (z − z(1))(z − z(2))⋯(z − z(m))

(z − p(1))(z − p(2))⋯(z − p(n))

• The Zeros field specifies a variable name or value for the zeros vector z, which contains the
locations of m zeros.

• The Poles field specifies a variable name or value for the zeros vector p, which contains the
locations of n poles.

• The Gain field specifies a variable name or value for the gain k.

Second Order Sections

For 2nd Order Sections you specify the filter by its second-order section representation:

H(z) = ∏
k = 1

L
Hk(z) = ∏

k = 1

L b0k + b1kz−1 + b2kz−2

1 + a1kz−1 + a2kz−2

The SOS Matrix field specifies a variable name or a value for the L-by-6 SOS matrix

sos =

b01 b11 b21 1 a11 a21
b02 b12 b22 1 a12 a22

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
b0L b1L b2L 1 a1L a2L

whose rows contain the numerator and denominator coefficients bik and aik of the second-order
sections of H(z).

Note If you import a filter that was not created in SPTool, you can only edit that filter using the Pole-
Zero Editor.

Importing Spectra
When you import a power spectral density (PSD), you specify:

• A variable name or a value for the PSD vector in the PSD field
• A variable name or a value for the frequency vector in the Freq. Vector field
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The PSD values in the PSD vector correspond to the frequencies contained in the Freq. Vector
vector; the two vectors must have the same length.
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Loading Variables from the Disk
To import variables representing signals, filters, or spectra from a MAT-file on your disk;

1 Select the From Disk radio button and do either of the following:

• Type the name of the file you want to import into the MAT-file Name field and press either
the Tab or the Enter key on your keyboard.

• Select Browse, and then find and select the file you want to import using Select > File to
Open. Click OK to close that dialog.

In either case, all variables in the MAT-file you selected are displayed in the File Contents list.
2 Select the variables to be imported into SPTool.

You can now import one or more variables from the File Contents list into SPTool, as long as these
variables are scalars, vectors, or matrices.
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Saving and Loading Sessions
In this section...
“SPTool Sessions” on page 9-26
“Filter Formats” on page 9-26

SPTool Sessions
When you start SPTool, the default startup.spt session is loaded. To save your work in the startup
SPTool session, use File > Save Session or to specify a session name, use File > Save Session As.

To recall a previously saved session, use File > Open Session.

Filter Formats
When you start SPTool or open a session, the current filter design format preference is compared to
the filter formats in the session. See “Setting Preferences” on page 9-32.

• If the formats match, the session opens.
• If the filter preference is Filter Designer, but the session contains Filter Designer filters, this

warning displays:

Click Convert to convert the filters to Filter Designer format. Click Don't Use Filter Designer
to leave the filters in Filter Designer format and change the preference to Use Filter Designer.

• If the filter preference is Use Filter Designer, but the session contains Filter Designer filters,
this warning displays:
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Click Yes to remove the current filters. Click No to leave the filters in Filter Designer.
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Selecting Signals, Filters, and Spectra
All signals, filters, or spectra listed in SPTool exist as special MATLAB structures. You can bring data
representing signals, filters, or spectra into SPTool from the MATLAB workspace. In general, you can
select one or several items in a given list box. An item is selected when it is highlighted.

The Signals list shows all vector and array signals in the current SPTool session.

The Filters list shows all designed and imported filters in the current SPTool session.

The Spectra list shows all spectra in the current SPTool session.

You can select a single data object in a list, a range of data objects in a list, or multiple separate data
objects in a list. You can also have data objects simultaneously selected in different lists:

• To select a single item, click it. All other items in that list box become deselected.
• To add or remove a range of items, Shift+click on the items at the top and bottom of the section

of the list that you want to add. You can also drag your mouse pointer to select these items.
• To add a single data object to a selection or remove a single data object from a multiple selection,

Ctrl+click on the object.
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Editing Signals, Filters, or Spectra
You can edit selected items in SPTool by

1 Selecting the names of the signals, filters, or spectra you want to edit.
2 Selecting the appropriate Edit menu item:

• Duplicate to copy an item in an SPTool list
• Clear to delete an item in an SPTool list
• Name to rename an item in an SPTool list
• Sampling Frequency to modify the sampling frequency associated with either a signal (and

its associated spectra) or filter in an SPTool list

The pull-down menu next to each menu item shows the names of all selected items.

You can also edit the following signal characteristics by right-clicking in the display region of the
Signal Browser, the Filter Visualization Tool, or the Spectrum Viewer:

• The signal name
• The sampling frequency
• The line style properties

Note If you modify the sample rate associated with a signal's spectrum using the right-click menu on
the Spectrum Viewer display region, the sample rate of the associated signal is automatically
updated.
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Making Signal Measurements with Markers
You can use the markers on the Signal Browser on page 9-5 or the Spectrum Viewer on page 9-5 to
make measurements on either of the following:

• A signal in the Signal Browser
• A power spectral density plotted in the Spectrum Viewer

The following marker buttons are included

Icon Description
Toggle markers on/off

Vertical markers

Horizontal markers

Vertical markers with tracking

Vertical markers with tracking and slope

Display peaks (local maxima)

You can find peaks in a signal from the command line with findpeaks
Display valleys (local minima)

To make a measurement:

1 Select a line to measure (or play, if you are in the Signal Browser).
2 Select one of the marker buttons to apply a marker to the displayed signal.
3 Position a marker in the main display area by grabbing it with your mouse and dragging:

a Select a marker setting. If you choose the Vertical, Track, or Slope buttons, you can drag a
marker to the right or left. If you choose the Horizontal button, you can drag a marker up
or down.

b Move the mouse over the marker (1 or 2) that you want to drag.

The hand cursor with the marker number inside it  is displayed when your mouse passes
over a marker.

c Drag the marker to where you want it on the signal

As you drag a marker, the bottom of the Signal Browser shows the current position of both
markers. Depending on which marker setting you select, some or all of the following fields are
displayed — x1, y1, x2, y2, dx, dy, m. These fields are also displayed when you print from the
Signal Browser, unless you suppress them.
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You can also position a marker by typing its x1 and x2 or y1 and y2 values in the region at the
bottom.
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Setting Preferences
In this section...
“Overview of Setting Preferences” on page 9-32
“Summary of Settable Preferences” on page 9-32

Overview of Setting Preferences
Use File > Preferences to customize displays and certain parameters for SPTool and its four
component GUIs. If you change any preferences, a dialog box displays when you close SPTool asking
if you want to save those changes. If you click Yes, the new settings are saved on disk and are used
when you restart SPTool from the MATLAB workspace.

Note You can set MATLAB preferences that affect the Filter Visualization Tool only from within
FVTool by selecting File > Preferences. You can set FVTool-specific preferences using Analysis >
Analysis Parameters.

When you first select Preferences, the Preferences dialog box opens with Markers selected by
default.

Change any marker settings, if desired. To change settings for another category, click its name in the
category list to display its settings. Most of the fields are self-explanatory. Details of the Filter Design
options are described below.

Summary of Settable Preferences
In the Preferences regions, you can

• Select colors and markers for all displays.
• Select colors and line styles for displayed signals.
• Configure labels, and enable/disable markers, panner, and zoom in the Signal Browser on page 9-

5.
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• Configure display parameters, and enable/disable markers and zoom in the Spectrum Viewer on
page 9-9.

• Enable/disable use of a default session file.
• Export filters for use with Control System Toolbox software.
• Enable/disable search for plug-ins at startup.
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Code Generation from MATLAB Support
in Signal Processing Toolbox

• “List of Signal Processing Toolbox Functions that Support Code Generation” on page 10-2
• “Specifying Inputs in Code Generation from MATLAB” on page 10-9
• “Apply Lowpass Filter to Input Signal” on page 10-12
• “Zero-Phase Filtering” on page 10-14
• “Compute Modified Periodogram Using Generated C Code” on page 10-16
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List of Signal Processing Toolbox Functions that Support Code
Generation

Code generation from MATLAB is a restricted subset of the MATLAB language that provides
optimizations for:

• Generating efficient, production-quality C/C++ code and MEX files for deployment in desktop and
embedded applications. For embedded targets, the subset restricts MATLAB semantics to meet
the memory and data type requirements of the target environments.

Depending on which feature you wish to use, there are additional required products. For a
comprehensive list, see “Installing Prerequisite Products” (MATLAB Coder).

Code generation from MATLAB supports Signal Processing Toolbox functions listed in the table. To
generate C code, you must have the MATLAB Coder™ software. If you have the Fixed-Point Designer
software, you can use fiaccel to generate MEX code for fixed-point applications.

To follow the examples in this documentation:

• To generate C/C++ code and MEX files with codegen, install the MATLAB Coder software, the
Signal Processing Toolbox, and a C compiler. For the Windows® platform, MATLAB supplies a
default C compiler. Run mex -setup at the MATLAB command prompt to set up the C compiler.

• Change to a folder where you have write permission.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C++ code
generation.

abs Absolute value and complex magnitude
alignsignals Align two signals by delaying earliest signal
angle Phase angle
bandpower* Band power
barthannwin Modified Bartlett-Hann window
bartlett Bartlett window
besselap* Bessel analog lowpass filter prototype
bilinear Bilinear transformation method for analog-to-digital filter conversion
binmask2sigroi Convert binary mask to matrix of ROI limits
bitrevorder Permute data into bit-reversed order
blackman Blackman window
blackmanharris Minimum four-term Blackman-Harris window
bohmanwin Bohman window
buttap Butterworth filter prototype
butter Butterworth filter design
buttord* Butterworth filter order and cutoff frequency
cceps Complex cepstral analysis
cconv Modulo-n circular convolution

10 Code Generation from MATLAB Support in Signal Processing Toolbox

10-2



cfirpm* Complex and nonlinear-phase equiripple FIR filter design
cheb1ap* Chebyshev Type I analog lowpass filter prototype
cheb1ord* Chebyshev Type I filter order
cheb2ap* Chebyshev Type II analog lowpass filter prototype
cheb2ord* Chebyshev Type II filter order
chebwin Chebyshev window
cheby1* Chebyshev Type I filter design
cheby2* Chebyshev Type II filter design
chirp Swept-frequency cosine
conv* Convolution and polynomial multiplication
conv2 2-D convolution
convmtx Convolution matrix
corrcoef* Correlation coefficients
corrmtx Data matrix for autocorrelation matrix estimation
cov* Covariance
cpsd Cross power spectral density
cummax Cumulative maximum
cummin Cumulative minimum
cusum* Detect small changes in mean using cumulative sum
czt* Chirp Z-transform
db2pow Convert decibels to power
dct* Discrete cosine transform
deconv* Deconvolution and polynomial division
detrend* Remove polynomial trend
dftmtx Discrete Fourier transform matrix
diric Dirichlet or periodic sinc function
downsample Decrease sample rate by integer factor
dpss* Discrete prolate spheroidal (Slepian) sequences
dtw Distance between signals using dynamic time warping
edr Edit distance on real signals
ellip* Elliptic filter design
ellipap* Elliptic analog lowpass filter prototype
ellipord* Minimum order for elliptic filters
emd* Empirical mode decomposition
enbw Equivalent noise bandwidth
envelope* Signal envelope
envspectrum* Envelope spectrum for machinery diagnosis
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eqtflength Equalize lengths of transfer function's numerator and denominator
extendsigroi Extend signal regions of interest to left and right
extractsigroi* Extract signal regions of interest
falltime* Fall time of negative-going bilevel waveform transitions
fft* Fast Fourier transform
fft2* 2-D fast Fourier transform
fftfilt* FFT-based FIR filtering using overlap-add method
fftshift Shift zero-frequency component to center of spectrum
filloutliers* Detect and replace outliers in data
filter* 1-D digital filter
filter2 2-D digital filter
filtfilt* Zero-phase digital filtering
filtord Filter order
finddelay Estimate delay(s) between signals
findpeaks Find local maxima
findsignal Find signal location using similarity search
fir1 Window-based FIR filter design
fir2* Frequency sampling-based FIR filter design
fircls* Constrained-least-squares FIR multiband filter design
fircls1* Constrained-least-squares linear-phase FIR lowpass and highpass filter design
firls Least-squares linear-phase FIR filter design
firpm* Parks-McClellan optimal FIR filter design
firpmord* Parks-McClellan optimal FIR filter order estimation
flattopwin Flat top weighted window
freqspace Frequency spacing for frequency response
freqz* Frequency response of digital filter
fsst* Fourier synchrosqueezed transform
fwht Fast Walsh-Hadamard transform
gauspuls Gaussian-modulated sinusoidal RF pulse
gausswin Gaussian window
gmonopuls Gaussian monopulse
goertzel* Discrete Fourier transform with second-order Goertzel algorithm
hamming Hamming window
hann Hann (Hanning) window
hht* Hilbert-Huang transform
hilbert Discrete-time analytic signal using Hilbert transform
icceps Inverse complex cepstrum
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idct* Inverse discrete cosine transform
ifft* Inverse fast Fourier transform
ifft2* 2-D inverse fast Fourier transform
ifftshift Inverse zero-frequency shift
ifsst Inverse Fourier synchrosqueezed transform
ifwht Inverse Fast Walsh-Hadamard transform
instfreq* Estimate instantaneous frequency
interp1* 1-D data interpolation (table lookup)
intfilt* Interpolation FIR filter design
iscola Determine whether window-overlap combination is COLA compliant
isoutlier* Find outliers in data
istft* Inverse short-time Fourier transform
kaiser Kaiser window
kaiserord Kaiser window FIR filter design estimation parameters
kurtogram* Visualize spectral kurtosis
levinson* Levinson-Durbin recursion
lp2bp Transform lowpass analog filters to bandpass
lp2bs Transform lowpass analog filters to bandstop
lp2hp Transform lowpass analog filters to highpass
lp2lp Change cutoff frequency for lowpass analog filter
lsf2poly Convert line spectral frequencies to prediction filter coefficients
max* Maximum elements of an array
maxflat* Generalized digital Butterworth filter design
mean* Average or mean value of array
meanfreq Mean frequency
medfreq Median frequency
median* Median value of array
mergesigroi Merge signal regions of interest
min* Minimum elements of an array
movmad* Moving median absolute deviation
movmedian Moving median
mscohere Magnitude-squared coherence
nuttallwin Nuttall-defined minimum 4-term Blackman-Harris window
obw Occupied bandwidth
orderspectrum Average spectrum versus order for vibration signal
ordertrack* Track and extract order magnitudes from vibration signal
orderwaveform Extract time-domain order waveforms from vibration signal
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parzenwin Parzen (de la Vallée Poussin) window
pchip* Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
peak2peak Maximum-to-minimum difference
peak2rms Peak-magnitude-to-RMS ratio
pentropy* Spectral entropy of signal
periodogram Periodogram power spectral density estimate
pkurtosis* Spectral kurtosis from signal or spectrogram
plomb* Lomb-Scargle periodogram
poly2ac* Convert prediction filter polynomial to autocorrelation sequence
poly2lsf* Convert prediction filter coefficients to line spectral frequencies
poly2rc* Convert prediction filter polynomial to reflection coefficients
pow2db Convert power to decibels
powerbw Power bandwidth
pspectrum* Analyze signals in the frequency and time-frequency domains
pulstran* Pulse train
pwelch Welch's power spectral density estimate
rainflow* Rainflow counts for fatigue analysis
randn* Normally distributed random numbers
rc2ac* Convert reflection coefficients to autocorrelation sequence
rc2poly* Convert reflection coefficients to prediction filter polynomial
rceps Real cepstrum and minimum-phase reconstruction
rcosdesign* Raised cosine FIR pulse-shaping filter design
rectpuls Sampled aperiodic rectangle
rectwin Rectangular window
removesigroi Remove signal regions of interest
resample* Resample uniform or nonuniform data to new fixed rate
risetime* Rise time of positive-going bilevel waveform transitions
rlevinson* Reverse Levinson-Durbin recursion
rms Root-mean-square level
rpmfreqmap Frequency-RPM map for order analysis
rpmordermap Order-RPM map for order analysis
rssq* Root-sum-of-squares level
sawtooth Sawtooth or triangle wave
sfdr* Spurious free dynamic range
sgolay Savitzky-Golay filter design
sgolayfilt Savitzky-Golay filtering
shortensigroi Shorten signal regions of interest from left and right

10 Code Generation from MATLAB Support in Signal Processing Toolbox

10-6



sigroi2binmask Convert matrix of ROI limits to binary mask
sin Sine of argument in radians
sinad* Signal to noise and distortion ratio
sinc Sinc function
smoothdata* Smooth noisy data
snr* Signal-to-noise ratio
sos2tf Convert digital filter second-order section data to transfer function form
sosfilt Second-order (biquadratic) IIR digital filtering
spectrogram* Spectrogram using short-time Fourier transform
spline* Cubic spline data interpolation
square Square wave
statelevels State-level estimation for bilevel waveform with histogram method
std* Standard deviation
stft Short-time Fourier transform
stftmag2sig Signal reconstruction from STFT magnitude
tachorpm* Extract RPM signal from tachometer pulses
taylorwin Taylor window
tf2ss Convert transfer function filter parameters to state-space form
tfestimate* Transfer function estimate
tfridge* Time-frequency ridges
thd* Total harmonic distortion
toi* Third-order intercept point
triang Triangular window
tripuls Sampled aperiodic triangle
tsa* Time-synchronous signal average
tukeywin Tukey (tapered cosine) window
unwrap* Shift phase angles
upfirdn Upsample, apply FIR filter, and downsample
upsample Increase sample rate by integer factor
var* Variance
vmd* Variational mode decomposition
wvd* Wigner-Ville distribution and smoothed pseudo Wigner-Ville distribution
xcorr* Cross-correlation
xcorr2 2-D cross-correlation
xcov Cross-covariance
xspectrogram* Cross-spectrogram using short-time Fourier transforms
xwvd* Cross Wigner-Ville distribution and cross smoothed pseudo Wigner-Ville distribution
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yulewalk* Recursive digital filter design
zp2ss Convert zero-pole-gain filter parameters to state-space form
zp2tf Convert zero-pole-gain filter parameters to transfer function form
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Specifying Inputs in Code Generation from MATLAB
In this section...
“Defining Input Size and Type” on page 10-9
“Inputs must be Constants” on page 10-10

Defining Input Size and Type
When you use Signal Processing Toolbox functions for code generation, you must define the size and
type of the function inputs. One way to do this is with the -args compilation option. The size and
type of inputs must be defined because C is a statically typed language. To illustrate the need to
define input size and type, consider the simplest call to xcorr requiring two input arguments. The
following demonstrates the differences in the use of xcorr in MATLAB and in Code Generation from
MATLAB.

Cross correlate two white noise vectors in MATLAB:

x = randn(512,1); %real valued white noise
y = randn(512,1); %real valued white noise
[C,lags] = xcorr(x,y);
x_circ = randn(256,1)+1j*randn(256,1); %circular white noise
y_circ = randn(256,1)+1j*randn(256,1); %circular white noise
[C1,lags1] = xcorr(x_circ,y_circ);

xcorr does not require the size and type of the input arguments. xcorr obtains this information at
runtime. Contrast this behavior with a MEX-file created with codegen. Create the file myxcorr.m in
a folder where you have read and write permission. Ensure that this folder is in the MATLAB search
path. Copy and paste the following two lines of code into myxcorr.m and save the file. The compiler
tag %#codegen must be included in the file.

function [C,Lags]=myxcorr(x,y)  %#codegen
[C,Lags]=xcorr(x,y);

Enter the following command at the MATLAB command prompt:

codegen myxcorr -args {zeros(512,1),zeros(512,1)} -o myxcorr 

Run the MEX-file:

x = randn(512,1); %real valued white noise
y = randn(512,1); %real valued white noise
[C,Lags] = myxcorr(x,y);

Define two new inputs x1 and y1 by transposing x and y.

x1 = x'; %x1 is 1x512
y1 = y'; %y1 is 1x512

Attempt to rerun the MEX-file with the transposed inputs.

[C,Lags] = myxcorr(x1,y1); %Errors

The preceding program errors with the message ??? MATLAB expression 'x' is not of the
correct size: expected [512x1] found [1x512].
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The error results because the inputs are specified to be 512x1 real-valued column vectors at
compilation. For complex-valued inputs, you must specify that the input is complex valued. For
example:

codegen myxcorr -o ComplexXcorr ...
-args {complex(zeros(512,1)),complex(zeros(512,1))}

Run the MEX-file at the MATLAB command prompt with complex-valued inputs of the correct size:

x_circ = randn(512,1)+1j*randn(512,1); %circular white noise
y_circ = randn(512,1)+1j*randn(512,1); %circular white noise
[C,Lags] = ComplexXcorr(x_circ,y_circ);

Attempting to run ComplexXcorr with real valued inputs results in the error: ??? MATLAB
expression 'x' is not of the correct complexness.

Inputs must be Constants
For a number of supported Signal Processing Toolbox functions, the inputs or a subset of the inputs
must be specified as constants at compilation time. Use coder.Type with the -args compilation
option, or enter the constants directly in the source code.

Specifying inputs as constants at compilation time results in significant advantages in the speed and
efficiency of the generated code. For example, storing filter coefficients or window function values as
vectors in the C source code improves performance by avoiding costly computation at runtime.
Because a primary purpose of Code Generation from MATLAB is to generate optimized C code for
desktop and embedded systems, emphasis is placed on providing the user with computational savings
at runtime whenever possible.

To illustrate the constant input requirement with ellip, create the file myLowpassFilter.m in a
folder where you have read and write permission. Ensure that this folder is in the MATLAB search
path. Copy and paste the following lines of code into myLowpassFilter.m and save the file.

function output = myLowpassFilter(input,N,Wn) %#codegen
[B,A] = ellip(N,Wn,'low');
output = filter(B,A,input);

If you have the MATLAB Coder software, enter the following command at the MATLAB command
prompt:
codegen myLowpassFilter -o myLowpassFilter ...
-args {zeros(512,1),coder.newtype('constant',5),coder.newtype('constant',0.1)} -report

Once the program compiles successfully, the following message appears in the command window:
Code generation successful: View report.

Click on View report. Click on the C code tab on the top left and open the target source file
myLowpassFilter.c. The source code includes the numerator and denominator filter coefficients.

Run the MEX-file without entering the constants:

output = myLowpassFilter(randn(512,1));

If you attempt to run the MEX-file by inputting the constants, you receive the error ??? Error
using ==> myLowpassFilter 1 input required for entry-point 'myLowpassFilter'.
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You may also enter the constants in the MATLAB source code directly. Edit the myLowPassFilter.m
file and replace the MATLAB code with the lines:

function output = myLowpassFilter(input) %#codegen
[B,A] = ellip(5,0.1,'low');
output = filter(B,A,input);

Enter the following command at the MATLAB command prompt:

codegen myLowpassFilter -args {zeros(512,1)} -o myLowpassFilter

Run the MEX-file by entering the following at the MATLAB command prompt:

output = myLowpassFilter(randn(512,1));
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Apply Lowpass Filter to Input Signal
Assuming a sample rate of 20 kHz, create a fourth-order Butterworth filter with a 3-dB frequency of
2.5 kHz. Filter coefficients for butter must be constants for code generation.

type ButterFilt

function output_data=ButterFilt(input_data) %#codegen
[b,a]=butter(4,0.25);
output_data=filter(b,a,input_data);
end

Use the Butterworth filter to lowpass-filter a noisy sine wave. Plot the result.

t = transpose(linspace(0,pi,10000));
x = sin(t) + 0.03*randn(numel(t),1);

Filter the noisy sine wave using the Butterworth filter.

fx = ButterFilt(x);
plot(fx)

Run the codegen command to obtain the C source code ButterFilt.c and MEX file:

codegen ButterFilt -args {zeros(10000,1)} -o ButterFilt_mex -report

Code generation successful: To view the report, open('codegen\mex\ButterFilt\html\report.mldatx').
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The C source code includes the five numerator and denominator coefficients of the fourth-order
Butterworth filter as static constants. Apply the filter using the MEX-file:

output_data = ButterFilt_mex(x);
hold on
plot(output_data)
hold off

 Apply Lowpass Filter to Input Signal
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Zero-Phase Filtering
Design a lowpass Butterworth filter with a 1 kHz 3-dB frequency to implement zero-phase filtering on
data sampled at a rate of 20 kHz.

type myZerophaseFilt.m

function output  = myZerophaseFilt(input) %#codegen

[B,A] = butter(20,0.314);
output = filtfilt(B,A,input);

end

Use codegen to create the MEX file for myZerophaseFilt.m.

codegen myZerophaseFilt -args {zeros(1,20001)} -o myZerophaseFilt_mex -report

Code generation successful: To view the report, open('codegen\mex\myZerophaseFilt\html\report.mldatx').

Generate a noisy sinusoid signal as input to the filter.

Fs = 20000;
t = 0:1/Fs:1;
comp500Hz = cos(2*pi*500*t);
signal = comp500Hz + sin(2*pi*4000*t) + 0.2*randn(size(t));

Filter input data using both MATLAB® and MEX functions.

FilteredData = myZerophaseFilt(signal);
MexFilteredData = myZerophaseFilt_mex(signal);

Plot the 500 Hz component and the filtered data.

tms = t*1000;
plot(tms,comp500Hz)
hold on
plot(tms,MexFilteredData)
plot(tms,FilteredData)
hold off

xlabel('Milliseconds')
ylabel('Amplitude')
axis([0 25 -1.8 1.8])
legend('500 Hz component','MEX','MATLAB')
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Compute Modified Periodogram Using Generated C Code
Create a function periodogram_data.m that returns the modified periodogram power spectral
density (PSD) estimate of an input signal using a window. The function specifies a number of discrete
Fourier transform points equal to the length of the input signal.

type periodogram_data

function [pxx,f] = periodogram_data(inputData,window)
%#codegen
nfft = length(inputData);
[pxx,f] = periodogram(inputData,window,nfft);
end

Use codegen (MATLAB Coder) to generate a MEX function.

• The %#codegen directive in the function indicates that the MATLAB® code is intended for code
generation.

• The -args option specifies example arguments that define the size, class, and complexity of the
inputs to the MEX-file. For this example, specify inputData as a 1024-by-1 double precision
random vector and window as a Hamming window of length 1024. In subsequent calls to the MEX
function, use 1024-sample input signals and windows.

• If you want the MEX function to have a different name, use the -o option.
• If you want to view a code generation report, add the -report option at the end of the codegen

command.

codegen periodogram_data -args {randn(1024,1),hamming(1024)}

Compute the PSD estimate of a 1024-sample noisy sinusoid using the periodogram function and the
MEX function you generated. Specify a sinusoid normalized frequency of 2π/5 rad/sample and a Hann
window. Plot the two estimates to verify they coincide.

N = 1024;
x = 2*cos(2*pi/5*(0:N-1)') + randn(N,1);
periodogram(x,hann(N))
[pxMex,fMex] = periodogram_data(x,hann(N));
hold on
plot(fMex/pi,pow2db(pxMex),':','Color',[0 0.4 0])
hold off
grid on
legend('periodogram','MEX function')
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Convolution and Correlation

• “Linear and Circular Convolution” on page 11-2
• “Confidence Intervals for Sample Autocorrelation” on page 11-4
• “Residual Analysis with Autocorrelation” on page 11-6
• “Autocorrelation of Moving Average Process” on page 11-12
• “Cross-Correlation of Two Moving Average Processes” on page 11-15
• “Cross-Correlation of Delayed Signal in Noise” on page 11-17
• “Cross-Correlation of Phase-Lagged Sine Wave” on page 11-19
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Linear and Circular Convolution
This example shows how to establish an equivalence between linear and circular convolution.

Linear and circular convolution are fundamentally different operations. However, there are conditions
under which linear and circular convolution are equivalent. Establishing this equivalence has
important implications. For two vectors, x and y, the circular convolution is equal to the inverse
discrete Fourier transform (DFT) of the product of the vectors' DFTs. Knowing the conditions under
which linear and circular convolution are equivalent allows you to use the DFT to efficiently compute
linear convolutions.

The linear convolution of an N-point vector, x, and an L-point vector, y, has length N + L - 1.

For the circular convolution of x and y to be equivalent, you must pad the vectors with zeros to length
at least N + L - 1 before you take the DFT. After you invert the product of the DFTs, retain only the
first N + L - 1 elements.

Create two vectors, x and y, and compute the linear convolution of the two vectors.

x = [2 1 2 1];
y = [1 2 3];
clin = conv(x,y);

The output has length 4+3-1.

Pad both vectors with zeros to length 4+3-1. Obtain the DFT of both vectors, multiply the DFTs, and
obtain the inverse DFT of the product.

xpad = [x zeros(1,6-length(x))];
ypad = [y zeros(1,6-length(y))];
ccirc = ifft(fft(xpad).*fft(ypad));

The circular convolution of the zero-padded vectors, xpad and ypad, is equivalent to the linear
convolution of x and y. You retain all the elements of ccirc because the output has length 4+3-1.

Plot the output of linear convolution and the inverse of the DFT product to show the equivalence.

subplot(2,1,1)
stem(clin,'filled')
ylim([0 11])
title('Linear Convolution of x and y')

subplot(2,1,2)
stem(ccirc,'filled')
ylim([0 11])
title('Circular Convolution of xpad and ypad')

11 Convolution and Correlation

11-2



Pad the vectors to length 12 and obtain the circular convolution using the inverse DFT of the product
of the DFTs. Retain only the first 4+3-1 elements to produce an equivalent result to linear
convolution.

N = length(x)+length(y)-1;
xpad = [x zeros(1,12-length(x))];
ypad = [y zeros(1,12-length(y))];
ccirc = ifft(fft(xpad).*fft(ypad));
ccirc = ccirc(1:N);

The Signal Processing Toolbox™ software has a function, cconv, that returns the circular convolution
of two vectors. You can obtain the linear convolution of x and y using circular convolution with the
following code.

ccirc2 = cconv(x,y,6);

cconv internally uses the same DFT-based procedure illustrated in the previous example.

 Linear and Circular Convolution
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Confidence Intervals for Sample Autocorrelation
This example shows how to create confidence intervals for the autocorrelation sequence of a white
noise process. Create a realization of a white noise process with length L = 1000 samples. Compute
the sample autocorrelation to lag 20. Plot the sample autocorrelation along with the approximate
95%-confidence intervals for a white noise process.

Create the white noise random vector. Set the random number generator to the default settings for
reproducible results. Obtain the normalized sampled autocorrelation to lag 20.

rng default
L = 1000;
x = randn(L,1);
[xc,lags] = xcorr(x,20,'coeff');

Create the lower and upper 95% confidence bounds for the normal distribution N(0, 1/L), whose
standard deviation is 1/ L. For a 95%-confidence interval, the critical value is 2 erf−1(0 . 95) ≈ 1 . 96
and the confidence interval is

Δ = 0 ± 1 . 96
L .

vcrit = sqrt(2)*erfinv(0.95)

vcrit = 1.9600

lconf = -vcrit/sqrt(L);
upconf = vcrit/sqrt(L);

Plot the sample autocorrelation along with the 95%-confidence interval.

stem(lags,xc,'filled')
hold on
plot(lags,[lconf;upconf]*ones(size(lags)),'r')
hold off
ylim([lconf-0.03 1.05])
title('Sample Autocorrelation with 95% Confidence Intervals')
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You see in the above figure that the only autocorrelation value outside of the 95%-confidence interval
occurs at lag 0 as expected for a white noise process. Based on this result, you can conclude that the
data are a realization of a white noise process.
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Residual Analysis with Autocorrelation
This example shows how to use autocorrelation with a confidence interval to analyze the residuals of
a least-squares fit to noisy data. The residuals are the differences between the fitted model and the
data. In a signal-plus-white noise model, if you have a good fit for the signal, the residuals should be
white noise.

Create a noisy data set consisting of a 1st-order polynomial (straight line) in additive white Gaussian
noise. The additive noise is a sequence of uncorrelated random variables following a N(0,1)
distribution. This means that all the random variables have mean zero and unit variance. Set the
random number generator to the default settings for reproducible results.

x = -3:0.01:3;
rng default
y = 2*x+randn(size(x));
plot(x,y)

Use polyfit to find the least-squares line for the noisy data. Plot the original data along with the
least-squares fit.

coeffs = polyfit(x,y,1);
yfit = coeffs(2)+coeffs(1)*x;

plot(x,y)
hold on
plot(x,yfit,'linewidth',2)
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Find the residuals. Obtain the autocorrelation sequence of the residuals to lag 50.

residuals = y - yfit;
[xc,lags] = xcorr(residuals,50,'coeff');

When you inspect the autocorrelation sequence, you want to determine whether or not there is
evidence of autocorrelation. In other words, you want to determine whether the sample
autocorrelation sequence looks like the autocorrelation sequence of white noise. If the
autocorrelation sequence of the residuals looks like the autocorrelation of a white noise process, you
are confident that none of the signal has escaped your fit and ended up in the residuals. In this
example, use a 99%-confidence interval. To construct the confidence interval, you need to know the
distribution of the sample autocorrelation values. You also need to find the critical values on the
appropriate distribution between which lie 0.99 of the probability. Because the distribution in this
case is Gaussian, you can use complementary inverse error function, erfcinv. The relationship
between this function and the inverse of the Gaussian cumulative distribution function is described
on the reference page for erfcinv.

Find the critical value for the 99%-confidence interval. Use the critical value to construct the lower
and upper confidence bounds.

conf99 = sqrt(2)*erfcinv(2*.01/2);
lconf = -conf99/sqrt(length(x));
upconf = conf99/sqrt(length(x));

Plot the autocorrelation sequence along with the 99%-confidence intervals.
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figure

stem(lags,xc,'filled')
ylim([lconf-0.03 1.05])
hold on
plot(lags,lconf*ones(size(lags)),'r','linewidth',2)
plot(lags,upconf*ones(size(lags)),'r','linewidth',2)
title('Sample Autocorrelation with 99% Confidence Intervals')

Except at zero lag, the sample autocorrelation values lie within the 99%-confidence bounds for the
autocorrelation of a white noise sequence. From this, you can conclude that the residuals are white
noise. More specifically, you cannot reject that the residuals are a realization of a white noise process.

Create a signal consisting of a sine wave plus noise. The data are sampled at 1 kHz. The frequency of
the sine wave is 100 Hz. Set the random number generator to the default settings for reproducible
results.

Fs = 1000;
t = 0:1/Fs:1-1/Fs;
rng default
x = cos(2*pi*100*t)+randn(size(t));

Use the discrete Fourier transform (DFT) to obtain the least-squares fit to the sine wave at 100 Hz.
The least-squares estimate of the amplitude is 2 / N times the DFT coefficient corresponding to 100
Hz, where N is the length of the signal. The real part is the amplitude of a cosine at 100 Hz and the
imaginary part is the amplitude of a sine at 100 Hz. The least-squares fit is the sum of the cosine and
sine with the correct amplitude. In this example, DFT bin 101 corresponds to 100 Hz.
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xdft = fft(x);
ampest = 2/length(x)*xdft(101);
xfit = real(ampest)*cos(2*pi*100*t)+imag(ampest)*sin(2*pi*100*t);

figure

plot(t,x)
hold on
plot(t,xfit,'linewidth',2)
axis([0 0.30 -4 4])
xlabel('Seconds')
ylabel('Amplitude')

Find the residuals and determine the sample autocorrelation sequence to lag 50.

residuals = x-xfit;
[xc,lags] = xcorr(residuals,50,'coeff');

Plot the autocorrelation sequence with the 99%-confidence intervals.

figure

stem(lags,xc,'filled')
ylim([lconf-0.03 1.05])
hold on
plot(lags,lconf*ones(size(lags)),'r','linewidth',2)
plot(lags,upconf*ones(size(lags)),'r','linewidth',2)
title('Sample Autocorrelation with 99% Confidence Intervals')
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Again, you see that except at zero lag, the sample autocorrelation values lie within the 99%-
confidence bounds for the autocorrelation of a white noise sequence. From this, you can conclude
that the residuals are white noise. More specifically, you cannot reject that the residuals are a
realization of a white noise process.

Finally, add another sine wave with a frequency of 200 Hz and an amplitude of 3/4. Fit only the sine
wave at 100 Hz and find the sample autocorrelation of the residuals.

x = x+3/4*sin(2*pi*200*t);
xdft = fft(x);
ampest = 2/length(x)*xdft(101);
xfit = real(ampest)*cos(2*pi*100*t)+imag(ampest)*sin(2*pi*100*t);
residuals = x-xfit;
[xc,lags] = xcorr(residuals,50,'coeff');

Plot the sample autocorrelation along with the 99%-confidence intervals.

figure

stem(lags,xc,'filled')
ylim([lconf-0.12 1.05])
hold on
plot(lags,lconf*ones(size(lags)),'r','linewidth',2)
plot(lags,upconf*ones(size(lags)),'r','linewidth',2)
title('Sample Autocorrelation with 99% Confidence Intervals')
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In this case, the autocorrelation values clearly exceed the 99%-confidence bounds for a white noise
autocorrelation at many lags. Here you can reject the hypothesis that the residuals are a white noise
sequence. The implication is that the model has not accounted for all the signal and therefore the
residuals consist of signal plus noise.
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Autocorrelation of Moving Average Process
This example shows how to introduce autocorrelation into a white noise process by filtering. When we
introduce autocorrelation into a random signal, we manipulate its frequency content. A moving
average filter attenuates the high-frequency components of the signal, effectively smoothing it.

Create the impulse response for a 3-point moving average filter. Filter an N(0,1) white noise sequence
with the filter. Set the random number generator to the default settings for reproducible results.

h = 1/3*ones(3,1);
rng default
x = randn(1000,1);
y = filter(h,1,x);

Obtain the biased sample autocorrelation out to 20 lags. Plot the sample autocorrelation along with
the theoretical autocorrelation.

[xc,lags] = xcorr(y,20,'biased');

Xc = zeros(size(xc));
Xc(19:23) = [1 2 3 2 1]/9*var(x);

stem(lags,xc,'filled')
hold on
stem(lags,Xc,'.','linewidth',2)

lg = legend('Sample autocorrelation','Theoretical autocorrelation');
lg.Location = 'NorthEast';
lg.Box = 'off';
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The sample autocorrelation captures the general form of the theoretical autocorrelation, even though
the two sequences do not agree in detail.

In this case, it is clear that the filter has introduced significant autocorrelation only over lags [-2,2].
The absolute value of the sequence decays quickly to zero outside of that range.

To see that the frequency content has been affected, plot Welch estimates of the power spectral
densities of the original and filtered signals.

[pxx,wx] = pwelch(x);
[pyy,wy] = pwelch(y);

figure
plot(wx/pi,20*log10(pxx),wy/pi,20*log10(pyy))

lg = legend('Original sequence','Filtered sequence');
lg.Location = 'SouthWest';

xlabel('Normalized Frequency (\times\pi rad/sample)')
ylabel('Power/frequency (dB/rad/sample)')
title('Welch Power Spectral Density Estimate')
grid
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The white noise has been "colored" by the moving average filter.

See Also

External Websites
• Ellis, Dan. About Colored Noise. https://www.ee.columbia.edu/~dpwe/noise/
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Cross-Correlation of Two Moving Average Processes
This example shows how to find and plot the cross-correlation sequence between two moving average
processes. The example compares the sample cross-correlation with the theoretical cross-correlation.
Filter an N(0, 1) white noise input with two different moving average filters. Plot the sample and
theoretical cross-correlation sequences.

Create an N(0, 1) white noise sequence. Set the random number generator to the default settings for
reproducible results. Create two moving average filters. One filter has impulse response
δ(n) + δ(n− 1). The other filter has impulse response δ(n) − δ(n− 1).

rng default

w = randn(100,1);
x = filter([1 1],1,w);
y = filter([1 -1],1,w);

Obtain the sample cross-correlation sequence up to lag 20. Plot the sample cross-correlation along
with the theoretical cross-correlation.

[xc,lags] = xcorr(x,y,20,'biased');

Xc = zeros(size(xc));
Xc(20) = -1;
Xc(22) = 1;

stem(lags,xc,'filled')
hold on
stem(lags,Xc,'.','linewidth',2)

q = legend('Sample cross-correlation','Theoretical cross-correlation');
q.Location = 'NorthWest';
q.FontSize = 9;
q.Box = 'off';

 Cross-Correlation of Two Moving Average Processes

11-15



The theoretical cross-correlation is −1 at lag −1, 1 at lag 1, and zero at all other lags. The sample
cross-correlation sequence approximates the theoretical cross-correlation.

As expected, there is not perfect agreement between the theoretical cross-correlation and sample
cross-correlation. The sample cross-correlation does accurately represent both the sign and
magnitude of the theoretical cross-correlation sequence values at lag −1 and lag 1.
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Cross-Correlation of Delayed Signal in Noise
This example shows how to use the cross-correlation sequence to detect the time delay in a noise-
corrupted sequence. The output sequence is a delayed version of the input sequence with additive
white Gaussian noise. Create two sequences. One sequence is a delayed version of the other. The
delay is 3 samples. Add N(0, 0 . 32) white noise to the delayed signal. Use the sample cross-correlation
sequence to detect the lag.

Create and plot the signals. Set the random number generator to the default settings for reproducible
results.

rng default

x = triang(20);
y = [zeros(3,1);x]+0.3*randn(length(x)+3,1);

subplot(2,1,1)
stem(x,'filled')
axis([0 22 -1 2])
title('Input Sequence')

subplot(2,1,2)
stem(y,'filled')
axis([0 22 -1 2])
title('Output Sequence')
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Obtain the sample cross-correlation sequence and use the maximum absolute value to estimate the
lag. Plot the sample cross-correlation sequence. The maximum cross correlation sequence value
occurs at lag 3, as expected.

[xc,lags] = xcorr(y,x);
[~,I] = max(abs(xc));

figure
stem(lags,xc,'filled')
hold on
stem(lags(I),xc(I),'filled')
hold off
legend(["Cross-correlation",sprintf('Maximum at lag %d',lags(I))])

Confirm the result using the finddelay function.

finddelay(x,y)

ans = 3

See Also
finddelay | xcorr
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Cross-Correlation of Phase-Lagged Sine Wave
This example shows how to use the cross-correlation sequence to estimate the phase lag between two
sine waves. The theoretical cross-correlation sequence of two sine waves at the same frequency also
oscillates at that frequency. Because the sample cross-correlation sequence uses fewer and fewer
samples at larger lags, the sample cross-correlation sequence also oscillates at the same frequency,
but the amplitude decays as the lag increases.

Create two sine waves with frequencies of 2π/10 rad/sample. The starting phase of one sine wave is
0, while the starting phase of the other sine wave is −π radians. Add N(0, 0 . 252) white noise to the
sine wave with the phase lag of π radians. Set the random number generator to the default settings
for reproducible results.

rng default

t = 0:99;
x = cos(2*pi*1/10*t);
y = cos(2*pi*1/10*t-pi)+0.25*randn(size(t));

Obtain the sample cross-correlation sequence for two periods of the sine wave (10 samples). Plot the
cross-correlation sequence and mark the known lag between the two sine waves (5 samples).

[xc,lags] = xcorr(y,x,20,'coeff');

stem(lags(21:end),xc(21:end),'filled')

hold on
plot([5 5],[-1 1])

ax = gca;
ax.XTick = 0:5:20;
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You see that the cross-correlation sequence peaks at lag 5 as expected and oscillates with a period of
10 samples.

See Also
xcorr
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Multirate Signal Processing

• “Downsampling — Signal Phases” on page 12-2
• “Downsampling — Aliasing” on page 12-5
• “Filtering Before Downsampling” on page 12-9
• “Upsampling — Imaging Artifacts” on page 12-11
• “Filtering After Upsampling — Interpolation” on page 12-13
• “Simulate a Sample-and-Hold System” on page 12-15
• “Change Signal Sample Rate” on page 12-20
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Downsampling — Signal Phases
This example shows how to use downsample to obtain the phases of a signal. Downsampling a signal
by M can produce M unique phases. For example, if you have a discrete-time signal, x, with x(0) x(1)
x(2) x(3), ..., the M phases of x are x(nM + k) with k = 0,1, ..., M-1.

The M signals are referred to as the polyphase components of x.

Create a white noise vector and obtain the 3 polyphase components associated with downsampling by
3.

Reset the random number generator to the default settings to produce a repeatable result. Generate
a white noise random vector and obtain the 3 polyphase components associated with downsampling
by 3.

rng default
x = randn(36,1);
x0 = downsample(x,3,0);
x1 = downsample(x,3,1);
x2 = downsample(x,3,2);

The polyphase components have length equal to 1/3 the original signal.

Upsample the polyphase components by 3 using upsample.

y0 = upsample(x0,3,0);
y1 = upsample(x1,3,1);
y2 = upsample(x2,3,2);

Plot the result.

subplot(4,1,1)
stem(x,'Marker','none')
title('Original Signal')
ylim([-4 4])

subplot(4,1,2)
stem(y0,'Marker','none')
ylabel('Phase 0')
ylim([-4 4])

subplot(4,1,3)
stem(y1,'Marker','none')
ylabel('Phase 1')
ylim([-4 4])

subplot(4,1,4)
stem(y2,'Marker','none')
ylabel('Phase 2')
ylim([-4 4])

12 Multirate Signal Processing

12-2



If you sum the upsampled polyphase components you obtain the original signal.

Create a discrete-time sinusoid and obtain the 2 polyphase components associated with
downsampling by 2.

Create a discrete-time sine wave with an angular frequency of  rad/sample. Add a DC offset of 2
to the sine wave to help with visualization of the polyphase components. Downsample the sine wave
by 2 to obtain the even and odd polyphase components.

n = 0:127;
x = 2+cos(pi/4*n);
x0 = downsample(x,2,0);
x1 = downsample(x,2,1);

Upsample the two polyphase components.

y0 = upsample(x0,2,0);
y1 = upsample(x1,2,1);

Plot the upsampled polyphase components along with the original signal for comparison.

subplot(3,1,1)
stem(x,'Marker','none')
ylim([0.5 3.5])
title('Original Signal')

subplot(3,1,2)
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stem(y0,'Marker','none')
ylim([0.5 3.5])
ylabel('Phase 0')

subplot(3,1,3)
stem(y1,'Marker','none')
ylim([0.5 3.5])
ylabel('Phase 1')

If you sum the two upsampled polyphase components (Phase 0 and Phase 1), you obtain the original
sine wave.

See Also
downsample | upsample
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Downsampling — Aliasing
This example shows how to avoid aliasing when downsampling a signal. If a discrete-time signal's
baseband spectral support is not limited to an interval of width 2π/M radians, downsampling by M
results in aliasing. Aliasing is the distortion that occurs when overlapping copies of the signal's
spectrum are added together. The more the signal's baseband spectral support exceeds 2π/M
radians, the more severe the aliasing. Demonstrate aliasing in a signal downsampled by two. The
signal's baseband spectral support exceed π radians in width.

Create a signal with baseband spectral support equal to 3π/2 radians. Use fir2 to design the signal.
Plot the signal's spectrum. The signal's baseband spectral support exceeds [ − π/2, π/2].

f = [0 0.2500 0.5000 0.7500 1.0000];
a = [1.00 0.6667 0.3333 0 0];

nf = 512;
b1 = fir2(nf-1,f,a);
Hx = fftshift(freqz(b1,1,nf,'whole'));

omega = -pi:2*pi/nf:pi-2*pi/nf;
plot(omega/pi,abs(Hx))
grid
xlabel('\times\pi rad/sample')
ylabel('Magnitude')
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Downsample the signal by a factor of 2 and plot the downsampled signal's spectrum with the
spectrum of the original signal. In addition to an amplitude scaling of the spectrum, the superposition
of overlapping spectral replicas causes distortion of the original spectrum for ω > π/2.

y = downsample(b1,2,0);
Hy = fftshift(freqz(y,1,nf,'whole'));

hold on
plot(omega/pi,abs(Hy))
hold off
legend('Original','Downsampled')
text(2.5/pi*[-1 1],0.35*[1 1],{'\downarrow Aliasing','Aliasing \downarrow'}, ...
    'HorizontalAlignment','center')

Increase the baseband spectral support of the signal to [ − 7π/8, 7π/8] and downsample the signal by
2. Plot the original spectrum along with the spectrum of the downsampled signal. The increased
spectral width results in more pronounced aliasing in the spectrum of the downsampled signal
because more signal energy is outside [ − π/2, π/2].

f = [0 0.2500 0.5000 0.7500 7/8 1.0000];
a = [1.00 0.7143 0.4286 0.1429 0 0];

b2 = fir2(nf-1,f,a);
Hx = fftshift(freqz(b2,1,nf,'whole'));

plot(omega/pi,abs(Hx))
grid
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xlabel('\times\pi rad/sample')
ylabel('Magnitude')

y = downsample(b2,2,0);
Hy = fftshift(freqz(y,1,nf,'whole'));

hold on
plot(omega/pi,abs(Hy))
hold off
legend('Original','Downsampled')

Finally, construct a signal with baseband spectral support limited to [ − π/2, π/2]. Downsample the
signal by a factor of 2 and plot the spectrum of the original and downsampled signals. The
downsampled signal is full band. The spectrum of the downsampled signal is a stretched and scaled
version of the original spectrum, but the shape is preserved because the spectral copies do not
overlap. There is no aliasing.

f = [0 0.250 0.500 0.7500 1];
a = [1.0000 0.5000 0 0 0];

b3 = fir2(nf-1,f,a);
Hx = fftshift(freqz(b3,1,nf,'whole'));

plot(omega/pi,abs(Hx))
grid
xlabel('\times\pi rad/sample')
ylabel('Magnitude')
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y = downsample(b3,2,0);
Hy = fftshift(freqz(y,1,nf,'whole'));

hold on
plot(omega/pi,abs(Hy))
hold off
legend('Original','Downsampled')

See Also
downsample | fir2 | freqz
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Filtering Before Downsampling
This example shows how to filter before downsampling to mitigate the distortion caused by aliasing.
You can use decimate or resample to filter and downsample with one function. Alternatively, you
can lowpass filter your data and then use downsample. Create a signal with baseband spectral
support greater than π radians. Use decimate to filter the signal with a 10th-order Chebyshev type I
lowpass filter prior to downsampling.

Create the signal and plot the magnitude spectrum.

f = [0 0.2500 0.5000 0.7500 1.0000];
a = [1.00 0.6667 0.3333 0 0];

nf = 512;
b = fir2(nf-1,f,a);
Hx = fftshift(freqz(b,1,nf,'whole'));

omega = -pi:2*pi/nf:pi-2*pi/nf;
plot(omega/pi,abs(Hx))
grid
xlabel('\times\pi rad/sample')
ylabel('Magnitude')

Filter the signal with a 10th-order type I Chebyshev lowpass filter and downsample by 2. Plot the
magnitude spectra of the original signal along with the filtered and downsampled signal. The lowpass
filter reduces the amount of aliasing distortion outside the interval [ − π/2, π/2].
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y = decimate(b,2,10);
Hy = fftshift(freqz(y,1,nf,'whole'));

hold on
plot(omega/pi,abs(Hy))
legend('Original','Downsampled')

See Also
decimate | fir2 | freqz
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Upsampling — Imaging Artifacts
This example shows how to upsample a signal and how upsampling can result in images. Upsampling
a signal contracts the spectrum. For example, upsampling a signal by 2 results in a contraction of the
spectrum by a factor of 2. Because the spectrum of a discrete-time signal is 2π-periodic, contraction
can cause replicas of the spectrum normally outside of the baseband to appear inside the interval
[ − π, π].

Create a discrete-time signal whose baseband spectral support is [ − π, π]. Plot the magnitude
spectrum.

f = [0 0.250 0.500 0.7500 1];
a = [1.0000 0.5000 0 0 0];

nf = 512;
b = fir2(nf-1,f,a);
Hx = fftshift(freqz(b,1,nf,'whole'));

omega = -pi:2*pi/nf:pi-2*pi/nf;
plot(omega/pi,abs(Hx))
grid
xlabel('\times\pi rad/sample')
ylabel('Magnitude')

Upsample the signal by 2. Plot the spectrum of the upsampled signal. The contraction of the spectrum
has drawn subsequent periods of the spectrum into the interval [ − π, π].
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y = upsample(b,2);
Hy = fftshift(freqz(y,1,nf,'whole'));

hold on
plot(omega/pi,abs(Hy))
hold off
legend('Original','Upsampled')
text(0.65*[-1 1],0.45*[1 1],["\leftarrow Imaging" "Imaging \rightarrow"], ...
    'HorizontalAlignment','center')

See Also
fir2 | freqz | upsample
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Filtering After Upsampling — Interpolation
This example shows how to upsample a signal and apply a lowpass interpolation filter with interp.
Upsampling by L inserts L – 1 zeros between every element of the original signal. Upsampling can
create imaging artifacts. Lowpass filtering following upsampling can remove these imaging artifacts.
In the time domain, lowpass filtering interpolates the zeros inserted by upsampling.

Create a discrete-time signal whose baseband spectral support is [ − π/2, π/2]. Plot the magnitude
spectrum.

f = [0 0.250 0.500 0.7500 1];
a = [1.0000 0.5000 0 0 0];

nf = 512;
b = fir2(nf-1,f,a);
Hx = fftshift(freqz(b,1,nf,'whole'));

omega = -pi:2*pi/nf:pi-2*pi/nf;
plot(omega/pi,abs(Hx))
grid
xlabel('\times\pi rad/sample')
ylabel('Magnitude')

Upsample the signal and apply a lowpass filter to remove the imaging artifacts. Plot the magnitude
spectrum. Upsampling still contracts the spectrum, but the imaging artifacts are removed by the
lowpass filter.
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y = interp(b,2);
Hy = fftshift(freqz(y,1,nf,'whole'));

hold on
plot(omega/pi,abs(Hy))
hold off
legend('Original','Upsampled')

See Also
fir2 | freqz | interp
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Simulate a Sample-and-Hold System
This example shows several ways to simulate the output of a sample-and-hold system by upsampling
and filtering a signal.

Construct a sinusoidal signal. Specify a sample rate such that 16 samples correspond to exactly one
signal period. Draw a stem plot of the signal. Overlay a stairstep graph for sample-and-hold
visualization.

fs = 16;
t = 0:1/fs:1-1/fs;

x = .9*sin(2*pi*t);

stem(t,x)
hold on
stairs(t,x)
hold off

Upsample the signal by a factor of four. Plot the result alongside the original signal. upsample
increases the sample rate of the signal by adding zeros between the existing samples.

ups = 4;

fu = fs*ups;
tu = 0:1/fu:1-1/fu;
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y = upsample(x,ups);

stem(tu,y,'--x')

hold on
stairs(t,x)
hold off

Filter with a moving-average FIR filter to fill in the zeros with sample-and-hold values.

h = ones(ups,1);

z = filter(h,1,y);

stem(tu,z,'--.')
hold on
stairs(t,x)
hold off
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You can obtain the same behavior using the MATLAB® function interp1 with nearest-neighbor
interpolation. In that case, you must shift the origin to line up the sequence.

zi = interp1(t,x,tu,'nearest');

dl = floor(ups/2);

stem(tu(1+dl:end),zi(1:end-dl),'--.')
hold on
stairs(t,x)
hold off
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The function resample produces the same result when you set the last input argument to zero.

q = resample(x,ups,1,0);

stem(tu(1+dl:end),q(1:end-dl),'--.')
hold on
stairs(t,x)
hold off

12 Multirate Signal Processing

12-18



See Also
resample | upsample
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Change Signal Sample Rate
This example shows how to change the sample rate of a signal. The example has two parts. Part one
changes the sample rate of a sinusoidal input from 44.1 kHz to 48 kHz. This workflow is common in
audio processing. The sample rate used on compact discs is 44.1 kHz, while the sample rate used on
digital audio tape is 48 kHz. Part two changes the sample rate of a recorded speech sample from
7418 Hz to 8192 Hz.

Create an input signal consisting of a sum of sine waves sampled at 44.1 kHz. The sine waves have
frequencies of 2, 4, and 8 kHz.

Fs = 44.1e3;
t = 0:1/Fs:1-1/Fs;
x = cos(2*pi*2000*t) + 1/2*sin(2*pi*4000*(t-pi/4)) + ...
    1/4*cos(2*pi*8000*t);

To change the sample rate from 44.1 to 48 kHz, you have to determine a rational number (ratio of
integers), P/Q, such that P/Q times the original sample rate, 44100, is equal to 48000 within some
specified tolerance.

To determine these factors, use rat. Input the ratio of the new sample rate, 48000, to the original
sample rate, 44100.

[P,Q] = rat(48e3/Fs);
abs(P/Q*Fs-48000)

ans = 7.2760e-12

You see that P/Q*Fs only differs from the desired sample rate, 48000, on the order of 10−12.

Use the numerator and denominator factors obtained with rat as inputs to resample to output a
waveform sampled at 48 kHz.

xnew = resample(x,P,Q);

If your computer can play audio, you can play the two waveforms. Set the volume to a comfortable
level before you play the signals. Execute the sound commands separately so that you can hear the
signal with the two different sample rates.

% sound(x,44100)
% sound(xnew,48000)

Change the sample rate of a speech sample from 7418 Hz to 8192 Hz. The speech signal is a
recording of a speaker saying "MATLAB®".

Load the speech sample.

load mtlb

Loading the file mtlb.mat brings the speech signal, mtlb, and the sample rate, Fs, into the MATLAB
workspace.

Determine a rational approximation to the ratio of the new sample rate, 8192, to the original sample
rate. Use rat to determine the approximation.

[P,Q] = rat(8192/Fs);
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Resample the speech sample at the new sample rate. Plot the two signals.

mtlb_new = resample(mtlb,P,Q);

subplot(2,1,1)
plot((0:length(mtlb)-1)/Fs,mtlb)
subplot(2,1,2)
plot((0:length(mtlb_new)-1)/(P/Q*Fs),mtlb_new)

If your computer has audio output capability, you can play the two waveforms at their respective
sample rates for comparison. Set the volume on your computer to a comfortable listening level before
playing the sounds. Execute the sound commands separately to compare the speech samples at the
different sample rates.

% sound(mtlb,Fs)
% sound(mtlb_new,8192)

See Also
resample
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Spectral Analysis

• “Power Spectral Density Estimates Using FFT” on page 13-2
• “Bias and Variability in the Periodogram” on page 13-9
• “Cross Spectrum and Magnitude-Squared Coherence” on page 13-17
• “Amplitude Estimation and Zero Padding” on page 13-20
• “Significance Testing for Periodic Component” on page 13-23
• “Frequency Estimation by Subspace Methods” on page 13-25
• “Frequency-Domain Linear Regression” on page 13-27
• “Measure Total Harmonic Distortion” on page 13-36
• “Measure Mean Frequency, Power, Bandwidth” on page 13-38
• “Periodogram of Data Set with Missing Samples” on page 13-43
• “Welch Spectrum Estimates” on page 13-46
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Power Spectral Density Estimates Using FFT
This example shows how to obtain nonparametric power spectral density (PSD) estimates equivalent
to the periodogram using fft. The examples show you how to properly scale the output of fft for
even-length inputs, for normalized frequency and hertz, and for one- and two-sided PSD estimates.

Even-Length Input with Sample Rate

Obtain the periodogram for an even-length signal sampled at 1 kHz using both fft and
periodogram. Compare the results.

Create a signal consisting of a 100 Hz sine wave in N(0,1) additive noise. The sampling frequency is 1
kHz. The signal length is 1000 samples. Use the default settings of the random number generator for
reproducible results.

rng default
Fs = 1000;
t = 0:1/Fs:1-1/Fs;
x = cos(2*pi*100*t) + randn(size(t));

Obtain the periodogram using fft. The signal is real-valued and has even length. Because the signal
is real-valued, you only need power estimates for the positive or negative frequencies. In order to
conserve the total power, multiply all frequencies that occur in both sets — the positive and negative
frequencies — by a factor of 2. Zero frequency (DC) and the Nyquist frequency do not occur twice.
Plot the result.

N = length(x);
xdft = fft(x);
xdft = xdft(1:N/2+1);
psdx = (1/(Fs*N)) * abs(xdft).^2;
psdx(2:end-1) = 2*psdx(2:end-1);
freq = 0:Fs/length(x):Fs/2;

plot(freq,10*log10(psdx))
grid on
title('Periodogram Using FFT')
xlabel('Frequency (Hz)')
ylabel('Power/Frequency (dB/Hz)')
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Compute and plot the periodogram using periodogram. Show that the two results are identical.

periodogram(x,rectwin(length(x)),length(x),Fs)
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mxerr = max(psdx'-periodogram(x,rectwin(length(x)),length(x),Fs))

mxerr = 3.4694e-18

Input with Normalized Frequency

Use fft to produce a periodogram for an input using normalized frequency. Create a signal
consisting of a sine wave in N(0,1) additive noise. The sine wave has an angular frequency of π/4 rad/
sample. Use the default settings of the random number generator for reproducible results.

rng default
n = 0:999;
x = cos(pi/4*n) + randn(size(n));

Obtain the periodogram using fft. The signal is real-valued and has even length. Because the signal
is real-valued, you only need power estimates for the positive or negative frequencies. In order to
conserve the total power, multiply all frequencies that occur in both sets — the positive and negative
frequencies — by a factor of 2. Zero frequency (DC) and the Nyquist frequency do not occur twice.
Plot the result.

N = length(x);
xdft = fft(x);
xdft = xdft(1:N/2+1);
psdx = (1/(2*pi*N)) * abs(xdft).^2;
psdx(2:end-1) = 2*psdx(2:end-1);
freq = 0:(2*pi)/N:pi;
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plot(freq/pi,10*log10(psdx))
grid on
title('Periodogram Using FFT')
xlabel('Normalized Frequency (\times\pi rad/sample)') 
ylabel('Power/Frequency (dB/rad/sample)')

Compute and plot the periodogram using periodogram. Show that the two results are identical.

periodogram(x,rectwin(length(x)),length(x))
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mxerr = max(psdx'-periodogram(x,rectwin(length(x)),length(x)))

mxerr = 1.4211e-14

Complex-Valued Input with Normalized Frequency

Use fft to produce a periodogram for a complex-valued input with normalized frequency. The signal
is a complex exponential with an angular frequency of π/4 rad/sample in complex-valued N(0,1) noise.
Set the random number generator to the default settings for reproducible results.

rng default
n = 0:999;
x = exp(1j*pi/4*n) + [1 1j]*randn(2,length(n))/sqrt(2);

Use fft to obtain the periodogram. Because the input is complex-valued, obtain the periodogram
from [0, 2π) rad/sample. Plot the result.

N = length(x);
xdft = fft(x);
psdx = (1/(2*pi*N)) * abs(xdft).^2;
freq = 0:(2*pi)/N:2*pi-(2*pi)/N;

plot(freq/pi,10*log10(psdx))
grid on
title('Periodogram Using FFT')
xlabel('Normalized Frequency (\times\pi rad/sample)') 
ylabel('Power/Frequency (dB/rad/sample)')
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Use periodogram to obtain and plot the periodogram. Compare the PSD estimates.

periodogram(x,rectwin(length(x)),length(x),'twosided')
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mxerr = max(psdx'-periodogram(x,rectwin(length(x)),length(x),'twosided'))

mxerr = 4.4409e-16

See Also
Apps
Signal Analyzer

Functions
fft | periodogram | pspectrum
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Bias and Variability in the Periodogram
This example shows how to reduce bias and variability in the periodogram. Using a window can
reduce the bias in the periodogram, and using windows with averaging can reduce variability.

Use wide-sense stationary autoregressive (AR) processes to show the effects of bias and variability in
the periodogram. AR processes present a convenient model because their PSDs have closed-form
expressions. Create an AR(2) model of the following form:

y(n) − 0 . 75y(n− 1) + 0 . 5y(n− 2) = ε(n),

where ε(n) is a zero mean white noise sequence with some specified variance. In this example,
assume the variance and the sampling period to be 1. To simulate the preceding AR(2) process,
create an all-pole (IIR) filter. View the filter's magnitude response.

B2 = 1;
A2 = [1 -0.75 0.5];
fvtool(B2,A2)

This process is bandpass. The dynamic range of the PSD is approximately 14.5 dB, as you can
determine with the following code.

[H2,W2] = freqz(B2,A2,1e3,1);
dr2 = max(20*log10(abs(H2)))-min(20*log10(abs(H2)))

dr2 = 14.4984
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By examining the placement of the poles, you see that this AR(2) process is stable. The two poles are
inside the unit circle.

fvtool(B2,A2,'Analysis','polezero')

Next, create an AR(4) process described by the following equation:

y(n) − 2 . 7607y(n− 1) + 3 . 8106y(n− 2) − 2 . 6535y(n− 3) + 0 . 9238y(n− 4) = ε(n) .

Use the following code to view the magnitude response of this IIR system.

B4 = 1;
A4 = [1 -2.7607 3.8106 -2.6535 0.9238];
fvtool(B4,A4)
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Examining the placement of the poles, you can see this AR(4) process is also stable. The four poles
are inside the unit circle.

fvtool(B4,A4,'Analysis','polezero')
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The dynamic range of this PSD is approximately 65 dB, much larger than the AR(2) model.

[H4,W4] = freqz(B4,A4,1e3,1);
dr4 = max(20*log10(abs(H4)))-min(20*log10(abs(H4)))

dr4 = 64.6213

To simulate realizations from these AR(p) processes, use randn and filter. Set the random number
generator to the default settings to produce repeatable results. Plot the realizations.

rng default
x = randn(1e3,1);
y2 = filter(B2,A2,x);
y4 = filter(B4,A4,x);

subplot(2,1,1)
plot(y2)
title('AR(2) Process')
xlabel('Time')

subplot(2,1,2)
plot(y4)
title('AR(4) Process')
xlabel('Time')
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Compute and plot the periodograms of the AR(2) and AR(4) realizations. Compare the results against
the true PSD. Note that periodogram converts the frequencies to millihertz for plotting.

Fs = 1;
NFFT = length(y2);

subplot(2,1,1)
periodogram(y2,rectwin(NFFT),NFFT,Fs)
hold on
plot(1000*W2,20*log10(abs(H2)),'r','linewidth',2)
title('AR(2) PSD and Periodogram')

subplot(2,1,2)
periodogram(y4,rectwin(NFFT),NFFT,Fs)
hold on
plot(1000*W4,20*log10(abs(H4)),'r','linewidth',2)
title('AR(4) PSD and Periodogram')
text(350,20,'\downarrow Bias')
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In the case of the AR(2) process, the periodogram estimate follows the shape of the true PSD but
exhibits considerable variability. This is due to the low degrees of freedom. The pronounced negative
deflections (in dB) in the periodogram are explained by taking the log of a chi-square random variable
with two degrees of freedom.

In the case of the AR(4) process, the periodogram follows the shape of the true PSD at low
frequencies but deviates from the PSD in the high frequencies. This is the effect of the convolution
with Féjer's kernel. The large dynamic range of the AR(4) process compared to the AR(2) process is
what makes the bias more pronounced.

Mitigate the bias demonstrated in the AR(4) process by using a taper, or window. In this example, use
a Hamming window to taper the AR(4) realization before obtaining the periodogram.

figure
periodogram(y4,hamming(length(y4)),NFFT,Fs)
hold on
plot(1000*W4,20*log10(abs(H4)),'r','linewidth',2)
title('AR(4) PSD and Periodogram with Hamming Window')
legend('Periodogram','AR(4) PSD')
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Note that the periodogram estimate now follows the true AR(4) PSD over the entire Nyquist
frequency range. The periodogram estimates still only have two degrees of freedom so the use of a
window does not reduce the variability of periodogram, but it does address bias.

In nonparametric spectral estimation, two methods for increasing the degrees of freedom and
reducing the variability of the periodogram are Welch's overlapped segment averaging and
multitaper spectral estimation.

Obtain a multitaper estimate of the AR(4) time series using a time half bandwidth product of 3.5. Plot
the result.

NW = 3.5;

figure
pmtm(y4,NW,NFFT,Fs)
hold on
plot(1000*W4,20*log10(abs(H4)),'r','linewidth',2)
legend('Multitaper Estimate','AR(4) PSD')
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The multitaper method produces a PSD estimate with significantly less variability than the
periodogram. Because the multitaper method also uses windows, you see that the bias of the
periodogram is also addressed.

See Also
periodogram | pmtm
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Cross Spectrum and Magnitude-Squared Coherence
This example shows how to use the cross spectrum to obtain the phase lag between sinusoidal
components in a bivariate time series. The example also uses the magnitude-squared coherence to
identify significant frequency-domain correlation at the sine wave frequencies.

Create the bivariate time series. The individual series consist of two sine waves with frequencies of
100 and 200 Hz. The series are embedded in additive white Gaussian noise and sampled at 1 kHz.
The sine waves in the x-series both have amplitudes equal to 1. The 100 Hz sine wave in the y-series
has amplitude 0.5, and the 200 Hz sine wave in the y-series has amplitude 0.35. The 100 Hz and 200
Hz sine waves in the y-series are phase-lagged by π/4 radians and π/2 radians, respectively. You can
think of the y-series as the noise-corrupted output of a linear system with input x. Set the random
number generator to the default settings for reproducible results.

rng default

Fs = 1000;
t = 0:1/Fs:1-1/Fs;

x = cos(2*pi*100*t) + sin(2*pi*200*t) + 0.5*randn(size(t));
y = 0.5*cos(2*pi*100*t - pi/4) + 0.35*sin(2*pi*200*t - pi/2) + 0.5*randn(size(t));

Obtain the magnitude-squared coherence estimate for the bivariate time series. The magnitude-
squared coherence enables you to identify significant frequency-domain correlation between the two
time series. Phase estimates in the cross spectrum are only useful where significant frequency-
domain correlation exists.

To prevent obtaining a magnitude-squared coherence estimate that is identically 1 for all frequencies,
you must use an averaged coherence estimator. Both Welch's overlapped segment averaging (WOSA)
and multitaper techniques are appropriate. mscohere implements a WOSA estimator.

Set the window length to 100 samples. This window length contains 10 periods of the 100 Hz sine
wave and 20 periods of the 200 Hz sine wave. Use an overlap of 80 samples with the default
Hamming window. Input the sample rate explicitly to get the output frequencies in Hz. Plot the
magnitude-squared coherence. The magnitude-squared coherence is greater than 0.8 at 100 and 200
Hz.

[Cxy,F] = mscohere(x,y,hamming(100),80,100,Fs);

plot(F,Cxy)
title('Magnitude-Squared Coherence')
xlabel('Frequency (Hz)')
grid
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Obtain the cross spectrum of x and y using cpsd. Use the same parameters to obtain the cross
spectrum that you used in the coherence estimate. Neglect the cross spectrum when the coherence is
small. Plot the phase of the cross spectrum and indicate the frequencies with significant coherence
between the two times. Mark the known phase lags between the sinusoidal components. At 100 Hz
and 200 Hz, the phase lags estimated from the cross spectrum are close to the true values.

[Pxy,F] = cpsd(x,y,hamming(100),80,100,Fs);

Pxy(Cxy < 0.2) = 0;

plot(F,angle(Pxy)/pi)
title('Cross Spectrum Phase')
xlabel('Frequency (Hz)')
ylabel('Lag (\times\pi rad)')
grid
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See Also
cpsd | mscohere | pwelch
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Amplitude Estimation and Zero Padding
This example shows how to use zero padding to obtain an accurate estimate of the amplitude of a
sinusoidal signal. Frequencies in the discrete Fourier transform (DFT) are spaced at intervals of Fs/N,
where Fs is the sample rate and N is the length of the input time series. Attempting to estimate the
amplitude of a sinusoid with a frequency that does not correspond to a DFT bin can result in an
inaccurate estimate. Zero padding the data before computing the DFT often helps to improve the
accuracy of amplitude estimates.

Create a signal consisting of two sine waves. The two sine waves have frequencies of 100 and 202.5
Hz. The sample rate is 1000 Hz and the signal is 1000 samples in length.

Fs = 1e3;
t = 0:0.001:1-0.001;
x = cos(2*pi*100*t)+sin(2*pi*202.5*t);

Obtain the DFT of the signal. The DFT bins are spaced at 1 Hz. Accordingly, the 100 Hz sine wave
corresponds to a DFT bin, but the 202.5 Hz sine wave does not.

Because the signal is real-valued, use only the positive frequencies from the DFT to estimate the
amplitude. Scale the DFT by the length of the input signal and multiply all frequencies except 0 and
the Nyquist by 2.

Plot the result with the known amplitudes for comparison.

xdft = fft(x);
xdft = xdft(1:length(x)/2+1);
xdft = xdft/length(x);
xdft(2:end-1) = 2*xdft(2:end-1);
freq = 0:Fs/length(x):Fs/2;

plot(freq,abs(xdft))
hold on
plot(freq,ones(length(x)/2+1,1),'LineWidth',2)
xlabel('Hz')
ylabel('Amplitude')
hold off
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The amplitude estimate at 100 Hz is accurate because that frequency corresponds to a DFT bin.
However, the amplitude estimate at 202.5 Hz is not accurate because that frequency does not
correspond to a DFT bin.

You can interpolate the DFT by zero padding. Zero padding enables you to obtain more accurate
amplitude estimates of resolvable signal components. On the other hand, zero padding does not
improve the spectral (frequency) resolution of the DFT. The resolution is determined by the number of
samples and the sample rate.

Pad the DFT out to 2000, or twice the original length of x. With this length, the spacing between DFT
bins is Fs/2000 = 0 . 5 Hz. In this case, the energy from the 202.5 Hz sine wave falls directly in a DFT
bin. Obtain the DFT and plot the amplitude estimates. Use zero padding out to 2000 samples.

lpad = 2*length(x);
xdft = fft(x,lpad);
xdft = xdft(1:lpad/2+1);
xdft = xdft/length(x);
xdft(2:end-1) = 2*xdft(2:end-1);
freq = 0:Fs/lpad:Fs/2;

plot(freq,abs(xdft))
hold on
plot(freq,ones(2*length(x)/2+1,1),'LineWidth',2)
xlabel('Hz')
ylabel('Amplitude')
hold off
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The use of zero padding enables you to estimate the amplitudes of both frequencies correctly.

See Also
fft
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Significance Testing for Periodic Component
This example shows how to assess the significance of a sinusoidal component in white noise using
Fisher's g-statistic. Fisher's g-statistic is the ratio of the largest periodogram value to the sum of all
the periodogram values over 1/2 of the frequency interval, (0, Fs/2). A detailed description of the g-
statistic and exact distribution can be found in the references.

Create a signal consisting of a 100 Hz sine wave in white Gaussian noise with zero mean and variance
1. The amplitude of the sine wave is 0.25. The sample rate is 1 kHz. Set the random number
generator to the default settings for reproducible results.

rng default

Fs = 1e3;
t = 0:1/Fs:1-1/Fs;
x = 0.25*cos(2*pi*100*t)+randn(size(t));

Obtain the periodogram of the signal using periodogram. Exclude 0 and the Nyquist frequency
(Fs/2). Plot the periodogram.

[Pxx,F] = periodogram(x,rectwin(length(x)),length(x),Fs);
Pxx = Pxx(2:length(x)/2);

periodogram(x,rectwin(length(x)),length(x),Fs)

Find the maximum value of the periodogram. Fisher's g-statistic is the ratio of the maximum
periodogram value to the sum of all periodogram values.
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[maxval,index] = max(Pxx);
fisher_g = Pxx(index)/sum(Pxx)

fisher_g = 0.0381

The maximum periodogram value occurs at 100 Hz, which you can verify by finding the frequency
corresponding to the index of the maximum periodogram value.

F = F(2:end-1);
F(index)

ans = 100

Use the distributional results detailed in the references to determine the significance level, pval, of
Fisher's g-statistic. The following MATLAB® code implements equation (6) of [2]. Use the logarithm
of the gamma function to avoid overflows when computing binomial coefficients.

N = length(Pxx);
nn = 1:floor(1/fisher_g);

I = (-1).^(nn-1).*exp(gammaln(N+1)-gammaln(nn+1)-gammaln(N-nn+1)).*(1-nn*fisher_g).^(N-1);

pval = sum(I)

pval = 2.0163e-06

The p-value is less than 0.00001, which indicates a significant periodic component at 100 Hz. The
interpretation of Fisher's g-statistic is complicated by the presence of other periodicities. See [1] for a
modification when multiple periodicities may be present.

References

[1] Percival, Donald B. and Andrew T. Walden. Spectral Analysis for Physical Applications. Cambridge,
UK: Cambridge University Press, 1993.

[2] Wichert, Sofia, Konstantinos Fokianos, and Korbinian Strimmer. "Identifying Periodically
Expressed Transcripts in Microarray Time Series Data." Bioinformatics. Vol. 20, 2004, pp. 5-20.

See Also
nchoosek | periodogram
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Frequency Estimation by Subspace Methods
This example shows how to resolve closely spaced sine waves using subspace methods. Subspace
methods assume a harmonic model consisting of a sum of sine waves, possibly complex, in additive
noise. In a complex-valued harmonic model, the noise is also complex-valued.

Create a complex-valued signal 24 samples in length. The signal consists of two complex exponentials
(sine waves) with frequencies of 0.4 Hz and 0.425 Hz and additive complex white Gaussian noise. The
noise has zero mean and variance 0 . 22. In complex white noise, both the real and imaginary parts
have variance equal to one-half the overall variance.

n = 0:23;
x = exp(1j*2*pi*0.4*n) + exp(1j*2*pi*0.425*n)+ ...
    0.2/sqrt(2)*(randn(size(n))+1j*randn(size(n)));

Attempt to resolve the two sine waves using the power spectrum of the signal. Set the leakage to the
maximum value for best results.

pspectrum(x,n,'Leakage',1)

The periodogram shows a broad peak near 0.4 Hz. You cannot resolve the two separate sine waves
because the frequency resolution of the periodogram is 1/N, where N is the length of the signal. In
this case, 1/N is greater than the separation of the two sine waves. Zero padding does not help to
resolve two separate peaks.
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Use a subspace method to resolve the two closely spaced peaks. In this example, use the MUSIC
method. Estimate the autocorrelation matrix and input the autocorrelation matrix into pmusic.
Specify a model with two sinusoidal components. Plot the result.

[X,R] = corrmtx(x,14,'mod');

pmusic(R,2,[],1,'corr')

The MUSIC method is able to separate the two peaks at 0.4 Hz and 0.425 Hz. However, subspace
methods do not produce power estimates like power spectral density estimates. Subspace methods
are most useful for frequency identification and can be sensitive to model-order misspecification.

See Also
corrmtx | pmusic | pspectrum
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Frequency-Domain Linear Regression
This example shows how to use the discrete Fourier transform to construct a linear regression model
for a time series. The time series used in this example is the monthly number of accidental deaths in
the United States from 1973 to 1979. The data are published in Brockwell and Davis (2006). The
original source is the U. S. National Safety Council.

Enter the data. Copy the exdata matrix into the MATLAB® workspace.

exdata = [
        9007        7750        8162        7717        7792        7836
        8106        6981        7306        7461        6957        6892
        8928        8038        8124        7776        7726        7791
        9137        8422        7870        7925        8106        8129
       10017        8714        9387        8634        8890        9115
       10826        9512        9556        8945        9299        9434
       11317       10120       10093       10078       10625       10484
       10744        9823        9620        9179        9302        9827
        9713        8743        8285        8037        8314        9110
        9938        9129        8433        8488        8850        9070
        9161        8710        8160        7874        8265        8633
        8927        8680        8034        8647        8796        9240];

exdata is a 12-by-6 matrix. Each column of exdata contains 12 months of data. The first row of each
column contains the number of U.S. accidental deaths for January of the corresponding year. The last
row of each column contains the number of U.S. accidental deaths for December of the corresponding
year.

Reshape the data matrix into a 72-by-1 time series and plot the data for the years 1973 to 1978.

ts = reshape(exdata,72,1);
years = linspace(1973,1979,72);

plot(years,ts,'o-','MarkerFaceColor','auto')
xlabel('Year')
ylabel('Number of Accidental Deaths')
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A visual inspection of the data indicates that number of accidental deaths varies in a periodic manner.
The period of the oscillation appears to be roughly 1 year (12 months). The periodic nature of the
data suggests that an appropriate model may be

X(n) = μ + ∑
k

Akcos2πkn
N + Bkcos2πkn

N + ε(n),

where μ is the overall mean, N is the length of the time series, and ε(n) is a white noise sequence of
independent and identically-distributed (IID) Gaussian random variables with zero mean and some
variance. The additive noise term accounts for the randomness inherent in the data. The parameters
of the model are the overall mean and the amplitudes of the cosines and sines. The model is linear in
the parameters.

To construct a linear regression model in the time domain, you have to specify which frequencies to
use for the cosines and sines, form the design matrix, and solve the normal equations in order to
obtain the least-squares estimates of the model parameters. In this case, it is easier to use the
discrete Fourier transform to detect the periodicities, retain only a subset of the Fourier coefficients,
and invert the transform to obtain the fitted time series.

Perform a spectral analysis of the data to reveal which frequencies contribute significantly to the
variability in the data. Because the overall mean of the signal is approximately 9,000 and is
proportional to the Fourier transform at 0 frequency, subtract the mean prior to the spectral analysis.
This reduces the large magnitude Fourier coefficient at 0 frequency and makes any significant
oscillations easier to detect. The frequencies in the Fourier transform are spaced at an interval that is
the reciprocal of the time series length, 1/72. Sampling the data monthly, the highest frequency in the
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spectral analysis is 1 cycle/2 months. In this case, it is convenient to look at the spectral analysis in
terms of cycles/year so scale the frequencies accordingly for visualization.

tsdft = fft(ts-mean(ts));
freq = 0:1/72:1/2;

plot(freq.*12,abs(tsdft(1:length(ts)/2+1)),'o-', ...
    'MarkerFaceColor','auto')
xlabel('Cycles/Year')
ylabel('Magnitude')
ax = gca;
ax.XTick = [1/6 1 2 3 4 5 6];

Based on the magnitudes, the frequency of 1 cycle/12 months is the most significant oscillation in the
data. The magnitude at 1 cycle/12 months is more than twice as large as any other magnitude.
However, the spectral analysis reveals that there are also other periodic components in the data. For
example, there appears to be periodic components at harmonics (integer multiples) of 1 cycle/12
months. There also appears to be a periodic component with a period of 1 cycle/72 months.

Based on the spectral analysis of the data, fit a simple linear regression model using a cosine and sine
term with a frequency of the most significant component: 1 cycle/year (1 cycle/12 months).

Determine the frequency bin in the discrete Fourier transform that corresponds to 1 cycle/12 months.
Because the frequencies are spaced at 1/72 and the first bin corresponds to 0 frequency, the correct
bin is 72/12+1. This is the frequency bin of the positive frequency. You must also include the
frequency bin corresponding to the negative frequency: -1 cycle/12 months. With MATLAB indexing,
the frequency bin of the negative frequency is 72-72/12+1.
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Create a 72-by-1 vector of zeros. Fill the appropriate elements of the vector with the Fourier
coefficients corresponding to a positive and negative frequency of 1 cycle/12 months. Invert the
Fourier transform and add the overall mean to obtain a fit to the accidental death data.

freqbin = 72/12;
freqbins = [freqbin 72-freqbin]+1;
tsfit = zeros(72,1);
tsfit(freqbins) = tsdft(freqbins);
tsfit = ifft(tsfit);
mu = mean(ts);
tsfit = mu+tsfit;

Plot the original data along with the fitted series using two Fourier coefficients.

plot(years,ts,'o-','MarkerFaceColor','auto')
xlabel('Year')
ylabel('Number of Accidental Deaths')
hold on
plot(years,tsfit,'linewidth',2)
legend('Data','Fitted Model')
hold off

The fitted model appears to capture the general periodic nature of the data and supports the initial
conclusion that data oscillate with a cycle of 1 year.

To assess how adequately the single frequency of 1 cycle/12 months accounts for the observed time
series, form the residuals. If the residuals resemble a white noise sequence, the simple linear model
with one frequency has adequately modeled the time series.
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To assess the residuals, use the autocorrelation sequence with 95%-confidence intervals for a white
noise.

resid = ts-tsfit;
[xc,lags] = xcorr(resid,50,'coeff');

stem(lags(51:end),xc(51:end),'filled')
hold on
lconf = -1.96*ones(51,1)/sqrt(72);
uconf = 1.96*ones(51,1)/sqrt(72);
plot(lags(51:end),lconf,'r')
plot(lags(51:end),uconf,'r')
xlabel('Lag')
ylabel('Correlation Coefficient')
title('Autocorrelation of Residuals')
hold off

The autocorrelation values fall outside the 95% confidence bounds at a number of lags. It does not
appear that the residuals are white noise. The conclusion is that the simple linear model with one
sinusoidal component does not account for all the oscillations in the number of accidental deaths.
This is expected because the spectral analysis revealed additional periodic components in addition to
the dominant oscillation. Creating a model that incorporates additional periodic terms indicated by
the spectral analysis will improve the fit and whiten the residuals.

Fit a model which consists of the three largest Fourier coefficient magnitudes. Because you have to
retain the Fourier coefficients corresponding to both negative and positive frequencies, retain the
largest 6 indices.
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tsfit2dft = zeros(72,1);
[Y,I] = sort(abs(tsdft),'descend');
indices = I(1:6);
tsfit2dft(indices) = tsdft(indices);

Demonstrate that preserving only 6 of the 72 Fourier coefficients (3 frequencies) retains most of the
signal's energy. First, demonstrate that retaining all the Fourier coefficients yields energy
equivalence between the original signal and the Fourier transform.

norm(1/sqrt(72)*tsdft,2)/norm(ts-mean(ts),2)

ans = 1.0000

The ratio is 1. Now, examine the energy ratio where only 3 frequencies are retained.

norm(1/sqrt(72)*tsfit2dft,2)/norm(ts-mean(ts),2)

ans = 0.8991

Almost 90% of the energy is retained. Equivalently, 90% of the variance of the time series is
accounted for by 3 frequency components.

Form an estimate of the data based on 3 frequency components. Compare the original data, the
model with one frequency, and the model with 3 frequencies.

tsfit2 = mu+ifft(tsfit2dft,'symmetric');

plot(years,ts,'o-','markerfacecolor','auto')
xlabel('Year')
ylabel('Number of Accidental Deaths')
hold on
plot(years,tsfit,'linewidth',2)
plot(years,tsfit2,'linewidth',2)
legend('Data','1 Frequency','3 Frequencies')
hold off
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Using 3 frequencies has improved the fit to the original signal. You can see this by examining the
autocorrelation of the residuals from the 3-frequency model.

resid = ts-tsfit2;
[xc,lags] = xcorr(resid,50,'coeff');

stem(lags(51:end),xc(51:end),'filled')
hold on
lconf = -1.96*ones(51,1)/sqrt(72);
uconf = 1.96*ones(51,1)/sqrt(72);
plot(lags(51:end),lconf,'r')
plot(lags(51:end),uconf,'r')
xlabel('Lag')
ylabel('Correlation Coefficient')
title('Autocorrelation of Residuals')
hold off
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Using 3 frequencies has resulted in residuals that more closely approximate a white noise process.

Demonstrate that the parameter values obtained from the Fourier transform are equivalent to a time-
domain linear regression model. Find the least-squares estimates for the overall mean, the cosine
amplitudes, and the sine amplitudes for the three frequencies by forming the design matrix and
solving the normal equations. Compare the fitted time series with that obtained from the Fourier
transform.

X = ones(72,7);
X(:,2) = cos(2*pi/72*(0:71))';
X(:,3) = sin(2*pi/72*(0:71))';
X(:,4) = cos(2*pi*6/72*(0:71))';
X(:,5) = sin(2*pi*6/72*(0:71))';
X(:,6) = cos(2*pi*12/72*(0:71))';
X(:,7) = sin(2*pi*12/72*(0:71))';
beta = X\ts;
tsfit_lm = X*beta;
max(abs(tsfit_lm-tsfit2))

ans = 7.2760e-12

The two methods yield identical results. The maximum absolute value of the difference between the
two waveforms is on the order of 10-12. In this case, the frequency-domain approach was easier than
the equivalent time-domain approach. You naturally use a spectral analysis to visually inspect which
oscillations are present in the data. From that step, it is simple to use the Fourier coefficients to
construct a model for the signal consisting of a sum cosines and sines.
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For more details on spectral analysis in time series and the equivalence with time-domain regression
see (Shumway and Stoffer, 2006).

While spectral analysis can answer which periodic components contribute significantly to the
variability of the data, it does not explain why those components are present. If you examine these
data closely, you see that the minimum values in the 12-month cycle tend to occur in February, while
the maximum values occur in July. A plausible explanation for these data is that people are naturally
more active in summer than in the winter. Unfortunately, as a result of this increased activity, there is
an increased probability of the occurrence of fatal accidents.

References

Brockwell, Peter J., and Richard A. Davis. Time Series: Theory and Methods. New York: Springer,
2006.

Shumway, Robert H., and David S. Stoffer. Time Series Analysis and Its Applications with R Examples.
New York: Springer, 2006.

See Also
fft | ifft | xcorr
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Measure Total Harmonic Distortion
This example shows how to measure the total harmonic distortion (THD) of a sinusoidal signal. The
example uses the following scenario: A manufacturer of audio speakers claims the model A speaker
produces less than 0.09% harmonic distortion at 1 kHz with a 1 volt input. The harmonic distortion is
measured with respect to the fundamental (THD-F).

Assume you record the following data obtained by driving the speaker with a 1 kHz tone at 1 volt. The
data is sampled at 44.1 kHz for analysis.

Fs = 44.1e3;
t = 0:1/Fs:1;
x = cos(2*pi*1000*t)+8e-4*sin(2*pi*2000*t)+2e-5*cos(2*pi*3000*t-pi/4)+...
    8e-6*sin(2*pi*4000*t);

Obtain the total harmonic distortion of the input signal in dB. Specify that six harmonics are used in
calculating the THD. This includes the fundamental frequency of 1 kHz. Input the sampling frequency
of 44.1 kHz. Determine the frequencies of the harmonics and their power estimates.

nharm = 6;
[thd_db,harmpow,harmfreq] = thd(x,Fs,nharm);

The function thd outputs the total harmonic distortion in dB. Convert the measurement from dB to a
percentage to compare the value against the manufacturer's claims.

percent_thd = 100*(10^(thd_db/20))

percent_thd = 0.0800

The value you obtain indicates that the manufacturer's claims about the THD for speaker model A are
correct.

You can obtain further insight by examining the power (dB) of the individual harmonics.

T = table(harmfreq,harmpow,'VariableNames',{'Frequency','Power'})

T=6×2 table
    Frequency     Power 
    _________    _______

       1000      -3.0103
       2000      -64.949
       3000       -96.99
       4000      -104.95
     4997.9      -306.09
     5998.9      -310.51

The total harmonic distortion is approximately −62 dB. If you examine the power of the individual
harmonics, you see that the major contribution comes from the harmonic at 2 kHz. The power at 2
kHz is approximately 62 dB below the power of the fundamental. The remaining harmonics do not
contribute significantly to the total harmonic distortion. Additionally, the synthesized signal contains
only four harmonics, including the fundamental. This is confirmed by the table, which shows a large
power reduction after 4 kHz. Therefore, repeating the calculation with only four harmonics does not
change the total harmonic distortion significantly.
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Plot the signal spectrum, display the total harmonic distortion on the figure title, and annotate the
harmonics.

thd(x,Fs,nharm);

See Also
thd

Related Examples
• “Analyzing Harmonic Distortion” on page 24-91
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Measure Mean Frequency, Power, Bandwidth
Generate 1024 samples of a chirp sampled at 1024 kHz. The chirp has an initial frequency of 50 kHz
and reaches 100 kHz at the end of the sampling. Add white Gaussian noise such that the signal-to-
noise ratio is 40 dB.

nSamp = 1024;
Fs = 1024e3;
SNR = 40;

t = (0:nSamp-1)'/Fs;

x = chirp(t,50e3,nSamp/Fs,100e3);
x = x+randn(size(x))*std(x)/db2mag(SNR);

Estimate the 99% occupied bandwidth of the signal and annotate it on a plot of the power spectral
density (PSD).

obw(x,Fs);

Compute the power in the band and verify that it is 99% of the total.

[bw,flo,fhi,powr] = obw(x,Fs);

pcent = powr/bandpower(x)*100

pcent = 99.0000

13 Spectral Analysis

13-38



Generate another chirp. Specify an initial frequency of 200 kHz, a final frequency of 300 kHz, and an
amplitude that is twice that of the first signal. Add white Gaussian noise.

x2 = 2*chirp(t,200e3,nSamp/Fs,300e3);
x2 = x2+randn(size(x2))*std(x2)/db2mag(SNR);

Add the two chirps to form a new signal. Plot the PSD of the signal and annotate its median
frequency.

medfreq([x+x2],Fs);

Plot the PSD and annotate the mean frequency.

meanfreq([x+x2],Fs);
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Now consider each chirp to represent a separate channel. Estimate the mean frequency of each
channel. Annotate the mean frequencies on a plot of the PSDs.

meanfreq([x x2],Fs)
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ans = 1×2
105 ×

    0.7503    2.4999

Estimate the half-power bandwidth of each channel. Annotate the 3-dB bandwidths on a plot of the
PSDs.

powerbw([x x2],Fs)
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ans = 1×2
104 ×

    4.4386    9.2208

See Also
bandpower | meanfreq | medfreq | obw | powerbw
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Periodogram of Data Set with Missing Samples
Galileo Galilei observed the motion of Jupiter's four largest satellites during the winter of 1610. When
the weather allowed, Galileo recorded the satellites' locations. Use his observations to estimate the
orbital period of one of the satellites, Callisto.

Callisto's angular position is measured in minutes of arc. Missing data due to cloudy conditions are
specified using NaNs. The first observation is dated January 15. Generate a datetime array of
observation times.

yg = [10.5 NaN 11.5 10.5 NaN NaN NaN -5.5 -10.0 -12.0 -11.5 -12.0 -7.5 ...
    NaN NaN NaN NaN 8.5 12.5 12.5 10.5 NaN NaN NaN -6.0 -11.5 -12.5 ...
    -12.5 -10.5 -6.5 NaN 2.0 8.5 10.5 NaN 13.5 NaN 10.5 NaN NaN NaN ...
    -8.5 -10.5 -10.5 -10.0 -8.0]';

obsv = datetime(1610,1,14+(1:length(yg)));

plot(yg,'o')

ax = gca;
nights = [1 18 32 46];
ax.XTick = nights;
ax.XTickLabel = char(obsv(nights));
grid

Estimate the power spectrum of the data using plomb. Specify an oversampling factor of 10. Express
the resulting frequencies in inverse days.
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[pxx,f] = plomb(yg,obsv,[],10,'power');
f = f*86400;

Use findpeaks to determine the location of the only prominent peak of the spectrum. Plot the power
spectrum and show the peak.

[pk,f0] = findpeaks(pxx,f,'MinPeakHeight',10);

plot(f,pxx,f0,pk,'o')
xlabel('Frequency (day^{-1})')
title('Power Spectrum and Prominent Peak')
grid

Determine Callisto's orbital period (in days) as the inverse of the frequency of maximum energy. The
result differs by less than 1% from the value published by NASA.

Period = 1/f0

Period = 16.6454

NASA = 16.6890184;
PercentDiscrep = (Period-NASA)/NASA*100

PercentDiscrep = -0.2613
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See Also
findpeaks | plomb
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Welch Spectrum Estimates
Create a signal consisting of three noisy sinusoids and a chirp, sampled at 200 kHz for 0.1 second.
The frequencies of the sinusoids are 1 kHz, 10 kHz, and 20 kHz. The sinusoids have different
amplitudes and noise levels. The noiseless chirp has a frequency that starts at 20 kHz and increases
linearly to 30 kHz during the sampling.

Fs = 200e3; 
Fc = [1 10 20]'*1e3; 
Ns = 0.1*Fs;

t = (0:Ns-1)/Fs;
x = [1 1/10 10]*sin(2*pi*Fc*t)+[1/200 1/2000 1/20]*randn(3,Ns);
x = x+chirp(t,20e3,t(end),30e3);

Compute the Welch PSD estimate and the maximum-hold and minimum-hold spectra of the signal.
Plot the results.

[pxx,f] = pwelch(x,[],[],[],Fs);
pmax = pwelch(x,[],[],[],Fs,'maxhold');
pmin = pwelch(x,[],[],[],Fs,'minhold');

plot(f/1000,pow2db(pxx))
hold on
plot(f/1000,pow2db([pmax pmin]),':')
hold off
xlabel('Frequency (kHz)')
ylabel('PSD (dB/Hz)')
legend('pwelch','maxhold','minhold')
grid
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Repeat the procedure, this time computing centered power spectrum estimates.

[pxx,f] = pwelch(x,[],[],[],Fs,'centered','power');
pmax = pwelch(x,[],[],[],Fs,'maxhold','centered','power');
pmin = pwelch(x,[],[],[],Fs,'minhold','centered','power');

plot(f/1000,pow2db(pxx))
hold on
plot(f/1000,pow2db([pmax pmin]),':')
hold off
xlabel('Frequency (kHz)')
ylabel('Power (dB)')
legend('pwelch','maxhold','minhold')
title('Centered Power Spectrum Estimates')
grid
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See Also
chirp | pow2db | pwelch
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Time-Frequency Analysis
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Time-Frequency Gallery
This gallery provides you with an overview of the time-frequency analysis features available in Signal
Processing Toolbox and Wavelet Toolbox™. The descriptions and usage examples present various
methods that you can use for your signal analysis.

Method Features Invertible Examples
“Short-Time
Fourier Transform
(Spectrogram)” on
page 14-3

• The short-time Fourier
transform (STFT) has fixed
time-frequency resolution.

• The spectrogram is the
magnitude squared of
STFT.

• stft: Yes
• spectrogram: No “Example: Whale

Song” on page 14-5

“Continuous
Wavelet Transform
(Scalogram)” on
page 14-7

• The continuous wavelet
transform (CWT) has a
variable time-frequency
resolution.

• The CWT preserves time
shifts and time scalings.

Yes
“Example: ECG Signal”
on page 14-8

“Wigner-Ville
Distribution” on
page 14-9

• The Wigner-Ville
distribution (WVD) is
always real.

• Time and frequency
marginal densities
correspond to
instantaneous power and
spectral energy density,
respectively.

• The time resolution of the
WVD is equal to the
number of input samples.

No
“Example: Otoacoustic
Emission” on page 14-
10

“Reassignment and
Synchrosqueezing”
on page 14-11

• Reassignment sharpens
localization of spectral
estimates.

• Synchrosqueezing
"condenses" time-
frequency maps around
curves of instantaneous
frequency.

• Both methods are
especially suited to track
and extract time-frequency
ridges

• pspectrum: No
• fsst, wsst: Yes

“Example:
Echolocation Pulse” on
page 14-11

14 Time-Frequency Analysis

14-2



Method Features Invertible Examples
“Constant-Q Gabor
Transform” on
page 14-17

• The constant-Q Gabor
transform (CQT) tiles the
time-frequency plane with
variable-sized windows.

• The windows have
adaptable bandwidth and
sampling density.

• The ratio of center
frequency to bandwidth
(Q-factor) for all windows
is constant.

Yes “Example: Rock Music”
on page 14-18

“Empirical Mode
Decomposition and
Hilbert-Huang
Transform” on
page 14-18

• Empirical mode
decomposition (EMD)
decomposes signals into
intrinsic mode functions.

• The Hilbert-Huang
transform (HHT) computes
the instantaneous
frequency of each
empirical mode.

No
“Example: Bearing
Vibration” on page 14-
19

Short-Time Fourier Transform (Spectrogram)
Description

• The short-time Fourier transform is a linear time-frequency representation useful in the analysis of
nonstationary multicomponent signals.

• The short-time Fourier transform is invertible.
• The spectrogram is the magnitude squared of the STFT.
• You can compute the cross-spectrogram of two signals to look for similarities in time-frequency

space.
• The persistence spectrum of a signal is a time-frequency view that shows the percentage of the

time that a given frequency is present in a signal. The persistence spectrum is a histogram in
power-frequency space. The longer a particular frequency persists in a signal as the signal
evolves, the higher its time percentage and thus the brighter or "hotter" its color in the display.

Potential Applications

The applications of this time-frequency method include, but are not limited to:

• Audio signal processing: Fundamental frequency estimation, cross synthesis, spectral envelope
extraction, time-scale modification, time-stretching, and pitch shifting. (See “Phase Vocoder with
Different Synthesis and Analysis Windows” for more details.)

• Crack detection: Detect cracks in aluminum plates using dispersion curves of ultrasonic Lamb
waves.

• Sensor array processing: Sonar exploration, geophysical exploration, and beamforming.
• Digital communications: Detection of frequency hopping signal.
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How to Use

• stft computes the short-time Fourier transform. To invert the short-time Fourier transform, use
the istft function.

• pspectrum or spectrogram computes the spectrogram.
• xspectrogram computes the cross-spectrogram of two signals.
• You can also use the spectrogram view in Signal Analyzer to view the spectrogram of a signal.
• Use the persistence spectrum option in pspectrum or Signal Analyzer to identify signals hidden

in other signals.

Example: Pulses and Oscillations

Generate a signal sampled at 5 kHz for 4 seconds. The signal consists of a set of pulses of decreasing
duration separated by regions of oscillating amplitude and fluctuating frequency with an increasing
trend.

fs = 5000;
t = 0:1/fs:4-1/fs;

x = 10*besselj(0,1000*(sin(2*pi*(t+2).^3/60).^5));

Compute and plot the short-time Fourier transform of the signal. Window the signal with a 200-
sample Kaiser window with shape factor β = 30.

stft(x,fs,'Window',kaiser(200,30))
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Example: Audio Signal with Decreasing Chirps

Load an audio signal that contains two decreasing chirps and a wideband splatter sound.

load splat

Set the overlap length to 96 samples. Plot the short-time Fourier transform.

stft(y,Fs,'OverlapLength',96)

Example: Whale Song

Load a file that contains audio data from a Pacific blue whale, sampled at 4 kHz. The file is from the
library of animal vocalizations maintained by the Cornell University Bioacoustics Research Program.
The time scale in the data is compressed by a factor of 10 to raise the pitch and make the calls more
audible.

whaleFile = fullfile(matlabroot,'examples','matlab','data','bluewhale.au');
[w,fs] = audioread(whaleFile);

Compute the spectrogram of the whale song with an overlap percentage equal to eighty percent. Set
the minimum threshold for the spectrogram to -50 dB.

pspectrum(w,fs,'spectrogram','Leakage',0.2,'OverlapPercent',80,'MinThreshold',-50)
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Example: Persistence Spectrum of Transient Signal

Load an interference narrowband signal embedded within a broadband signal.

load TransientSig

Compute the persistence spectrum of the signal. Both signal components are clearly visible.

pspectrum(x,fs,'persistence', ...
    'FrequencyLimits',[100 290],'TimeResolution',1)
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Continuous Wavelet Transform (Scalogram)
Description

• The wavelet transform is a linear time-frequency representation that preserves time shifts and
time scalings.

• The continuous wavelet transform is good at detecting transients in nonstationary signals, and for
signals in which instantaneous frequency grows rapidly.

• The CWT is invertible.
• The CWT tiles the time-frequency plane with variable-sized windows. The window automatically

widens in time, making it suitable for low-frequency phenomena, and narrows for high frequency
phenomena.

Potential Applications

The applications of this time-frequency method include, but are not limited to:

• Electrocardiograms (ECG): The most clinically useful information of the ECG signal is found in the
time intervals between its consecutive waves and amplitudes defined by its features. The wavelet
transform breaks down the ECG signal into scales, making it easier to analyze the ECG signal in
different frequency ranges easier to analyze.

• Electroencephalogram (EEG): Raw EEG signals suffer from poor spatial resolution, low signal-to-
noise ratio, and artifacts. Continuous wavelet decomposition of a noisy signal concentrates
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intrinsic signal information in a few wavelet coefficients having large absolute values without
modifying the random distribution of noise. Therefore, denoising can be achieved by thresholding
the wavelet coefficients.

• Signal demodulation: Demodulate extended binary phase shift keying (EBPSK) using an adaptive
wavelet construction method.

• Deep learning: The CWT can be used to create time-frequency representations that can be used to
train a convolutional neural network. “Classify Time Series Using Wavelet Analysis and Deep
Learning” (Wavelet Toolbox) shows how to classify ECG signals using scalograms and transfer
learning.

How to Use

• cwt computes the continuous wavelet transform and displays the scalogram. Alternatively, create
a CWT filter bank using cwtfilterbank and apply the wt function. Use this method to run in
parallel applications or when computing the transform for several functions in a loop.

• icwt inverts the continuous wavelet transform.
• Signal Analyzer has a scalogram view to visualize the CWT of a time series.

Example: ECG Signal

Load a noisy ECG waveform sampled at 360 Hz.

load ecg
Fs = 360;

Compute the continuous wavelet transform.

cwt(ecg,Fs)
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The ECG data is taken from the MIT-BIH Arrhythmia Database [2].

Wigner-Ville Distribution
Description

• The Wigner-Ville distribution (WVD) is a quadratic energy density computed by correlating the
signal with a time and frequency translated and complex-conjugated version of itself.

• The Wigner-Ville distribution is always real even if the signal is complex.
• Time and frequency marginal densities correspond to instantaneous power and spectral energy

density, respectively.
• The instantaneous frequency and group delay can be evaluated using local first-order moments of

the Wigner distribution.
• The time resolution of the WVD is equal to the number of input samples.
• The Wigner distribution can locally assume negative values.

Potential Applications

The applications of this time-frequency method include, but are not limited to:

• Otoacoustic emissions (OAEs): OAEs are narrowband oscillatory signals emitted by the cochlea
(inner ear), and their presence is indicative of normal hearing.
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• Quantum mechanics: Quantum corrections to classical statistical mechanics, model electron
transport, and calculate static and dynamic properties of many-body quantum systems.

How to Use

• wvd computes the Wigner-Ville distribution.
• xwvd computes the cross Wigner-Ville distribution of two signals. See “Use Cross Wigner-Ville

Distribution to Estimate Instantaneous Frequency” for more details.

Example: Otoacoustic Emission

Load a data file containing otoacoustic emission data sampled at 20 kHz. The emission is produced by
a stimulus beginning at 25 milliseconds and ending at 175 milliseconds.

load dpoae
Fs = 20e3;

Compute the smoothed-pseudo Wigner Ville distribution of the otoacoustic data. The convenience plot
isolates the emission frequency at roughly the expected value 1.2 kHz.

wvd(dpoaets,Fs,'smoothedPseudo',kaiser(511,10),kaiser(511,10),'NumFrequencyPoints',4000,'NumTimePoints',3990)

For more details on otoacoustic emissions, see "Determining Exact Frequency Through the Analytic
CWT" in “CWT-Based Time-Frequency Analysis” (Wavelet Toolbox).
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Reassignment and Synchrosqueezing
Description

• Reassignment sharpens the localization of spectral estimates and produces spectrograms that are
easier to read and interpret. The technique relocates each spectral estimate to the center of
energy of its bin instead of the bin's geometric center. It provides exact localization for chirps and
impulses.

• The Fourier synchrosqueezed transform starts from the short-time Fourier transform and
"squeezes" its values so that they concentrate around curves of instantaneous frequency in the
time-frequency plane.

• The wavelet synchrosqueezed transform reassigns the signal energy in frequency.
• Both the Fourier synchrosqueezed transform and the wavelet synchrosqueezed transform are

invertible.
• The reassigned and synchrosqueezing methods are especially suited to track and extract time-

frequency ridges.

Potential Applications

The applications of this time-frequency method include, but are not limited to:

• Audio signal processing: Synchrosqueezing transform (SST) was originally introduced in the
context of audio signal analysis.

• Seismic data: Analysis of seismic data to find oil and gas traps. Synchrosqueezing can also detect
deep-layer weak signals that are usually smeared in seismic data.

• Oscillations in power systems: A steam turbine and electric generator can have mechanical
subsynchronous oscillation (SSO) modes between the various turbine stages and the generator.
The frequency of the SSO is generally between 5 Hz and 45 Hz, and the mode frequencies are
often close to each other. The antinoise ability and time-frequency resolution of WSST improves
the readability of the time-frequency view.

• Deep learning: Synchrosqueezed transforms can be used to extract time-frequency features and
fed into a network that classifies time-series data. “Waveform Segmentation Using Deep Learning”
on page 24-330 shows how fsst outputs can be fed into an LSTM network that classifies ECG
signals.

How to Use

• Use the 'reassigned' option in spectrogram, set the 'Reassigned' argument to true in
pspectrum, or check the Reassign box in the spectrogram view of Signal Analyzer to compute
reassigned spectrograms.

• fsst computes the Fourier synchrosqueezed transform. Use the ifsst function to invert the
Fourier synchrosqueezed transform. (See “Fourier Synchrosqueezed Transform of Speech Signal”
for reconstruction of speech signals using ifsst.)

• wsst computes the wavelet synchrosqueezed transform. Use the iwsst function to invert the
wavelet synchrosqueezed transform. (See “Inverse Synchrosqueezed Transform of Chirp” (Wavelet
Toolbox) for reconstruction of a quadratic chirp using iwsst.)

Example: Echolocation Pulse

Load an echolocation pulse emitted by a big brown bat (Eptesicus Fuscus). The sampling interval is 7
microseconds.
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load batsignal
Fs = 1/DT;

Compute the reassigned spectrogram of the signal.

subplot(2,1,1)
pspectrum(batsignal,Fs,'spectrogram','TimeResolution',280e-6, ...
    'OverlapPercent',85,'MinThreshold',-45,'Leakage',0.9)
subplot(2,1,2)
pspectrum(batsignal,Fs,'spectrogram','TimeResolution',280e-6, ...
    'OverlapPercent',85,'MinThreshold',-45,'Leakage',0.9,'Reassign',true)

Thanks to Curtis Condon, Ken White, and Al Feng of the Beckman Center at the University of Illinois
for the bat data and permission to use it in this example [3].

Example: Speech Signals

Load a file containing the word "strong," spoken by a woman and by a man. The signals are sampled
at 8 kHz. Concatenate them into a single signal.

load Strong
x = [her' him'];

Compute the synchrosqueezed Fourier transform of the signal. Window the signal using a Kaiser
window with shape factor β = 20.

fsst(x,Fs,kaiser(256,20),'yaxis')
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Example: Synthetic Seismic Data

Load the synthetic seismic data sampled at 100 Hz for 1 second.

load SyntheticSeismicData

Compute the wavelet synchrosqueezed transform of the seismic data using the bump wavelet and 30
voices per octave.

wsst(x,Fs,'bump','VoicesPerOctave',30,'ExtendSignal',true)
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The seismic signal is generated using the two sinusoids mentioned in "Time-Frequency Analysis of
Seismic Data Using Synchrosqueezing Transform" by Ping Wang, Jinghuai Gao, and Zhiguo Wang [4].

Example: Earthquake Vibration

Load acceleration measurements recorded on the first floor of a three story test structure under
earthquake conditions. The measurements are sampled at 1 kHz.

load quakevib
Fs = 1e3;

Compute the wavelet synchrosqueezed transform of the acceleration measurements. You are
analyzing vibration data that exhibit a cyclic behavior. The synchrosqueezed transform allows you to
isolate the three frequency components, separated by roughly 11 Hz. The main vibration frequency is
at 5.86 Hz, and the equispaced frequency peaks suggest that they are harmonically related. The
cyclic behavior of the vibrations is also visible.

wsst(gfloor1OL,Fs,'bump','VoicesPerOctave',48)
ylim([0 35])
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Example: Kobe Earthquake Data

Load seismograph data recorded during the 1995 Kobe earthquake. The data has a sample rate of 1
Hz.

load kobe
Fs = 1;

Compute the wavelet synchrosqueezed transform that isolates the different frequency components of
the seismic data.

wsst(kobe,Fs,'bump','VoicesPerOctave',48)
ylim([0 300])
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The data are seismograph (vertical acceleration, nm/sq.sec) measurements recorded at Tasmania
University, Hobart, Australia on 16 January 1995 beginning at 20:56:51 (GMT) and continuing for 51
minutes at 1 second intervals [5].

Example: Subsynchronous Oscillation in Power Systems

Load the subsynchronous oscillation data of a Power System.

load OscillationData

Compute the wavelet synchrosqueezed transform using the bump wavelet and 48 voices per octave.
The four mode frequencies are at 15 Hz, 20 Hz, 25 Hz and 32 Hz. Notice that the energies of the
modes at 15 Hz and 20 Hz decrease with time, whereas the energy of the modes at 25 Hz and 32 Hz
increase gradually over time.

wsst(x,Fs,'bump','VoicesPerOctave',48)
ylim([10 50])
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This synthetic subsynchronous oscillation data was generated using the equation defined by Zhao et
al in "Application of Synchrosqueezed Wavelet Transforms for Extraction of the Oscillatory
Parameters of Subsynchronous Oscillation in Power Systems" [6].

Constant-Q Gabor Transform
Description

• The constant-Q nonstationary Gabor transform uses windows with different center frequencies
and bandwidths such that the ratio of center frequency to bandwidth, the Q factor, remains
constant.

• The constant-Q Gabor transform enables the construction of stable inverses, yielding perfect
signal reconstruction.

• In frequency space, the windows are centered at logarithmically spaced center frequencies.

Potential Applications

The applications of this time-frequency method include, but are not limited to:

Audio signal processing: The fundamental frequencies of the tones in music are geometrically spaced.
The frequency resolution of the human auditory system is approximately constant-Q, making this
technique appropriate for music signal processing.
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How to Use

• cqt computes the constant-Q Gabor transform.
• icqt inverts the constant-Q Gabor transform.

Example: Rock Music

Load an audio file containing a fragment of Rock music with vocals, drums, and guitar. The signal has
a sample rate of 44.1 kHz.

load drums

Set the frequency range over which the CQT has a logarithmic frequency response to be the
minimum allowable frequency to 2 kHz. Perform the CQT of the signal using 20 bins per octave.

minFreq = fs/length(audio);
maxFreq = 2000;
cqt(audio,'SamplingFrequency',fs,'BinsPerOctave',20,'FrequencyLimits',[minFreq maxFreq])

Empirical Mode Decomposition and Hilbert-Huang Transform
Description

• The empirical mode decomposition decomposes the signals into intrinsic mode functions which
form a complete and nearly orthogonal basis for the original signal.
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• The Hilbert-Huang transform computes the instantaneous frequency of each intrinsic mode
function.

• These two methods combined are useful for analyzing nonlinear and nonstationary signals.

Potential Applications

The applications of this time-frequency method include, but are not limited to:

• Physiological signal processing: Analyze human EEG response to transcranial magnetic
stimulation (TMS) of the brain cortex.

• Structural applications: Locate anomalies that appear as cracks, delamination, or stiffness loss in
beams and plates.

• System identification: Isolate modal damping ratios of structures with closely spaced modal
frequencies.

• Ocean engineering: Identify transient electromagnetic disturbances caused by humans in
underwater electromagnetic environments.

• Solar physics: Extract periodic components of sunspot data.
• Atmospheric turbulence: Observe stable boundary layer to separate turbulent and nonturbulent

motions.
• Epidemiology: Assess traveling speed of communicative diseases such as Dengue fever.

How to Use

• emd computes the empirical mode decomposition.
• hht computes the Hilbert Huang spectrum of an empirical mode decomposition.

Example: Bearing Vibration

Load the vibration signal from a defective bearing generated in the “Compute Hilbert Spectrum of
Vibration Signal” example. The signal is sampled at a rate 10 kHz.

load bearingVibration

Compute the first five intrinsic mode functions (IMFs) of the signal. Plot the Hilbert spectrum of the
first and third empirical modes. The first mode reveals increasing wear due to high-frequency impacts
on the bearing's outer race. The third mode shows a resonance occurring halfway through the
measurement process that caused the defect in the bearing.

imf = emd(y,'MaxNumIMF',5,'Display',0);
subplot(2,1,1)
hht(imf(:,1),fs)
subplot(2,1,2)
hht(imf(:,3),fs,'FrequencyLimits',[0 100])
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See Also
Apps
Signal Analyzer | Signal Multiresolution Analyzer

Functions
cqt | cwt | cwtfilterbank | emd | fsst | hht | icqt | icwt | ifsst | istft | iwsst | kurtogram
| pkurtosis | pspectrum | spectrogram | stft | wsst | wt | wvd | xspectrogram | xwvd
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Linear Prediction

• “Prediction Polynomial” on page 15-2
• “Formant Estimation with LPC Coefficients” on page 15-4
• “AR Order Selection with Partial Autocorrelation Sequence” on page 15-7
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Prediction Polynomial
This example shows how to obtain the prediction polynomial from an autocorrelation sequence. The
example also shows that the resulting prediction polynomial has an inverse that produces a stable all-
pole filter. You can use the all-pole filter to filter a wide-sense stationary white noise sequence to
produce a wide-sense stationary autoregressive process.

Create an autocorrelation sequence defined by

r(k) = 24
5 2− k − 27

10 3− k , k = 0, 1, 2 .

k = 0:2;
rk = (24/5)*2.^(-k)-(27/10)*3.^(-k);

Use ac2poly to obtain the prediction polynomial of order 2, which is

A(z) = 1 − 5
6z−1 + 1

6z−2 .

A = ac2poly(rk);

Examine the pole-zero plot of the FIR filter to see that the zeros are inside the unit circle.

zplane(A,1)
grid
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The inverse all-pole filter is stable with poles inside the unit circle.

zplane(1,A)
grid
title('Poles and Zeros')

Use the all-pole filter to produce a realization of a wide-sense stationary AR(2) process from a white-
noise sequence. Set the random number generator to the default settings for reproducible results.

rng default

x = randn(1000,1);
y = filter(1,A,x);

Compute the sample autocorrelation of the AR(2) realization and show that the sample
autocorrelation is close to the true autocorrelation.

[xc,lags] = xcorr(y,2,'biased');
[xc(3:end) rk']

ans = 3×2

    2.2401    2.1000
    1.6419    1.5000
    0.9980    0.9000
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Formant Estimation with LPC Coefficients
This example shows how to estimate vowel formant frequencies using linear predictive coding (LPC).
The formant frequencies are obtained by finding the roots of the prediction polynomial.

This example uses the speech sample mtlb.mat, which is part of Signal Processing Toolbox™. The
speech is lowpass-filtered. Because of the low sampling frequency, this speech sample is not optimal
for this example. The low sampling frequency limits the order of the autoregressive model you can fit
to the data. In spite of this limitation, the example illustrates the technique for using LPC coefficients
to determine vowel formants.

Load the speech signal. The recording is a woman saying "MATLAB®". The sampling frequency is
7418 Hz.

load mtlb

The MAT-file contains the speech waveform, mtlb, and the sampling frequency, Fs.

Use the spectrogram function to identify a voiced segment for analysis.

segmentlen = 100;
noverlap = 90;
NFFT = 128;

spectrogram(mtlb,segmentlen,noverlap,NFFT,Fs,'yaxis')
title('Signal Spectrogram')
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Extract the segment from 0.1 to 0.25 seconds for analysis. The extracted segment corresponds
roughly to the first vowel, /ae/, in "MATLAB".

dt = 1/Fs;
I0 = round(0.1/dt);
Iend = round(0.25/dt);
x = mtlb(I0:Iend);

Two common preprocessing steps applied to speech waveforms before linear predictive coding are
windowing and pre-emphasis (highpass) filtering.

Window the speech segment using a Hamming window.

x1 = x.*hamming(length(x));

Apply a pre-emphasis filter. The pre-emphasis filter is a highpass all-pole (AR(1)) filter.

preemph = [1 0.63];
x1 = filter(1,preemph,x1);

Obtain the linear prediction coefficients. To specify the model order, use the general rule that the
order is two times the expected number of formants plus 2. In the frequency range, [0,|Fs|/2], you
expect three formants. Therefore, set the model order equal to 8. Find the roots of the prediction
polynomial returned by lpc.

A = lpc(x1,8);
rts = roots(A);

Because the LPC coefficients are real-valued, the roots occur in complex conjugate pairs. Retain only
the roots with one sign for the imaginary part and determine the angles corresponding to the roots.

rts = rts(imag(rts)>=0);
angz = atan2(imag(rts),real(rts));

Convert the angular frequencies in rad/sample represented by the angles to hertz and calculate the
bandwidths of the formants.

The bandwidths of the formants are represented by the distance of the prediction polynomial zeros
from the unit circle.

[frqs,indices] = sort(angz.*(Fs/(2*pi)));
bw = -1/2*(Fs/(2*pi))*log(abs(rts(indices)));

Use the criterion that formant frequencies should be greater than 90 Hz with bandwidths less than
400 Hz to determine the formants.

nn = 1;
for kk = 1:length(frqs)
    if (frqs(kk) > 90 && bw(kk) <400)
        formants(nn) = frqs(kk);
        nn = nn+1;
    end
end
formants

formants = 1×3
103 ×
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    0.8697    2.0265    2.7380

The first three formants are 869.70, 2026.49, and 2737.95 Hz.
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AR Order Selection with Partial Autocorrelation Sequence
This example shows how to assess the order of an autoregressive model using the partial
autocorrelation sequence. For a stationary time series with values X(1), X(2), X(3), …, X(k + 1), the
partial autocorrelation sequence at lag k is the correlation between X(1) and X(k + 1) after
regressing X(1) and X(k + 1) on the intervening observations, X(2), X(3), X(4), …, X(k). For a moving
average process, you can use the autocorrelation sequence to assess the order. However, for an
autoregressive (AR) or autoregressive moving average (ARMA) process, the autocorrelation sequence
does not help in order selection. This example uses the following workflow for model order selection
in an AR process:

• Simulates a realization of the AR(2) process.
• Graphically explores the correlation between lagged values of the time series.
• Examines the sample autocorrelation sequence of the time series.
• Fits an AR(15) model to the time series by solving the Yule-Walker equations (aryule).
• Uses the reflection coefficients returned by aryule to compute the partial autocorrelation

sequence.
• Examines the partial autocorrelation sequence to select the model order.

Consider the AR(2) process defined by

X(n) + 1 . 5X(n− 1) + 0 . 75X(n− 2) = ε(n),

where ε(n) is an N(0, 1) Gaussian white noise process. Simulate a 1000-sample time series from the
AR(2) process defined by the difference equation. Set the random number generator to the default
settings for reproducible results.

A = [1 1.5 0.75];
rng default
x = filter(1,A,randn(1000,1));

View the frequency response of the AR(2) process.

freqz(1,A)
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The AR(2) process acts like a highpass filter in this case.

Graphically examine the correlation in x by producing scatter plots of X(n + 1) vs. X(1) for
n = 2, 3, 4, 5.

figure
for k = 1:4
    subplot(2,2,k)
    plot(x(1:end-k),x(k+1:end),'*')
    xlabel('X_1')
    ylabel(['X_' int2str(k+1)])
    grid
end
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In the scatter plot, you see a linear relationship between X(1) and X(2) and between X(1) and X(3),
but not between X(1) and either X(4) or X(5).

The points in the top row scatter plots fall approximately on a line with a negative slope in the top left
panel and positive slope in the top right panel. The scatter plots in the bottom two panels do not show
any apparent linear relationship.

The negative correlation between X(1) and X(2) and the positive correlation between X(1) and X(3)
are explained by the highpass-filter behavior of the AR(2) process.

Find the sample autocorrelation sequence up to lag 50 and plot the result.

[xc,lags] = xcorr(x,50,'coeff');

figure
stem(lags(51:end),xc(51:end),'filled')
xlabel('Lag')
ylabel('ACF')
title('Sample Autocorrelation Sequence')
grid
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The sample autocorrelation sequence shows a negative value at lag 1 and a positive value at lag 2.
Based on the scatter plot, this result is expected. However, you cannot determine the appropriate
order for the AR model from the sample autocorrelation sequence.

Fit an AR(15) model using aryule. Return the sequence of reflection coefficients, whose negative is
the partial autocorrelation sequence.

[arcoefs,E,K] = aryule(x,15);
pacf = -K;

Plot the partial autocorrelation sequence along with the large-sample 95% confidence intervals. If the
data are generated by an autoregressive process of order p, the values of the sample partial
autocorrelation sequence for lags greater than p follow a N(0, 1/N) distribution, where N is the
length of the time series. For a 95% confidence interval, the critical value is 2erf−1(0 . 95) ≈ 1 . 96
and the confidence interval is Δ = 0 ± 1 . 96/ N.

stem(pacf,'filled')
xlabel('Lag')
ylabel('Partial ACF')
title('Partial Autocorrelation Sequence')
xlim([1 15])

conf = sqrt(2)*erfinv(0.95)/sqrt(1000);
hold on
plot(xlim,[1 1]'*[-conf conf],'r')
hold off
grid
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The only values of the partial autocorrelation sequence outside the 95% confidence bounds occur at
lags 1 and 2. This indicates that the correct model order for the AR process is 2.

In this example, you generated the time series to simulate an AR(2) process. The partial
autocorrelation sequence only confirms that result. In practice, you have only the observed time
series without any prior information about model order. In a realistic scenario, the partial
autocorrelation sequence is an important tool for appropriate model order selection in stationary
autoregressive time series.

See Also
aryule | xcorr
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Transforms

• “Complex Cepstrum — Fundamental Frequency Estimation” on page 16-2
• “Analytic Signal for Cosine” on page 16-5
• “Envelope Extraction” on page 16-7
• “Analytic Signal and Hilbert Transform” on page 16-13
• “Hilbert Transform and Instantaneous Frequency” on page 16-18
• “Detect Closely Spaced Sinusoids” on page 16-25
• “Instantaneous Frequency of Complex Chirp” on page 16-32
• “Single-Sideband Amplitude Modulation” on page 16-35
• “DCT for Speech Signal Compression” on page 16-42
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Complex Cepstrum — Fundamental Frequency Estimation
This example shows how to estimate a speaker's fundamental frequency using the complex cepstrum.
The example also estimates the fundamental frequency using a zero-crossing method and compares
the results.

Load the speech signal. The recording is of a woman saying "MATLAB". The sampling frequency is
7418 Hz. The following code loads the speech waveform, mtlb, and the sampling frequency, Fs, into
the MATLAB® workspace.

load mtlb

Use the spectrogram to identify a voiced segment for analysis.

segmentlen = 100;
noverlap = 90;
NFFT = 128;

spectrogram(mtlb,segmentlen,noverlap,NFFT,Fs,'yaxis')

Extract the segment from 0.1 to 0.25 seconds for analysis. The extracted segment corresponds
roughly to the first vowel, /æ/, in "MATLAB".

dt = 1/Fs;
I0 = round(0.1/dt);
Iend = round(0.25/dt);
x = mtlb(I0:Iend);
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Obtain the complex cepstrum.

c = cceps(x);

Select a time range between 2 and 10 ms, corresponding to a frequency range of approximately 100
to 500 Hz. Identify the tallest peak of the cepstrum in the selected range. Find the frequency
corresponding to the peak. Use the peak as the estimate of the fundamental frequency.

t = 0:dt:length(x)*dt-dt;

trng = t(t>=2e-3 & t<=10e-3);
crng = c(t>=2e-3 & t<=10e-3);

[~,I] = max(crng);

fprintf('Complex cepstrum F0 estimate is %3.2f Hz.\n',1/trng(I))

Complex cepstrum F0 estimate is 239.29 Hz.

Plot the cepstrum in the selected time range and overlay the peak.

plot(trng*1e3,crng)
xlabel('ms')

hold on
plot(trng(I)*1e3,crng(I),'o')
hold off
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Use a zero-crossing detector on a lowpass-filtered and rectified form of the vowel to estimate the
fundamental frequency.

[b0,a0] = butter(2,325/(Fs/2));
xin = abs(x);
xin = filter(b0,a0,xin);
xin = xin-mean(xin);
x2 = zeros(length(xin),1);
x2(1:length(x)-1) = xin(2:length(x));
zc = length(find((xin>0 & x2<0) | (xin<0 & x2>0)));
F0 = 0.5*Fs*zc/length(x);
fprintf('Zero-crossing F0 estimate is %3.2f Hz.\n',F0)

Zero-crossing F0 estimate is 233.27 Hz.

The estimate of the fundamental frequency obtained with the complex cepstrum is 239.29 Hz and the
estimate with the zero-crossing detector is 233.27 Hz.

See Also
cceps | icceps | rceps
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Analytic Signal for Cosine
This example shows how to determine the analytic signal. The example also demonstrates that the
imaginary part of the analytic signal corresponding to a cosine is a sine with the same frequency. If
the cosine has a nonzero mean (DC shift), then the real part of the analytic signal is the original
cosine with the same mean, but the imaginary part has zero mean.

Create a cosine with a frequency of 100 Hz. The sample rate is 10 kHz. Add a DC offset of 2.5 to the
cosine.

t = 0:1e-4:1;
x = 2.5 + cos(2*pi*100*t);

Use the hilbert function to obtain the analytic signal. The real part is equal to the original signal.
The imaginary part is the Hilbert transform of the original signal. Plot the real and imaginary parts
for comparison.

y = hilbert(x);

plot(t,real(y))
hold on
plot(t,imag(y))
xlim([0 0.1])
grid on
text([0.015 0.015],[3.7 1.2], ...
    {'Real Part \downarrow';'Imaginary Part \downarrow'})
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You see that the imaginary part is a sine with the same frequency as the cosine real part. However,
the imaginary part has a mean of zero, while the real part has a mean of 2.5.

The original signal is

x(t) = 2 . 5 + cos(2π1000t) .

The resulting analytic signal is

z(t) = 2 . 5 + e j2π1000t .

Plot 10 periods of the complex-valued analytic signal.

prds = 1:1000;

figure
plot3(t(prds),real(y(prds)),imag(y(prds)))

xlabel('Time')
ylabel('Re \{z(t)\}')
zlabel('Im \{z(t)\}')
axis square

See Also
hilbert
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Envelope Extraction
This example shows how to extract the envelope of a signal.

Create a double sideband amplitude-modulated signal. The carrier frequency is 1 kHz. The
modulation frequency is 50 Hz. The modulation depth is 100%. The sample rate is 10 kHz.

t = 0:1e-4:0.1;
x = (1+cos(2*pi*50*t)).*cos(2*pi*1000*t);

plot(t,x)
xlim([0 0.04])

Extract the envelope using the hilbert function. The envelope is the magnitude of the analytic
signal computed by hilbert. Plot the envelope along with the original signal. Store the name-value
pair arguments of the plot function in a cell array for later use. The magnitude of the analytic signal
captures the slowly varying features of the signal, while the phase contains the high-frequency
information.

y = hilbert(x);
env = abs(y);
plot_param = {'Color', [0.6 0.1 0.2],'Linewidth',2}; 

plot(t,x)
hold on
plot(t,[-1;1]*env,plot_param{:})
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hold off
xlim([0 0.04])
title('Hilbert Envelope')

You can also use the envelope function to generate the signal envelope directly and modify the way
it is computed. For example, you can adjust the length of the Hilbert filter used to find the analytic
envelope. Using a filter length that is too small results in a distorted envelope.

fl1 = 12;
[up1,lo1] = envelope(x,fl1,'analytic');
fl2 = 30;
[up2,lo2] = envelope(x,fl2,'analytic');
param_small = {'Color',[0.9 0.4 0.1],'Linewidth',2};
param_large = {'Color',[0 0.4 0],'Linewidth',2};

plot(t,x)
hold on
p1 = plot(t,up1,param_small{:});
plot(t,lo1,param_small{:});
p2 = plot(t,up2,param_large{:});
plot(t,lo2,param_large{:});
hold off

legend([p1 p2],'fl = 12','fl = 30')
xlim([0 0.04])
title('Analytic Envelope')
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You can generate moving RMS envelopes by using a sliding window. Using a window length that is
too small results in a distorted envelope. Using a window length that is too large smooths out the
envelope.

wl1 = 3;
[up1,lo1] = envelope(x,wl1,'rms');
wl2 = 5;
[up2,lo2] = envelope(x,wl2,'rms');
wl3 = 300;
[up3,lo3] = envelope(x,wl3,'rms');

plot(t,x)
hold on
p1 = plot(t,up1,param_small{:});
plot(t,lo1,param_small{:});
p2 = plot(t,up2,plot_param{:});
plot(t,lo2,plot_param{:});
p3 = plot(t,up3,param_large{:});
plot(t,lo3,param_large{:})
hold off

legend([p1 p2 p3],'wl = 3','wl = 5','wl = 300')
xlim([0 0.04])
title('RMS Envelope')
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You can generate peak envelopes by using spline interpolation over local maxima separated by an
adjustable number of samples. Spreading out the samples too much smooths the envelope.

np1 = 5;
[up1,lo1] = envelope(x,np1,'peak');
np2 = 50;
[up2,lo2] = envelope(x,np2,'peak');

plot(t,x)
hold on
p1 = plot(t,up1,param_small{:});
plot(t,lo1,param_small{:})
p2 = plot(t,up2,param_large{:});
plot(t,lo2,param_large{:})
hold off

legend([p1 p2],'np = 5','np = 50')
xlim([0 0.04])
title('Peak Envelope')
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Increasing the peak separation parameter can decrease the effect of spurious peaks due to noise.
Introduce random noise to the signal. Use a 5-sample interval to see the effect of noise on the peak
envelope. Repeat the exercise using a 25-sample interval.

rng default
q = x + randn(size(x))/10;
np1 = 5;
[up1,lo1] = envelope(q,np1,'peak');
np2 = 25;
[up2,lo2] = envelope(q,np2,'peak');

plot(t,q)
hold on
p1 = plot(t,up1,param_small{:});
plot(t,lo1,param_small{:})
p2 = plot(t,up2,param_large{:});
plot(t,lo2,param_large{:})
hold off

legend([p1 p2],'np = 5','np = 25')
xlim([0 0.04])
title('Peak Envelope')
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See Also
envelope | hilbert
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Analytic Signal and Hilbert Transform
The hilbert function finds the exact analytic signal for a finite block of data. You can also generate
the analytic signal by using an finite impulse response (FIR) Hilbert transformer filter to compute an
approximation to the imaginary part.

Generate a sequence composed of three sinusoids with frequencies 203, 721, and 1001 Hz. The
sequence is sampled at 10 kHz for about 1 second. Use the hilbert function to compute the analytic
signal. Plot it between 0.01 seconds and 0.03 seconds.

fs = 1e4;
t = 0:1/fs:1; 

x = 2.5 + cos(2*pi*203*t) + sin(2*pi*721*t) + cos(2*pi*1001*t);

y = hilbert(x);

plot(t,real(y),t,imag(y))
xlim([0.01 0.03])
legend('real','imaginary')
title('hilbert Function')

Compute Welch estimates of the power spectral densities of the original sequence and the analytic
signal. Divide the sequences into Hamming-windowed, nonoverlapping sections of length 256. Verify
that the analytic signal has no power at negative frequencies.

 Analytic Signal and Hilbert Transform

16-13



pwelch([x;y].',256,0,[],fs,'centered')
legend('Original','hilbert')

Use the designfilt function to design a 60th-order Hilbert transformer FIR filter. Specify a
transition width of 400 Hz. Visualize the frequency response of the filter.

fo = 60;

d = designfilt('hilbertfir','FilterOrder',fo, ...
       'TransitionWidth',400,'SampleRate',fs); 

freqz(d,1024,fs)

16 Transforms

16-14



Filter the sinusoidal sequence to approximate the imaginary part of the analytic signal.

hb = filter(d,x);

The group delay of the filter, grd, is equal to one-half the filter order. Compensate for this delay.
Remove the first grd samples of the imaginary part and the last grd samples of the real part and the
time vector. Plot the result between 0.01 seconds and 0.03 seconds.

grd = fo/2;
   
y2 = x(1:end-grd) + 1j*hb(grd+1:end);
t2 = t(1:end-grd);

plot(t2,real(y2),t2,imag(y2))
xlim([0.01 0.03])
legend('real','imaginary')
title('FIR Filter')
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Estimate the power spectral density (PSD) of the approximate analytic signal and compare it to the
hilbert result.

pwelch([y;[y2 zeros(1,grd)]].',256,0,[],fs,'centered')
legend('hilbert','FIR Filter')
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See Also
designfilt | hilbert
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Hilbert Transform and Instantaneous Frequency
The Hilbert transform estimates the instantaneous frequency of a signal for monocomponent signals
only. A monocomponent signal is described in the time-frequency plane by a single "ridge." The set of
monocomponent signals includes single sinusoids and signals like chirps.

Generate a chirp sampled at 1 kHz for two seconds. Specify the chirp so its frequency is initially 100
Hz and increases to 200 Hz after one second.

fs = 1000;
t = 0:1/fs:2-1/fs;
y = chirp(t,100,1,200);

Estimate the spectrogram of the chirp using the short-time Fourier transform implemented in the
pspectrum function. The signal is well described by a single peak frequency at each point in time.

pspectrum(y,fs,'spectrogram')

Compute the analytic signal and differentiate its phase to measure the instantaneous frequency. The
scaled derivative yields a meaningful estimate.

z = hilbert(y);
instfrq = fs/(2*pi)*diff(unwrap(angle(z)));

clf
plot(t(2:end),instfrq)
ylim([0 fs/2])
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The instfreq function computes and displays the instantaneous frequency in one step.

instfreq(y,fs,'Method','hilbert')
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The method fails when the signal is not monocomponent.

Generate a sum of two sinusoids of frequencies 60 Hz and 90 Hz, sampled at 1023 Hz for two
seconds. Compute and plot the spectrogram. Each time point shows the presence of the two
components.

fs = 1023;
t = 0:1/fs:2-1/fs;
x = sin(2*pi*60*t)+sin(2*pi*90*t);

pspectrum(x,fs,'spectrogram')
yticks([60 90])
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Compute the analytic signal and differentiate its phase. Zoom in on the region enclosing the
frequencies of the sinusoids. The analytic signal predicts an instantaneous frequency that is the
average of the sinusoid frequencies.

z = hilbert(x);
instfrq = fs/(2*pi)*diff(unwrap(angle(z)));

plot(t(2:end),instfrq)
ylim([60 90])
xlabel('Time (s)')
ylabel('Frequency (Hz)')
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The instfreq function also estimates the average.

instfreq(x,fs,'Method','hilbert')
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To estimate both frequencies as functions of time, use spectrogram to find the power spectral
density and tfridge to track the two ridges. In tfridge, specify the penalty for changing frequency
as 0.1.

[s,f,tt] = pspectrum(x,fs,'spectrogram');

numcomp = 2;
[fridge,~,lr] = tfridge(s,f,0.1,'NumRidges',numcomp);

pspectrum(x,fs,'spectrogram')
hold on
plot3(tt,fridge,abs(s(lr)),'LineWidth',4)
hold off
yticks([60 90])
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See Also
hilbert | spectrogram

Related Examples
• “Detect Closely Spaced Sinusoids” on page 16-25
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Detect Closely Spaced Sinusoids
Consider a sinusoid, f (x) = e j2πνx, windowed with a Gaussian window, g(t) = e−πt2. The short-time
transform is

Vgf (t, η) = e j2πνt∫−∞
∞

e−π(x− t)2e− j2π(x− t)(η− ν) dx = e−π(η− ν)2e j2πνt .

When viewed as a function of frequency, the transform combines a constant (in time) oscillation at ν
with Gaussian decay away from it. The synchrosqueezing estimate of the instantaneous frequency,

Ωgf (t, η) = 1
j2π

e−π(η− ν)2 ∂
∂t e j2πνt

e−π(η− ν)2e j2πνt
= ν,

equals the value obtained by using the standard definition, (2π)−1dargf (x)/dx. For a superposition of
sinusoids,

f (x) = ∑
k = 1

K
Ake j2πνkx,

the short-time transform becomes

Vgf (t, η) = ∑
k = 1

K
Ake−π(η− νk)2e j2πνkt .

Create 1024 samples of a signal consisting of two sinusoids. One sinusoid has a normalized frequency
of ω0 = π/5 rad/sample. The other sinusoid has three times the frequency and three times the
amplitude.

N = 1024;
n = 0:N-1;

w0 = pi/5;
x = exp(1j*w0*n)+3*exp(1j*3*w0*n);

Compute the short-time Fourier transform of the signal. Use a 256-sample Gaussian window with
α = 20, 255 samples of overlap between adjoining sections, and 1024 DFT points. Plot the absolute
value of the transform.

Nw = 256;
nfft = 1024;
alpha = 20;

[s,w,t] = spectrogram(x,gausswin(Nw,alpha),Nw-1,nfft,'centered');

surf(t,w/pi,abs(s),'EdgeColor','none')
view(2)
axis tight
xlabel('Samples')
ylabel('Normalized Frequency (\times\pi rad/sample)')
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The Fourier synchrosqueezed transform results in a sharper, better localized estimate of the
spectrum.

[ss,sw,st] = fsst(x,[],gausswin(Nw,alpha));

fsst(x,'yaxis')

16 Transforms

16-26



The sinusoids are visible as constant oscillations at the expected frequency values. To see that the
decay away from the ridges is Gaussian, plot an instantaneous value of the transform and overlay two
instances of a Gaussian. Express the Gaussian amplitude and standard deviation in terms of α and the
window length. Recall that the standard deviation of the frequency-domain window is the reciprocal
of the standard deviation of the time-domain window.

rstdev = (Nw-1)/(2*alpha);
amp = rstdev*sqrt(2*pi);

instransf = abs(s(:,128));

plot(w/pi,instransf)
hold on
plot(w/pi,[1 3]*amp.*exp(-rstdev^2/2*(w-[1 3]*w0).^2),'--')
hold off
xlabel('Normalized Frequency (\times\pi rad/sample)')
lg = legend('Transform','First sinusoid','Second sinusoid');
lg.Location = 'best';
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The Fourier synchrosqueezed transform concentrates the energy content of the signal at the
estimated instantaneous frequencies.

stem(sw/pi,abs(ss(:,128)))
xlabel('Normalized Frequency (\times\pi rad/sample)')
title('Synchrosqueezed Transform')
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The synchrosqueezed estimates of instantaneous frequency are valid only if the sinusoids are
separated by more than 2Δ, where

Δ = 1
σ 2log2

for a Gaussian window and σ is the standard deviation.

Repeat the previous calculation, but now specify that the second sinusoid has a normalized frequency
of ω0 + 1 . 9Δ rad/sample.

D = sqrt(2*log(2))/rstdev;

w1 = w0+1.9*D;

x = exp(1j*w0*n)+3*exp(1j*w1*n);

[s,w,t] = spectrogram(x,gausswin(Nw,alpha),Nw-1,nfft,'centered');
instransf = abs(s(:,20));

plot(w/pi,instransf)
hold on
plot(w/pi,[1 3]*amp.*exp(-rstdev^2/2*(w-[w0 w1]).^2),'--')
hold off
xlabel('Normalized Frequency (\times\pi rad/sample)')
lg = legend('Transform','First sinusoid','Second sinusoid');
lg.Location = 'best';
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The Fourier synchrosqueezed transform cannot resolve the sinusoids well because ω1− ω0 < 2Δ.
The spectral estimates decrease significantly in value.

[ss,sw,st] = fsst(x,[],gausswin(Nw,alpha));

stem(sw/pi,abs(ss(:,128)))
xlabel('Normalized Frequency (\times\pi rad/sample)')
title('Synchrosqueezed Transform')
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See Also
fsst | gausswin | ifsst | spectrogram

Related Examples
• “Hilbert Transform and Instantaneous Frequency” on page 16-18
• “Instantaneous Frequency of Complex Chirp” on page 16-32
• “Practical Introduction to Time-Frequency Analysis” on page 24-267
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Instantaneous Frequency of Complex Chirp
This example shows how to compute the instantaneous frequency of a signal using the Fourier
synchrosqueezed transform.

Generate a chirp with sinusoidally varying frequency content. The signal is embedded in white
Gaussian noise and sampled at 3 kHz for 1 second.

fs = 3000;
t = 0:1/fs:1-1/fs;

x = exp(2j*pi*100*cos(2*pi*2*t)) + randn(size(t))/100;

Compute and plot the Fourier synchrosqueezed transform of the signal. Display the time on the x-axis
and the frequency on the y-axis.

fsst(x,fs,'yaxis')

Find the instantaneous frequency of the signal by extracting the maximum-energy time-frequency
ridge of the Fourier Synchrosqueezed transform.

[sst,f,tfs] = fsst(x,fs);

fridge = tfridge(sst,f);

Overlay the ridge on the transform plot. Convert time to milliseconds and frequency to kHz.
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hold on
plot(t*1000,fridge/1000,'r')
hold off

For a real signal, you can find the instantaneous frequency more easily using the instfreq function.
For example, display the instantaneous frequency of the real part of the complex chirp by computing
the analytic signal and differentiating its phase.

ax = real(x);

instfreq(ax,fs,'Method','hilbert')
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See Also
fsst | ifsst | instfreq | pspectrum | spectrogram | tfridge

Related Examples
• “Hilbert Transform and Instantaneous Frequency” on page 16-18
• “Detect Closely Spaced Sinusoids” on page 16-25
• “Practical Introduction to Time-Frequency Analysis” on page 24-267
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Single-Sideband Amplitude Modulation
This example shows how to use the Hilbert transform to carry out single-sideband (SSB) amplitude
modulation (AM) of a signal. Single-sideband AM signals have less bandwidth than normal AM
signals.

Generate 512 samples of a simulated broadband signal using the sinc function. Specify a bandwidth
of π/4 rad/sample.

N = 512;
n = 0:N-1;

bw = 1/4;
x = sinc((n-N/2)*bw);

Add white Gaussian noise such that the signal-to-noise ratio is 20 dB. Reset the random number
generator for reproducible results. Use the periodogram function to estimate the power spectral
density (PSD) of the signal.

rng default

SNR = 20;
noise = randn(size(x))*std(x)/db2mag(SNR);
x = x + noise;

periodogram(x)
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Amplitude modulate the signal using a cosine of carrier frequency ωc = π/2. Multiply by 2 so that
the power of the modulated signal equals the power of the original signal. Estimate the PSD.

wc = pi/2;

x1 = x.*cos(wc*n)*sqrt(2);

periodogram(x1)
legend('Modulated')

SSB amplitude modulation reduces the bandwidth of the signal by half. To carry out SSB amplitude
modulation, you must first compute the Hilbert transform of the signal. Then, amplitude modulate the
signal using a sine with the same carrier frequency, ωc, as before, and add it to the previous signal.
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Design a Hilbert transformer using the designfilt function. Specify a filter order of 64 and a
transition width of 0.1. Filter the signal.

Hhilbert = designfilt('hilbertfir','FilterOrder',64, ...
    'TransitionWidth',0.1);

xh = filter(Hhilbert,x);

Use the grpdelay function to determine the delay, gd, introduced by the filter. Compensate for the
delay by discarding the first gd points of the filtered signal and padding with zeros at the end.
Amplitude modulate the result and add it to the original. Compare the PSDs.

gd = mean(grpdelay(Hhilbert));
xh = xh(gd+1:end);
eh = zeros(size(x));
eh(1:length(xh)) = xh;

x2 = eh.*sin(wc*n)*sqrt(2);

y = x1+x2;

periodogram([x1;y]')
legend('Modulated','SSB')
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Downconvert the signal and estimate the PSD.

ym = y.*cos(wc*n)*sqrt(2);

periodogram(ym)
legend('Downconverted')
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Lowpass filter the modulated signal to recover the original. Specify a 64th-order FIR lowpass filter
with a cutoff frequency of π/2. Compensate for the delay introduced by the filter.

d = designfilt('lowpassfir','FilterOrder',64, ...
    'CutoffFrequency',0.5);
dem = filter(d,ym);

gd = mean(grpdelay(d));
dem = dem(gd+1:end);

dm = zeros(size(x));
dm(1:length(dem)) = dem;

Estimate the PSD of the filtered signal and compare it to that of the original.

periodogram([x;dm]')
legend('Original','Recovered')
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Use the snr function to compare the signal-to-noise ratios of the two signals. Plot the two signals in
the time domain.

snrOrig = snr(x,noise)

snrOrig = 20.0259

snrRecv = snr(dm,noise)

snrRecv = 20.1373

plot(n,[x;dm]')
legend('Original','Recovered')
axis tight
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See Also
designfilt | periodogram | snr
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DCT for Speech Signal Compression
This example shows how to compress a speech signal using the discrete cosine transform (DCT).

Load a file containing the word "strong," spoken by a woman and by a man. The signals are sampled
at 8 kHz.

load('strong.mat')

% To hear, type soundsc(her,fs), pause(1), soundsc(him,fs)

Use the discrete cosine transform to compress the female voice signal. Decompose the signal into
DCT basis vectors. There are as many terms in the decomposition as there are samples in the signal.
The expansion coefficients in vector X measure how much energy is stored in each of the components.
Sort the coefficients from largest to smallest.

x = her';

X = dct(x);

[XX,ind] = sort(abs(X),'descend');

Find how many DCT coefficients represent 99.9% of the energy in the signal. Express the number as
a percentage of the total.

need = 1;
while norm(X(ind(1:need)))/norm(X)<0.999
   need = need+1;
end

xpc = need/length(X)*100;

Set to zero the coefficients that contain the remaining 0.1% of the energy. Reconstruct the signal
from the compressed representation. Plot the original signal, its reconstruction, and the difference
between the two.

X(ind(need+1:end)) = 0;
xx = idct(X);

plot([x;xx;x-xx]')
legend('Original',[int2str(xpc) '% of coeffs.'],'Difference', ...
       'Location','best')
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% To hear, type soundsc(x,fs), pause(1), soundsc(xx,fs)

Repeat the analysis for the male voice. Find how many DCT coefficients represent 99.9% of the
energy and express the number as a percentage of the total.

y = him';
Y = dct(y);

[YY,ind] = sort(abs(Y),'descend');

need = 1;
while norm(Y(ind(1:need)))/norm(Y)<0.999
   need = need+1;
end

ypc = need/length(Y)*100;

Set the rest of the coefficients to zero and reconstruct the signal from the compressed version. Plot
the original signal, its reconstruction, and the difference between the two.

Y(ind(need+1:end)) = 0;
yy = idct(Y);

plot([y;yy;y-yy]')
legend('Original',[int2str(ypc) '% of coeffs.'],'Difference', ...
       'Location','best')
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% To hear, type soundsc(y,fs), pause(1), soundsc(yy,fs)

In both cases, about half of the DCT coefficients suffice to reconstruct the speech signal reasonably. If
the required energy fraction is 99%, the number of necessary coefficients reduces to about 20% of
the total. The resulting reconstruction is inferior but still intelligible.

Analysis of these and other samples suggests that more coefficients are needed to characterize the
man's voice than the woman's.

See Also
dct | idct
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Display Time-Domain Data in Signal Browser
In this section...
“Import and Display Signals” on page 17-2
“Configure the Signal Browser Properties” on page 17-5
“Modify the Signal Browser Display” on page 17-7
“Inspect Your Data (Scaling the Axes and Zooming)” on page 17-8

This example shows how to use and configure the SPTool Signal Browser to display time-domain
signals. First, open SPTool by typing

sptool

at the MATLAB command line. SPTool opens.

Import and Display Signals
Displaying Multiple Signals

You can display multiple signals in the Signal Browser by selecting more than one entry in the SPTool
Signals list. In the Signals list, first select mtlb [vector]. Next, press the Ctrl key, and select
chirp [vector]. Finally, click the View button. The Signal Browser opens, displaying both signals.

Any signals that you select in SPTool are now visible in the Signal Browser. You can also select
multiple entries using the Shift key. In the SPTool Signals list, first select mtlb [vector]. Next,
press the Shift key, and select train [vector]. The Signal Browser automatically updates to
display all three signals, as shown in the following figure.
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Importing New Signals

Using SPTool, you can import signals from variables in the MATLAB workspace. First, create a 3-
second signal, sampled at 10 kHz, that is the sum of two sine waves. At the MATLAB command line,
enter the following commands:

Fs = 1e4;
t = 0:1/Fs:3;
s = sum(sin(2*pi*[350;440]*t));

To import the signal from these variables, in the SPTool menu, select File > Import. Alternatively,
you can press the Ctrl+I keyboard shortcut. The Import to SPTool dialog box opens.
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From the Workspace Contents list, select s. Click the right arrow ( ) button to the left of the

Data box. Next, from the Workspace Contents list, select Fs. Click the right arrow ( ) button
to the left of the Sampling Frequency box. You can assign the signal a name in the Name box, but
since you will rename the signal later in this example, leave it as sig1 for now.

Click OK. The SPTool Signals list now contains a signal named sig1 [vector].

Selecting a Signal and Playing Audio

In the SPTool Signals list, select sig1 [vector], and click the View button. The Signal Browser

reappears in front. To play audio for the signal, click the Play selected signal ( ) button. Signal
Browser sends the audio signal to the speaker. For more information, see sound.

If you have multiple signals selected in SPTool, you can use the Trace Selection panel to choose
which signal to make active. In the SPTool Signals list, press the Ctrl key, and select mtlb
[vector]. The Signal Browser now displays two signals. In the Signal Browser menu, select Tools >
Measurements > Trace Selection. The Trace Selection panel appears as shown in the following
figure.

In the Trace Selection panel drop-down list, select sig1. Then, click the Play selected signal ( )
button. Signal Browser sends the audio signal to the speaker.

Note To hear audio when you click the Play selected signal ( ) button, your computer sound card
must be able to support the sample rate of the signal. In this example, the sample rate of the signal,
sig1 [vector], is 10 kHz. If your sound card supports this or a greater sample rate, such as 44.1
kHz, then you can hear the audio on your speaker. For more information, see sound.

Change Signal Names from the Legend

When multiple signals are displayed, Signal Browser shows a legend by default. To turn off the

legend, click the Show all legends ( ) button. Click the button again to turn the legend back on.
You can modify the names of the signal directly in the legend. To do so, when the legend is visible,
click and drag it to any location on the display.

You can change the name of any signal directly within the legend. In the legend, double-click the
signal name sig1. A cursor appears, indicating that you can now change this name. Highlight the
text, and type Dial Tone. The legend now shows Dial Tone as the name of that signal. In the
SPTool Signals list, the last item is now also named Dial Tone.
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Configure the Signal Browser Properties
First, configure the appearance of the Signal Browser window. In the SPTool Signals list, first select
mtlb [vector]. Next, press the Shift key, and select train [vector]. The Signal Browser
automatically updates to display all three signals.

Multiple Displays

You can display multiple signals on different displays in the Signal Browser window. In the SPTool
Signals list, first ensure all three signals are selected. In the Signal Browser toolbar, click the Layout

( ) button. Select row 3, column 1, as shown in the following figure.

After you make this selection, the Signal Browser is separated into three displays.

Configure Appearance

In the Signal Browser menu, select View > Properties. The Visuals:Time Domain Options dialog box
opens, as shown in the following figure.
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In the Visuals:Time Domain Options dialog box, click the Main tab. Choose the appropriate
parameter settings for the Main tab, as shown in the following table.

Parameter Setting
Time units Metric (based on Time Span)
Show time-axis labels Bottom Displays Only
Maximize axes On

When you change the Maximize axes parameter to On, the axes are expanded to fill the entire
display. To conserve space, titles and axis labels are not shown in each display. Click Apply.

Set Display Properties

In the Visuals:Time Domain Options dialog box, click the Display tab. You can change the value of the
Select display parameter to make different settings for each display. Set the parameters to the
values shown in the following table.

Parameter Display 1 Setting Display 2 Setting Display 3 Setting
Select display 1 2 3
Title mtlb chirp train
Show legend Selected Selected Selected
Show grid Selected Selected Selected
Plot signal(s) as
magnitude and phase

Cleared Cleared Cleared

Minimum Y-limit -2.5 -1 -1.5
Maximum Y-limit 2.5 1 1.5
Y-axis label Amplitude Amplitude Amplitude
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Click OK to save your changes and close the Visuals:Time Domain Options dialog box. The Signal
Browser appears as shown in the following figure.

Modify the Signal Browser Display
Use the Style dialog box to modify the appearance of the axes and the lines for each of the selected
signals in SPTool. In the Signal Browser menu, select View > Style. The Style dialog box opens, as
shown in the following figure.
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Modify Axes Colors and Line Properties

You can change the value of the Select display parameter to make different settings for each display.
Set the parameters to the values shown in the following table.

Parameter Display 1 Setting Display 2 Setting Display 3 Setting
Select display 1 2 3
Axes background
color

Black Black Black

Ticks, labels, and grid
colors

White White White

Line color Yellow Cyan Magenta

These settings enable the Signal Browser to display line colors in the same manner as the Simulink
Scope block. Click OK to save your changes and close the Style dialog box. The Signal Browser now
appears as shown in the following figure.

Show and Hide Toolbar

To hide the toolbar, from the Signal Browser menu, select View > Toolbar. Doing so removes the
toolbar from the Signal Browser window and also removes the check mark beside the Toolbar option
in the View menu. You can choose to show the toolbar again at any time by selecting View >
Toolbar.

Inspect Your Data (Scaling the Axes and Zooming)
So far, you have manually set the y-axis limits. Use one of the following options to let Signal Browser
scale the axes:

• From the Signal Browser menu, select Tools > Scale Axes Limits.
• From the Signal Browser toolbar, click the Scale Axes Limits ( ) button.
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• With the Signal Browser as your active window, press Ctrl + A.

Use the Zoom Tools

The zoom tools allow you to zoom in simultaneously in the directions of both the x- and y-axes , or in
either direction individually. For example, to zoom in on the signal between 0 and 0.5 seconds, you
can use the Zoom X option.

• To activate the Zoom X tool, select Tools > Zoom X, or press the corresponding toolbar button

( ). The Signal Browser indicates that the Zoom X tool is active by indenting the toolbar button
and placing a check mark next to the Tools > Zoom X menu option.

• Next, zoom in on the region between 0 and 0.5 seconds. In the Signal Browser window, click on
the 0-second mark and drag to the 0.5-second mark. All three displays reflect this new x-axis
setting, as shown in the following figure.

• To zoom out of the Signal Browser window, right-click inside the window, and select Zoom Out.
Alternatively, you can return to the original view of your signal by right-clicking inside the Signal
Browser window and selecting Reset to Original View.
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Signal Measurement

• “RMS Value of Periodic Waveforms” on page 18-2
• “Slew Rate of Triangular Waveform” on page 18-5
• “Duty Cycle of Rectangular Pulse Waveform” on page 18-8
• “Estimate State for Digital Clock” on page 18-11
• “Calculate Settling Time with Signal Browser” on page 18-14
• “Find Peak Amplitudes in Signal Browser” on page 18-16
• “Distortion Measurements” on page 18-18
• “Prominence” on page 18-22
• “Determine Peak Widths” on page 18-24
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RMS Value of Periodic Waveforms
This example shows how to find the root mean square (RMS) value of a sine wave, a square wave, and
a rectangular pulse train using rms. The waveforms in this example are discrete-time versions of
their continuous-time counterparts.

Create a sine wave with a frequency of π/4 rad/sample. The length of the signal is 16 samples, which
equals two periods of the sine wave.

n = 0:15;
x = cos(pi/4*n);

Compute the RMS value of the sine wave.

rmsval = rms(x)

rmsval = 0.7071

The RMS value is equal to 1/ 2, as expected.

Create a periodic square wave with a period of 0.1 seconds. The square wave values oscillate
between −2 and 2.

t = 0:0.01:1;
x = 2*square(2*pi*10*t);

stem(t,x,'filled')
axis([0 1 -2.5 2.5])
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Find the RMS value.

rmsval = rms(x)

rmsval = 2

The RMS value agrees with the theoretical value of 2.

Create a rectangular pulse train sampled at 1 kHz with the following parameters: the pulse is on, or
equal to 1, for 0.025 seconds, and off, or equal to 0, for 0.075 seconds in each 0.1 second interval.
This means the pulse period is 0.1 seconds and the pulse is on for 1/4 of that interval. This is referred
to as the duty cycle. Use pulstran to create the rectangular pulse train.

t = 0:0.001:(10*0.1);
pulsewidth = 0.025;
pulseperiods = [0:10]*0.1;
x = pulstran(t,pulseperiods,@rectpuls,pulsewidth);

plot(t,x)
axis([0 1 -0.5 1.5])

Find the RMS value and compare it to the RMS of a continuous-time rectangular pulse waveform with
duty cycle 1/4 and peak amplitude 1.

rmsval = rms(x)

rmsval = 0.5007
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thrms = sqrt(1/4)

thrms = 0.5000

The observed RMS value and the RMS value for a continuous-time rectangular pulse waveform are in
good agreement.
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Slew Rate of Triangular Waveform
This example shows how to use the slew rate as an estimate of the rising and falling slopes of a
triangular waveform. Create three triangular waveforms. One waveform has rising-falling slopes of
±2, one waveform has rising-falling slopes of ± 1

2 , and one waveform has a rising slope of +2 and a

falling slope of −1
2 . Use slewrate to find the slopes of the waveforms.

Use tripuls to create a triangular waveform with rising-falling slopes of ±2. Set the sampling
interval to 0.01 seconds, which corresponds to a sample rate of 100 hertz.

dt = 0.01;
t = -2:dt:2;

x = tripuls(t);

Compute and plot the slew rate for the triangular waveform. Input the sample rate (100 Hz) to obtain
the correct positive and negative slope values.

slewrate(x,1/dt)

ans = 1×2

    2.0000   -2.0000
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Change the width of the triangular waveform so it has slopes of ± 1
2 . Compute and plot the slew rate.

x = tripuls(t,4);
slewrate(x,1/dt)

ans = 1×2

    0.5000   -0.5000

Create a triangular waveform with a rising slope of +2 and a falling slope of −1
2 . Compute the slew

rate.

x = tripuls(t,5/2,-3/5);
s = slewrate(x,1/dt)

s = 1×2

    2.0000   -0.5000

The first element of s is the rising slope and the second element is the falling slope. Plot the result.

slewrate(x,1/dt);
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See Also
slewrate | tripuls
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Duty Cycle of Rectangular Pulse Waveform
This example shows how to create a rectangular pulse waveform and measure its duty cycle. You can
think of a rectangular pulse waveform as a sequence of on and off states. One pulse period is the total
duration of an on and off state. The pulse width is the duration of the on state. The duty cycle is the
ratio of the pulse width to the pulse period. The duty cycle for a rectangular pulse describes the
fraction of time that the pulse is on in one pulse period.

Create a rectangular pulse sampled at 1 gigahertz. The pulse is on, or equal to 1, for a duration of 1
microsecond. The pulse if off, or equal to 0, for a duration of 3 microseconds. The pulse period is 4
microseconds. Plot the waveform.

Fs = 1e9;
t = 0:1/Fs:(10*4e-6);

pulsewidth = 1e-6;
pulseperiods = [0:10]*4e-6;

x = pulstran(t,pulseperiods,@rectpuls,pulsewidth);

plot(t,x)
axis([0 4e-5 -0.5 1.5])

Determine the duty cycle of the waveform using dutycycle. Input both the pulse waveform and the
sample rate to output the duty cycle. dutycycle outputs a duty cycle value for each detected pulse.

D = dutycycle(x,Fs)
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D = 1×9

    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500    0.2500

In this example, the duty cycle for each of the detected pulses is identical and equal to 0.25. This is
the expected duty cycle because the pulse is on for 1 microsecond and off for 3 microseconds in each
4 microsecond period. Therefore, the pulse is on for 1/4 of each period. Expressed as a percentage,
this is equal to a duty cycle of 25%.

Calling dutycycle with no output arguments produces a plot with all the detected pulse widths
marked.

dutycycle(x,Fs);

Using the same sample rate and pulse period, vary the pulse on time (pulse width) from 1 to 3
microseconds in a loop and calculate the duty cycle. Plot the pulse waveforms and display the duty
cycle value in the plot title for each step through the loop. The duty cycle increases from 0.25 (1/4) to
0.75 (3/4) as the pulse width increases.

nwid = 3;

for nn = 1:nwid
    x = pulstran(t,pulseperiods,@rectpuls,nn*pulsewidth);
    
    subplot(nwid,1,nn)
    plot(t,x)
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    axis([0 4e-5 -0.5 1.5])
    
    D = dutycycle(x,Fs);
    title(['Duty cycle is ' num2str(mean(D))])
end

See Also
dutycycle | pulstran
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Estimate State for Digital Clock
This example shows how to estimate the high and low state levels for digital clock data. In contrast to
analog voltage signals, signals in digital circuits have only two states: HIGH and LOW. Information is
conveyed by the pattern of high and low state levels.

Load clockex.mat into the MATLAB® workspace. clockex.mat contains a 2.3 volt digital clock
waveform sampled at 4 megahertz. Load the clock data into the variable x and the vector of sampling
times in the variable t. Plot the data.

load('clockex.mat','x','t')
stem(t,x,'filled')

Determine the high and low state levels for the clock data using statelevels.

levels = statelevels(x)

levels = 1×2

    0.0027    2.3068

This is the expected result for the 2.3 volt clock data, where the noise-free low-state level is 0 volts
and the noise-free high-state level is 2.3 volts.
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Use the estimated state levels to convert the voltages into a sequence of zeros and ones. The
sequence of zeros and ones is a binary waveform representation of the two states. To make the
assignment, use the following decision rule:

• Assign any voltage within a 3%-tolerance region of the low-state level the value 0.
• Assign any voltage within a 3%-tolerance region of the high-state level the value 1.

Determine the widths of the 3%-tolerance regions around the low- and high-state levels.

tolwd = 3/100*diff(levels);

Use logical indexing to determine the voltages within a 3%-tolerance region of the low-state level and
the voltages within a 3%-tolerance region of the high-state level. Assign the value 0 to the voltages
within the tolerance region of the low-state level and 1 to the voltages within the tolerance region of
the high-state level. Plot the result.

y = zeros(size(x));
y(abs(x-min(levels))<=tolwd) = 0;
y(abs(x-max(levels))<=tolwd) = 1;

subplot(2,1,1)
stem(t,x,'filled')
ylabel('Volts')
subplot(2,1,2)
stem(t,y,'filled')
ylabel('\{0,1\}')
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The decision rule has assigned all the voltages to the correct state.
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Calculate Settling Time with Signal Browser
This example shows how to use the Bilevel Measurements panel in the SPTool Signal Browser to find
the settling time of a clock signal.

First, open SPTool by typing the following at the MATLAB command line.

sptool

SPTool opens.

In this example, you import a clock signal from the MAT-file named clockex.mat. In the SPTool
menu, select File > Import. Alternatively, you can press the Ctrl+I keyboard shortcut. The Import to
SPTool dialog box opens.

1 Under Source, click From Disk.
2 In the MAT-file Name box, type clockex, and press Enter. The variables x and t appear under

File Contents.
3

Under File Contents, click x. Click the right arrow ( ) button to the left of the Data box.
4 In the Sampling Frequency box, type 4000000.
5 In the Name box, type Clock.
6 Click OK. The SPTool Signals list now contains a signal named Clock [vector].
7 In SPTool, in the Signals list, select Clock [vector], and click the View button. The Signal

Browser appears and displays the clock signal.
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Because you selected only one signal, the legend is not needed. Turn off the legend by clicking the

Show All Legends ( ) button. Then, use the Style dialog box to modify the appearance of the axes
and the lines for the signal. In the Signal Browser menu, select View > Style.

Parameter Display 1 Setting
Axes background color Black
Ticks, labels, and grid colors Dark Gray
Line color Yellow

To show the Bilevel Measurements panel, in the Signal Browser menu, select Tools >
Measurements > Bilevel Measurements. To collapse the Transitions pane, click the pane
collapse button ( ) next to that label. To expand the Settings pane and the Overshoots /
Undershoots pane, click the pane expand button ( ) next to each label.

The value for the rising edge Settling Time parameter does not appear in the Overshoots /
Undershoots pane because the Settle Seek parameter is too large. The Settle Seek value is longer
than the entire simulation duration. Enter a value for settle seek of 2e-6, and press Enter. Signal
Browser now displays a rising edge settling time value of 118.392 ns.

This settling time value displayed is actually the statistical average of the settling times for all five
rising edges. To display the settling time for only one rising edge, you can zoom in on that transition.

In the Signal Browser toolbar, click the Zoom X button ( ). Click the display near a value of 2
microseconds on the time-axis. Drag to the right, and release near a value of 4 microseconds on the
time-axis. Signal Browser updates the rising edge Settling Time value to reflect the new time
window, as shown in the following figure.

See Also
falltime | overshoot | risetime | settlingtime | slewrate | undershoot

 Calculate Settling Time with Signal Browser

18-15



Find Peak Amplitudes in Signal Browser
This example shows how to use the Peak Finder panel in the SPTool Signal Browser to find heart rate,
given an electrocardiogram (ECG) signal.

First, open SPTool by typing the following at the MATLAB command line.

sptool

SPTool opens.

Using SPTool, you can import signals from variables in the MATLAB workspace. First, create an
electrocardiogram (ECG) signal, sampled at 4 kHz. To create the signal, save this function definition
in a file called ecg.m:

function x = ecg(L)
a0 = [0,1,40,1,0,-34,118,-99,0,2,21,2,0,0,0];
d0 = [0,27,59,91,131,141,163,185,195,275,307,339,357,390,440];
a = a0 / max(a0);
d = round(d0 * L / d0(15));
d(15) = L;
for i = 1:14,
    m = d(i) : d(i+1) - 1
    slope = (a(i+1) - a(i)) / (d(i+1) - d(i))
    x(m+1) = a(i) + slope * (m - d(i))
end

Now apply the Savitzky-Golay filter to the ECG signal. At the MATLAB command line, enter the
following commands:
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x1 = 3.5*ecg(2700).';
y1 = sgolayfilt(kron(ones(1,13),x1),0,21);
n = (1:30000)';
del = round(2700*rand(1));
mhb = y1(n + del);
ts = 0.00025;
Fs = 1/ts;

To import the signal from these variables, in the SPTool menu, select File > Import. Alternatively,
you can press the Ctrl+I keyboard shortcut. The Import to SPTool dialog box appears.

1
Under Workspace Contents, click mhb. Click the right arrow ( ) button to the left of the
Data box.

2
Under Workspace Contents, click Fs. Click the right arrow ( ) button to the left of the
Sampling Frequency box.

3 In the Name box, type ECG.
4 Click OK. The SPTool Signals list now contains a signal named ECG [vector].
5 In SPTool, in the Signals list, select ECG [vector], and click the View button. The Signal

Browser opens and displays the ECG signal.

Because you only selected one signal, the legend is not needed. Turn off the legend by clicking the

Show All Legends ( ) button. Then, use the Style dialog box to modify the appearance of the axes
and the lines for the signal. In the Signal Browser menu, select View > Style.

Parameter Display 1 Setting
Axes background color Black
Ticks, labels, and grid colors Dark Gray
Line color Yellow

To show the Peak Finder panel, in the Signal Browser menu, select Tools > Measurements > Peak
Finder. To expand the Settings pane, click the pane expand button ( ) next to that label. In the
Max Num of Peaks box, type 10 and press the Enter key. Signal Browser now displays in the Peaks
pane a list of 10 peak amplitude values, and the times at which they occur.

From the list of peak values, there is a constant time difference of 0.675 seconds between each
heartbeat. Therefore, the heart rate detected by the ECG signal is given by the following equation.

60 sec
min

0.675 sec
beat

= 88.89beats
min (bpm)

See Also
findpeaks | sgolay | sgolayfilt
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Distortion Measurements
Generate 2048 samples of a sinusoid of frequency 2.5 kHz sampled at 50 kHz. Add white Gaussian
noise such that the signal-to-noise ratio (SNR) is 80 dB.

Fs = 5e4; 
f0 = 2.5e3;
N = 2048;
t = (0:N-1)/Fs;
SNR = 80;

x = cos(2*pi*f0*t);
x = x+randn(size(x))*std(x)/db2mag(SNR);

Pass the result through a weakly nonlinear amplifier represented by a polynomial. The amplifier
introduces spurious tones at the frequencies of the harmonics.

amp = [1e-5 5e-6 -1e-3 6e-5 1 25e-3];
x = polyval(amp,x);

Plot the signal spectrum and annotate the SNR, verifying that it has the expected value. The snr
function computes the power ratio of the fundamental to the noise floor and ignores the DC
component and the harmonics.

snr(x,Fs);
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Plot the signal spectrum and annotate the total harmonic distortion (THD). The thd function
computes the power ratio of the harmonics to the fundamental and ignores the DC component and
the noise floor.

thd(x,Fs);

Plot the signal spectrum and annotate the signal to noise and distortion ratio (SINAD). The sinad
function computes the power ratio of the fundamental to the harmonics and the noise floor. It ignores
only the DC component.

sinad(x,Fs);
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Verify that the SNR, THD, and SINAD obey the equation

10−SNR/10 + 10THD/10 = 10−SINAD/10 .

lhs = 10^(-snr(x,Fs)/10)+10^(thd(x,Fs)/10)

lhs = 7.2203e-08

rhs = 10^(-sinad(x,Fs)/10)

rhs = 7.1997e-08

Plot the signal spectrum and annotate the spurious-free dynamic range (SFDR). The SFDR is the
power ratio of the fundamental to the strongest spurious component ("spur"). In this case, the spur
corresponds to the third harmonic.

sfdr(x,Fs);
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See Also
sfdr | sinad | snr | thd
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Prominence
The prominence of a peak measures how much the peak stands out due to its intrinsic height and its
location relative to other peaks. A low isolated peak can be more prominent than one that is higher
but is an otherwise unremarkable member of a tall range.

To measure the prominence of a peak:

1 Place a marker on the peak.
2 Extend a horizontal line from the peak to the left and right until the line does one of the

following:

• Crosses the signal because there is a higher peak
• Reaches the left or right end of the signal

3 Find the minimum of the signal in each of the two intervals defined in Step 2. This point is either
a valley or one of the signal endpoints.

4 The higher of the two interval minima specifies the reference level. The height of the peak above
this level is its prominence.

findpeaks makes no assumption about the behavior of the signal beyond its endpoints, whatever
their height. This is reflected in Steps 2 and 4 and often affects the value of the reference level.
Consider for example the peaks of this signal:

Peak Number Left Interval
Lies Between
Peak and

Right Interval
Lies Between
Peak and

Lowest Point
on the Left
Interval

Lowest Point
on the Right
Interval

Reference
Level (Highest
Minimum)

1 Left end Crossing due to
peak 2

Left endpoint a a

2 Left end Right end Left endpoint h Left endpoint
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Peak Number Left Interval
Lies Between
Peak and

Right Interval
Lies Between
Peak and

Lowest Point
on the Left
Interval

Lowest Point
on the Right
Interval

Reference
Level (Highest
Minimum)

3 Crossing due to
peak 2

Crossing due to
peak 4

b c c

4 Crossing due to
peak 2

Crossing due to
peak 6

b d b

5 Crossing due to
peak 4

Crossing due to
peak 6

d e e

6 Crossing due to
peak 2

Right end d h d

7 Crossing due to
peak 6

Crossing due to
peak 8

f g g

8 Crossing due to
peak 6

Right end f h f

9 Crossing due to
peak 8

Crossing due to
right endpoint

h i i

See Also
findpeaks | islocalmax | islocalmin
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Determine Peak Widths
Create a signal that consists of a sum of bell curves. Specify the location, height, and width of each
curve.

x = linspace(0,1,1000);

Pos = [1 2 3 5 7 8]/10;
Hgt = [4 4 2 2 2 3];
Wdt = [3 8 4 3 4 6]/100;

for n = 1:length(Pos)
    Gauss(n,:) =  Hgt(n)*exp(-((x - Pos(n))/Wdt(n)).^2);
end

PeakSig = sum(Gauss);

Plot the individual curves and their sum.

plot(x,Gauss,'--',x,PeakSig)
grid

Measure the widths of the peaks using the half prominence as reference.

findpeaks(PeakSig,x,'Annotate','extents')
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Measure the widths again, this time using the half height as reference.

findpeaks(PeakSig,x,'Annotate','extents','WidthReference','halfheight')
title('Signal Peak Widths')
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Spectrum Object to Function
Replacement

• “Nonparametric Spectrum Object to Function Replacement” on page 19-2
• “Autoregressive PSD Object to Function Replacement Syntax” on page 19-9
• “Subspace Pseudospectrum Object to Function Replacement Syntax” on page 19-10
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Nonparametric Spectrum Object to Function Replacement
In this section...
“Periodogram PSD Object to Function Replacement Syntax” on page 19-2
“Periodogram MSSPECTRUM Object to Function Replacement Syntax” on page 19-3
“Welch PSD Object to Function Replacement Syntax” on page 19-4
“Welch MSSPECTRUM Object to Function Replacement Syntax” on page 19-5
“Multitaper PSD Object to Function Replacement Syntax” on page 19-7

Periodogram PSD Object to Function Replacement Syntax
The spectrum.periodogram object syntax will be removed in the future. The following table gives
the equivalent recommended function syntax for periodogram. In the modified periodogram, you
use a window other than the default rectangular window. To illustrate modified periodogram
syntaxes, the table uses a specific window. In each example, x is the input signal.

Deprecated Syntax Replacement Syntax
h = spectrum.periodogram;
psd(h,x);

periodogram(x);

% Modified periodogram with window function
h = spectrum.periodogram('hamming');
psd(h,x);

win = hamming(length(x));
periodogram(x,win);

% Window function and optional input arguments to window function
h = spectrum.periodogram({'Hamming','periodic'});
psd(h,x);

win = hamming(length(x),'periodic');
periodogram(x,win);

% Taylor window and multiple optional input arguments
nbar = 4;
sll = 30;
h = spectrum.periodogram({'Taylor',nbar,sll});
psd(h,x,'Fs',fs,'centerdc',true);

nbar = 4;
sll = -30;
win = taylorwin(length(x),nbar,sll);
periodogram(x,win,[],fs,'centered');

h = spectrum.periodogram(...);
psd(h,x,'NFFT',nfft);

win = ...
periodogram(x,win,nfft);

h = spectrum.periodogram(...);
psd(h,x,'Fs',fs);

win = ...
periodogram(x,win,[],fs);

h = spectrum.periodogram(...);
psd(h,x,'NFFT',nfft,'Fs',fs);

win = ...
periodogram(x,win,nfft,fs);

h = spectrum.periodogram(...);
psd(h,x,...,'FreqPoints','User Defined',...
'FrequencyVector',w);

win = ...
periodogram(x,win,w);

h = spectrum.periodogram(...);
psd(h,x,'FreqPoints','User Defined',...
'FrequencyVector',f,'Fs',fs);

win = ...
periodogram(x,win,f,fs);

% Two-sided spectrum of a real signal
h = spectrum.periodogram(...);
psd(h,x,...,'SpectrumType','TwoSided');

win = ...
periodogram(x,win,...,'twosided');

% Two-sided spectrum with DC (0 frequency) in the center
h = spectrum.periodogram(...);
psd(h,x,...,'CenterDC',true);

win = ...
periodogram(x,win,...,'centered'); 
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Deprecated Syntax Replacement Syntax
h = spectrum.periodogram(...);
psd(h,x,...,'ConfLevel',p);

win = ...
periodogram(x,win,...,'ConfidenceLevel',p);

h = spectrum.periodogram(...);
hPSD = psd(h,x,...);
Pxx = hPSD.Data;
F = hPSD.Frequencies;

win = ... 
[Pxx,F] = periodogram(x,win,...); 

h = spectrum.periodogram(...);
hPSD = psd(h,x,...,'ConfLevel',p);
Pxx = hPSD.Data;
F = hPSD.Frequencies;
Pxxc = hPSD.ConfInterval;

win = ... 
[Pxx,F,Pxxc] = periodogram(x,win,...); 

Periodogram MSSPECTRUM Object to Function Replacement Syntax
The spectrum.periodogram MSSPECTRUM object syntax will be removed in the future. The
following table gives the equivalent recommended function syntax for periodogram. In the modified
periodogram, you use a window other than the default rectangular window. To illustrate modified
periodogram syntaxes, the table uses a specific window. In each example, x is the input signal.

Deprecated Syntax Recommended Syntax
h = spectrum.periodogram;
msspectrum(h,x);

periodogram(x,'power');

h = spectrum.periodogram('Hamming');
msspectrum(h,x);

win = hamming(length(x));
periodogram(x,win,'power');

h = spectrum.periodogram({'Hamming','periodic'});
msspectrum(h,x);

win = hamming(length(x),'periodic');
periodogram(x,win,'power');

nbar = 4;
sll = 30;
h = spectrum.periodogram({'Taylor',nbar,sll});
msspectrum(h,x);

nbar = 4;
sll = -30;
win = taylorwin(length(x),nbar,sll);
periodogram(x,win,'power');

h = spectrum.periodogram(...);
msspectrum(h,x,'NFFT',nfft);

win= ...
periodogram(x,win,nfft,'power');

h = spectrum.periodogram(...);
msspectrum(h,x,'Fs',fs);

win = ...
periodogram(x,win,[],fs,'power');

h = spectrum.periodogram(...);
msspectrum(h,x,'NFFT',nfft,'Fs',fs);

win = ...
periodogram(x,win,nfft,fs,'power');

h = spectrum.periodogram(...);
msspectrum(h,x,...,'SpectrumType','TwoSided');

win = ...
periodogram(x,win,..., 'twosided','power');

h = spectrum.periodogram(...);
msspectrum(h, x,...,'CenterDC',true);

win = ...
periodogram(x,win,...,'centered','power'); 

h = spectrum.periodogram(...);
msspectrum(h,x,...,'ConfLevel',p);

win = ...
periodogram(x,win,...,'ConfidenceLevel', p,...'power'); 

h = spectrum.periodogram(...);
hMS = msspectrum(h,x,...);
Sxx = hMS.Data;
F = hMS.Frequencies;

win = ...
[Sxx,F] = periodogram(x,win,...,'power'); 
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Deprecated Syntax Recommended Syntax
h = spectrum.periodogram(...);
hMS = msspectrum(h,x,...,'ConfLevel',p);
Sxx = hMS.Data;
F = hMS.Frequencies;
Sxxc = hMS.ConfInterval;

win = ...
[Sxx,F,Sxxc] = periodogram(x,win,...,'power'); 

Welch PSD Object to Function Replacement Syntax
The spectrum.welch object syntax will be removed in the future. The following table gives the
equivalent recommended function syntax for pwelch. To illustrate modified periodogram syntaxes,
the table uses a specific window. In each example, x is the input signal.

Deprecated Syntax Replacement Syntax
h = spectrum.welch;
psd(h,x);

pwelch(x);

h = spectrum.welch('Gaussian');
psd(h,x);

win = gausswin(64);
pwelch(x,win);

% Welch estimate with window function and optional input arguments
h = spectrum.welch({'Hamming','periodic'});
psd(h,x);

win = hamming(64,'periodic');
pwelch(x,win);

% Taylor window and multiple optional input arguments
nbar = 4;
sll = 30;
h = spectrum.welch({'Taylor', nbar, sll});
psd(h,x);

nbar = 4;
sll = -30;
win = taylorwin(64,nbar,sll);
pwelch(x,win);

h = spectrum.welch('Hamming',segLen);
psd(h,x);

win = hamming(segLen);
pwelch(x,win);

h = spectrum.welch({'Hamming','periodic'},...
segLen);
psd(h,x);

win = hamming(segLen,'periodic');
pwelch(x,win);

nbar = 4;
sll = 30;
h = spectrum.welch({'Taylor',nbar,sll},...
segLen);
psd(h,x);

nbar = 4;
sll = -30;
win = taylorwin(segLen,nbar,sll);
pwelch(x,win);

h = spectrum.welch('Hamming',segLen,ovlpPct);
psd(h,x);

win = hamming(segLen);
Noverlap = ceil((ovlpPct/100)*segLen);
pwelch(x,win,Noverlap);

h = spectrum.welch({'Hamming','periodic'},...
segLen,ovlpPct);
psd(h,x);

win = hamming(segLen,'periodic');
Noverlap = ceil((ovlpPct/100)*segLen);
pwelch(x,win,Noverlap);

nbar = 4;
sll = 30;
h = spectrum.welch({'Taylor',nbar,sll},...
segLen,ovlpPct);
psd(h,x);

nbar = 4;
sll = -30;
win = taylorwin(segLen,nbar,sll);
Noverlap = ceil((ovlpPct/100)*segLen);
pwelch(x,win,Noverlap);

h = spectrum.welch(...);
psd(h,x,'NFFT',nfft);

win = ...
Noverlap = ...
pwelch(x,win,Noverlap,nfft);
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Deprecated Syntax Replacement Syntax
h = spectrum.welch(...);
psd(h,x,'Fs',fs);

win = ...
Noverlap = ...
pwelch(x,win,Noverlap,[],fs);

h = spectrum.welch(...);
psd(h,x,'NFFT',nfft,'Fs',fs);

win = ...
Noverlap = ...
pwelch(x,win,Noverlap,nfft,fs);

h = spectrum.welch(...);
psd(h,x,...,'FreqPoints','User Defined',...
'FrequencyVector',w);

win = ...
periodogram(x,win,w);

h = spectrum.periodogram(...);
psd(h,x,'FreqPoints','User Defined',...
'FrequencyVector',f,'Fs',fs);

win = ...
Noverlap = ...
pwelch(x,win,Noverlap,f,fs);

% Two-sided spectrum of a real signal
h = spectrum.welch(...);
psd(h,x,...,'SpectrumType','TwoSided');

win = ...
Noverlap = ...
pwelch(x,win,Noverlap,...,'twosided');

% Two-sided spectrum with DC (0 frequency) in the center
h = spectrum.welch(...);
psd(h,x,...,'CenterDC',true);

win = ...
Noverlap = ...
pwelch(x,win,Noverlap,...,'centered'); 

h = spectrum.welch(...);
psd(h,x,...,'ConfLevel',p);

win = ...
Noverlap = ...
pwelch(x,win,Noverlap,...'ConfidenceLevel',p);

h = spectrum.welch(...);
hPSD = psd(h,x,...);
Pxx = hPSD.Data;
F = hPSD.Frequencies;

win = ... 
Noverlap = ...
[Pxx,F] = pwelch(x,win,Noverlap,...); 

h = spectrum.periodogram(...);
hPSD = psd(h,x,...,'ConfLevel',p);
Pxx = hPSD.Data;
F = hPSD.Frequencies;
Pxxc = hPSD.ConfInterval;

win = ... 
Noverlap = ...
[Pxx,F,Pxxc] = pwelch(x,win,Noverlap,...
'ConfidenceLevel',p);

Welch MSSPECTRUM Object to Function Replacement Syntax
The spectrum.welch MSSPECTRUM object syntax will be removed in the future. The following
table gives the equivalent recommended function syntax for pwelch. In the modified periodogram,
you use a window other than the default rectangular window. To illustrate modified periodogram
syntaxes, the table uses a specific window. In each example, x is the input signal.

Deprecated Syntax Recommended Syntax
h = spectrum.welch
msspectrum(h,x);

win = hamming(64);
pwelch(x,win,[],'power');

h = spectrum.welch('Gaussian');
msspectrum(h,x);

win = gausswin(64);
pwelch(x,win,[],'power');

h = spectrum.welch({'Hamming','periodic'});
msspectrum(h,x);

win = hamming(64,'periodic');
pwelch(x,win,[],'power');

nbar = 4;
sll = 30;
h = spectrum.welch({'Taylor',nbar,sll});
msspectrum(h,x);

nbar = 4;
sll = -30;
win = taylorwin(64,nbar,sll);
pwelch(x,win,[],'power');
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Deprecated Syntax Recommended Syntax
segLen = 128;
h = spectrum.welch('Hamming',segLen);
msspectrum(h,x);

win = hamming(128);
pwelch(x,win,[],'power');

segLen = 128;
h = spectrum.welch({'Hamming','periodic'},...
segLen);
msspectrum(h,x);

win = hamming(128,'periodic');
pwelch(x,win,[],'power');

nbar = 4;
sll = 30;
segLen = 128;
h = spectrum.welch({'Taylor',nbar,sll},segLen);
msspectrum(h,x);

nbar = 4;
sll = -30;
segLen = 128;
win = taylorwin(segLen,nbar,sll);
pwelch(x,win,[],'power');

segLen = 128;
ovlpPct = 50;
h = spectrum.welch('Hamming',segLen,ovlpPct);
msspectrum(h,x);

segLen = 128;
win = hamming(segLen);
ovlpPct = 50;
Noverlap = ceil((ovlpPct/100)*segLen);
pwelch(x,win,Noverlap,'power');

segLen = 128;
ovlpPct = 50;
h = spectrum.welch({'Hamming','periodic'},...
segLen,ovlpPct);
msspectrum(h,x);

segLen = 128;
ovlpPct = 50;
win = hamming(segLen,'periodic');
Noverlap = ceil((ovlpPct/100)*segLen);
pwelch(x,win,Noverlap,'power');

nbar = 4;
sll = 30;
segLen = 128;
ovlpPct = 50;
h = spectrum.welch({'Taylor',nbar,sll},...
segLen,ovlpPct);
msspectrum(h,x);

nbar = 4;
sll = -30;
segLen = 128;
win = taylorwin(segLen,nbar,sll);
ovlpPct = 50;
Noverlap = ceil((ovlpPct/100)*segLen);
pwelch(x,win,Noverlap,'power');

h = spectrum.welch(...);
msspectrum(h,x,'NFFT',nfft);

win = ...
Noverlap = ...
pwelch(x,win,Noverlap,nfft,'power');

h = spectrum.welch(...);
msspectrum(h,x,'Fs',fs);

win = ...
Noverlap = ...
pwelch(x,win,Noverlap,[],fs,'power');

h = spectrum.welch(...);
msspectrum(h,x,'NFFT',nfft,'Fs',fs);

win = ...
Noverlap = ...
pwelch(x,win,Noverlap,nfft,fs,'power');

h = spectrum.welch(...);
msspectrum(h, x,...,'FreqPoints','User Defined',...
 'FrequencyVector',w);

win = ...
Noverlap = ...
pwelch(x,win,Noverlap,f,fs,'power');

h = spectrum.welch(...);
msspectrum(h,x,...,'SpectrumType','TwoSided');

win = ...
Noverlap = ...
pwelch(x,win,Noverlap,...,'twosided','power');

h = spectrum.welch(...);
msspectrum(h,x,...,'CenterDC',true);

win = ...
Noverlap = ...
pwelch(x,win,Noverlap,...,'centered','power'); 

h = spectrum.welch(...);
msspectrum(h,x,...,'ConfLevel',p);

win = ...
Noverlap = ...
pwelch(x,win,Noverlap,...,'ConfidenceLevel',p,'power'); 
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Deprecated Syntax Recommended Syntax
h = spectrum.welch(...);
hMS = msspectrum(h,x,...);
Sxx = hMS.Data;
F = hMS.Frequencies;

[Sxx,F] = pwelch(...,'power'); 

h = spectrum.welch(...);
hMS = msspectrum(h, x, …, 'ConfLevel', p);
Sxx = hMS.Data;
F = hMS.Frequencies;
Sxxc = hMS.ConfInterval;

[Sxx,F,Sxxc] = pwelch(...,'ConfidenceLevel',p,'power'); 

Multitaper PSD Object to Function Replacement Syntax
The spectrum.mtm object syntax will be removed in the future. The following table gives the
equivalent recommended function syntax for pmtm. In each example, x is the input signal.

Deprecated Syntax Recommended Syntax
hMTM = spectrum.mtm;
psd(hMTM,x);

pmtm(x,4);

hMTM = spectrum.mtm(NW);
psd(hMTM,x);

pmtm(x,NW);

[E,V] = dpss(length(x),NW);
hMTM = spectrum.mtm(E,V);
psd(hMTM,x);

[E,V] = dpss(length(x),NW);
pmtm(x,E,V);

hMTM = spectrum.mtm(NW);
psd(hMTM,x,'Fs',fs);

pmtm(x,NW,fs);

hMTM = spectrum.mtm(E,V);
psd(hMTM,x,'Fs',fs);

pmtm(x,E,V,fs);

hMTM = spectrum.mtm(NW);
psd(hMTM,x,'Fs',fs,'NFFT',nfft);

pmtm(x,NW,nfft,fs);

hMTM = spectrum.mtm(E,V);
psd(hMTM,x,'Fs',fs,'NFFT',nfft);

pmtm(x,E,V,nfft,fs);

hMTM = spectrum.mtm(NW);
psd(hMTM,x,'FreqPoints','User Defined',...
'FrequencyVector',w);

pmtm(x,NW,w);

hMTM = spectrum.mtm(E,V);
psd(hMTM,x,'FreqPoints','User Defined',...
'FrequencyVector',w);

pmtm(x,E,V,w);

hMTM = spectrum.mtm(NW);
psd(hMTM,x,'FreqPoints','User Defined',...
'FrequencyVector',f,'Fs',fs);

pmtm(x,E,V,f,fs);

hMTM = spectrum.mtm(E,V);
psd(hMTM,x,'FreqPoints','User Defined',...
'FrequencyVector',f,'Fs',fs);

pmtm(x,E,V,f,fs);

hMTM = spectrum.mtm(...,'Adaptive');
psd(hMTM,...);

pmtm(...,'adapt');

hMTM = spectrum.mtm(...,'Eigenvalue');
psd(hMTM,...);

pmtm(...,'eigen');
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Deprecated Syntax Recommended Syntax
hMTM = spectrum.mtm(...,'Unity');
psd(hMTM,...);

pmtm(...,'unity');

hMTM = spectrum.mtm(...);
psd(hMTM,...,'SpectrumType','twosided');

pmtm(...,'twosided');

hMTM = spectrum.mtm(...);
psd(hMTM,...,'SpectrumType','twosided',...
'CenterDC',true);

pmtm(...,'centered');

hMTM = spectrum.mtm(...);
psd(hMTM,...,'ConfLevel',p);

pmtm(...,'ConfidenceLevel',p); 

hMTM = spectrum.mtm(...);
hPSD = psd(hMTM,...);
Pxx = hPSD.Data;
F = hPSD.Frequencies;

[Pxx,F] = pmtm(...);

hMTM = spectrum.mtm(...);
hPSD = psd(hMTM,x,'ConfLevel',p);
Pxx = hPSD.Data;
F = hPSD.Frequencies;
Pxxc = hPSD.ConfInterval;

[Pxx,F,Pxxc] = pmtm(x,'ConfidenceLevel',p);
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Autoregressive PSD Object to Function Replacement Syntax
The AR PSD object syntax will be removed in the future. The following table gives the equivalent
recommended function syntax. The table uses spectrum.burg and pburg as examples, but the
object-to-function replacement syntaxes are valid for all the AR spectral estimators with the
appropriate substitution: spectrum.burg to pburg, spectrum.cov to pcov, spectrum.mcov to
pmcov, and spectrum.yulear to pyulear. In each example, x is the input signal.

Deprecated Syntax Replacement Syntax
hBurg = spectrum.burg;
psd(hBurg,x);

pburg(x,4);

hBurg = spectrum.burg(order);
psd(hBurg,x);

pburg(x,order);

hBurg = spectrum.burg(order);
psd(hBurg,x,'NFFT',nfft);

pburg(x,order,nfft);

hBurg = spectrum.burg(order);
psd(hBurg,x,'Fs',fs);

pburg(x,order,[],fs);

hBurg = spectrum.burg(order);
psd(hBurg,x,'NFFT',nfft,'Fs',fs);

pburg(x,order,nfft,fs);

hBurg = spectrum.burg(order);
psd(hBurg, x,...,'FreqPoints','User Defined',...
'FrequencyVector',w);

pburg(x,order,w);

hBurg = spectrum.burg(order);
psd(hBurg,x,'FreqPoints','User Defined',...
'FrequencyVector',f,'Fs',fs);

pburg(x,order,f,fs);

hBurg = spectrum.burg
psd(...,'SpectrumType','TwoSided');

pburg(...,'twosided');

hBurg = spectrum.burg;
psd(...,'CenterDC',true);

pburg(x,...,'centered'); 

hBurg = spectrum.burg;
psd(...,'ConfLevel',p);

pburg(x,...,'ConfidenceLevel',p); 

hBurg = spectrum.burg;
hPSD = psd(...);
Pxx = hPSD.Data;
F = hPSD.Frequencies;

[Pxx,F] = pburg(...); 

hBurg = spectrum.burg;
hPSD = psd(...,'ConfLevel',p);
Pxx = hPSD.Data;
F = hPSD.Frequencies;
Pxxc = hPSD.ConfInterval;

[Pxx,F,Pxxc] = pburg(...); 
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Subspace Pseudospectrum Object to Function Replacement
Syntax

The pseudospectrum object syntax will be removed in the future. The following table gives the
equivalent recommended function syntax. The table uses spectrum.music and the functional
equivalent, pmusic, but the syntax replacements are also valid for spectrum.eigenvector to
peig. In each example, x is the input signal.

Deprecated Syntax Replacement Syntax
h = spectrum.music(nsinusoids);
pseudospectrum(h,x);

pmusic(x,nsinusoids)

h = spectrum.music(nsinusoids);
pseudospectrum(h,x,'Fs',fs)

pmusic(x,nsinusoids,[],fs);

h = spectrum.music(nsinusoids,segLen,ovlpPct,...
'Hamming');
pseudospectrum(h,x)

win = hamming(segLen)
Noverlap = ceil(ovlpPct/100*segLen);
P = nsinusoids;
Fs = 2*pi;
pmusic(x,P,[],Fs,win,Noverlap);

h = spectrum.music(nsinusoids,segLen,ovlpPct,...
winName,thresh);
pseudospectrum(h,x)

win = winfunc(segLen)
Noverlap = ceil(ovlpPct/100*segLen);
P = [nsinusoids thresh];
Fs = 2 *pi;
pmusic(x,P,[],Fs,win,Noverlap);

h = spectrum.music(nsinusoids,segLen,...
ovlpPct,winName,thresh);
pseudospectrum(h,x,'Fs',fs)

win = hamming(segLen)
nfft = max(256,2^nexpow2(segLen));
Noverlap = ceil(ovlpPct/100*segLen);
P = [nsinusoids thresh];
pmusic(x,P,[],Fs,win,Noverlap);

h = spectrum.music(nsinusoids,segLen,...
ovlpPct,winName,thresh);
pseudospectrum(h,x,'Fs',fs,'SpectrumRange',range)

win = hamming(segLen)
Noverlap = ceil(ovlpPct/100*segLen);
P = [nsinusoids thresh];
pmusic(x,P,[],Fs,range,win,Noverlap);

h = spectrum.music(nsinusoids,segLen,...
ovlpPct,winName,thresh);
pseudospectrum(h,x,'Fs',fs,'SpectrumRange',range,'NFFT',nfft)

win = hamming(segLen)
Noverlap = ceil(ovlpPct/100*segLen);
P = [nsinusoids thresh];
pmusic(x,P,nfft,Fs,range,win,Noverlap);

h = spectrum.music(nsinusoids,segLen,...
ovlpPct,winName,thresh);
pseudospectrum(h,x,...,'FreqPoints','User Defined',...
'Frequency Vector',fVec)

win = hamming(segLen)
Noverlap = ceil(ovlpPct/100*segLen);
P = [nsinusoids thresh];
pmusic(x,P,fVec,Fs,range,win,Noverlap);

h = spectrum.music(...,'DataMatrix');
pseudospectrum(...)

nfft = min(256,2^nextpow2(size(x,1)));
pmusic(x,P,nfft,Fs,range,win)

h = spectrum.music(...,'CorrelationMatrix');
pseudospectrum(...)

pmusic(x,P,'corr',nfft,Fs,range,win,Noverlap);
% or equivalently
pmusic(x,P,'corr',fVec,Fs,range,win,Noverlap);

h = spectrum.music(...);
pseudospectrum(...,'CenterDC',true)

pmusic(...,'centered'); 

[Spec,F] = pseudospectrum(...) [Spec,F] = pmusic(...);
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Vibration Analysis

• “Modal Parameters of MIMO System” on page 20-2
• “Compute and Display Order-RPM Map” on page 20-5
• “MIMO Stabilization Diagram” on page 20-8
• “Modal Analysis of Identified Models” on page 20-12

20



Modal Parameters of MIMO System
Compute the natural frequencies, the damping ratios, and the mode shapes for a two-input/three-
output system excited by several bursts of random noise. Each burst lasts for 1 second, and there are
2 seconds between the end of each burst and the start of the next. The data are sampled at 4 kHz.

Load the data file. Plot the input signals and the output signals.

load modaldata

subplot(2,1,1)
plot(Xburst)
title('Input Signals')
subplot(2,1,2)
plot(Yburst)
title('Output Signals')

Compute the frequency-response functions. Specify a rectangular window with length equal to the
burst period and no overlap between adjoining segments.

burstLen = 12000;
[frf,f] = modalfrf(Xburst,Yburst,fs,burstLen);

Visualize a stabilization diagram and return the stable natural frequencies. Specify a maximum model
order of 30 modes.
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figure
modalsd(frf,f,fs,'MaxModes',30);

Zoom in on the plot. The averaged response function has maxima at 373 Hz, 852 Hz, and 1371 Hz,
which correspond to the physical frequencies of the system. Save the maxima to a variable.

phfr = [373 852 1371];

Compute the modal parameters using the least-squares complex exponential (LSCE) algorithm.
Specify a model order of 6 modes and specify physical frequencies for the 3 modes determined from
the stabilization diagram. The function generates one set of natural frequencies and damping ratios
for each input reference.

[fn,dr,ms,ofrf] = modalfit(frf,f,fs,6,'PhysFreq',phfr);

Plot the reconstructed frequency-response functions and compare them to the original ones.

for k = 1:2
    for m = 1:3
        subplot(2,3,m+3*(k-1))
        plot(f/1000,10*log10(abs(frf(:,m,k))))
        hold on
        plot(f/1000,10*log10(abs(ofrf(:,m,k))))
        hold off
        text(1,-50,[['Output ';' Input '] num2str([m k]')])
        ylim([-100 -40])
    end
end
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subplot(2,3,2)
title('Frequency-Response Functions')
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Compute and Display Order-RPM Map
Generate a signal that consists of two linear chirps and a quadratic chirp, all sampled at 600 Hz for 5
seconds. The system that produces the signal increases its rotational speed from 10 to 40 revolutions
per second during the testing period.

Generate the tachometer readings.

fs = 600;
t1 = 5;
t = 0:1/fs:t1;
f0 = 10;
f1 = 40;
rpm = 60*linspace(f0,f1,length(t));

The linear chirps have orders 1 and 2.5. The component with order 1 has twice the amplitude of the
other. The quadratic chirp starts at order 6 and returns to this order at the end of the measurement.
Its amplitude is 0.8. Create the signal using this information.

o1 = 1;
o2 = 2.5;
o6 = 6;
x = 2*chirp(t,o1*f0,t1,o1*f1)+chirp(t,o2*f0,t1,o2*f1) + ...
    0.8*chirp(t,o6*f0,t1,o6*f1,'quadratic');

Compute the order-RPM map of the signal. Use the peak amplitude at each measurement cell. Specify
a resolution of 0.25 orders. Window the data with a Chebyshev window whose sidelobe attenuation is
50 dB.

[map,or,rp] = rpmordermap(x,fs,rpm,0.25, ...
    'Amplitude','peak','Window',{'chebwin',50});

Draw the order-RPM map as a waterfall plot.

[OR,RP] = meshgrid(or,rp);
waterfall(OR,RP,map')
view(-15,45)
xlabel('Order')
ylabel('RPM')
zlabel('Amplitude')
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Use rpmordermap with no output arguments to display the map. Specify a resolution of 0.2 orders
and 80% overlap between adjoining segments. Set the sidelobe attenuation of the Chebyshev window
to 80 dB.

rpmordermap(x,fs,rpm,0.2, ...
    'Amplitude','peak','OverlapPercent',80,'Window',{'chebwin',80})
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See Also
orderspectrum | ordertrack | orderwaveform | rpmfreqmap | rpmordermap | tachorpm
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MIMO Stabilization Diagram
Compute the frequency-response functions for a two-input/two-output system excited by random
noise.

Load the data file. Compute the frequency-response functions using a 5000-sample Hann window and
50% overlap between adjoining data segments. Specify that the output measurements are
displacements.

load modaldata
winlen = 5000;

[frf,f] = modalfrf(Xrand,Yrand,fs,hann(winlen),0.5*winlen,'Sensor','dis');

Generate a stabilization diagram to identify up to 20 physical modes.

modalsd(frf,f,fs,'MaxModes',20)

Repeat the computation, but now tighten the criteria for stability. Classify a given pole as stable in
frequency if its natural frequency changes by less than 0.01% as the model order increases. Classify a
given pole as stable in damping if the damping ratio estimate changes by less than 0.2% as the model
order increases.

modalsd(frf,f,fs,'MaxModes',20,'SCriteria',[1e-4 0.002])
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Restrict the frequency range to between 0 and 500 Hz. Relax the stability criteria to 0.5% for
frequency and 10% for damping.

modalsd(frf,f,fs,'MaxModes',20,'SCriteria',[5e-3 0.1],'FreqRange',[0 500])
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Repeat the computation using the least-squares rational function algorithm. Restrict the frequency
range from 100 Hz to 350 Hz and identify up to 10 physical modes.

modalsd(frf,f,fs,'MaxModes',10,'FreqRange',[100 350],'FitMethod','lsrf')
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See Also
modalfit | modalfrf | modalsd

Related Examples
• “Order Analysis of a Vibration Signal” on page 24-424

 MIMO Stabilization Diagram

20-11



Modal Analysis of Identified Models
Identify state-space models of systems. Use the models to compute frequency-response functions and
modal parameters. This example requires a System Identification Toolbox™ license.

Hammer Excitation

Load a file containing three-input/three-output hammer excitation data sampled at 4 kHz. Use the
first 104 samples for estimation and samples 2 × 104  to 5 × 104 for model quality validation. Specify
the sample time as the inverse of the sample rate. Store the data as @iddata objects.

load modaldata XhammerMISO1 YhammerMISO1 fs

rest = 1:1e4;
rval = 2e4:5e4;
Ts = 1/fs;

Estimation = iddata(YhammerMISO1(rest,:),XhammerMISO1(rest,:),Ts);
Validation = iddata(YhammerMISO1(rval,:),XhammerMISO1(rval,:),Ts,'Tstart',rval(1)*Ts);

Plot the estimation data and the validation data.

plot(Estimation,Validation)
legend(gca,'show')
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Use the ssest function to estimate a 7th-order state-space model of the system that minimizes the
simulation error between the measured outputs and the model outputs. Specify that the state-space
model has feedthrough.

Orders = 7;
opt = ssestOptions('Focus','simulation');

sys = ssest(Estimation,Orders,'Feedthrough',true,'Ts',Ts,opt);

(To find the model order that gives the best tradeoff between accuracy and complexity, set Orders to
1:15 in the previous code. ssest outputs a log plot of singular values that lets you specify the order
interactively. The function also recommends a model order of 7.)

Validate the model quality on the validation dataset. Plot the normalized root mean square error
(NRMSE) measure of goodness-of-fit. The model describes accurately the output signals of the
validation data.

compare(Validation,sys)
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Estimate the frequency-response functions of the model. Display the functions using modalfrf
without output arguments.

[frf,f] = modalfrf(sys);
modalfrf(sys)
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Assume that the system is well described using three modes. Compute the natural frequencies,
damping ratios, and mode-shape vectors of the three modes.

Modes = 3;
[fn,dr,ms] = modalfit(sys,f,Modes)

fn = 3×1
103 ×

    0.3727
    0.8525
    1.3706

dr = 3×1

    0.0008
    0.0018
    0.0029

ms = 3×3 complex

   0.0036 - 0.0019i   0.0039 - 0.0005i   0.0021 + 0.0006i
   0.0043 - 0.0023i   0.0010 - 0.0001i  -0.0033 - 0.0010i
   0.0040 - 0.0021i  -0.0031 + 0.0004i   0.0011 + 0.0003i
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Compute and display the reconstructed frequency-response functions. Express the magnitudes in
decibels.

[~,~,~,ofrf] = modalfit(sys,f,Modes);

clf
for ij = 1:3
    for ji = 1:3
        subplot(3,3,3*(ij-1)+ji)
        plot(f/1000,20*log10(abs(ofrf(:,ji,ij))))
        axis tight
        title(sprintf('In%d -> Out%d',ij,ji))
        if ij==3
            xlabel('Frequency (kHz)')
        end
    end
end

Controlled Unstable Process

Load a file containing a high modal density frequency-response measurement. The data corresponds
to an unstable process maintained at equilibrium using feedback control. Store the data as an idfrd
object for identification. Plot the Bode diagram.

load HighModalDensData FRF f

G = idfrd(permute(FRF,[2 3 1]),f,0,'FrequencyUnit','Hz');
figure
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bodemag(G)
xlim([0.01,2e3])

Identify a transfer function with 32 poles and 32 zeros.

sys = tfest(G,32,32);

Compare the frequency response of the model with the measured response.

bodemag(G,sys)
xlim([0.01,2e3])
legend(gca,'show')
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Extract the natural frequencies and damping ratios of the first 10 least-damped oscillatory modes.
Store the results in a table.

[fn,dr] = modalfit(sys,[],10);
T = table((1:10)',fn,dr,'VariableNames',{'Mode','Frequency','Damping'})

T=10×3 table
    Mode    Frequency     Damping 
    ____    _________    _________

      1      82.764       0.011304
      2      85.013       0.015632
      3      124.04       0.025252
      4      142.04       0.017687
      5      251.46      0.0062182
      6      332.79      0.0058266
      7      401.21      0.0043645
      8      625.14      0.0039247
      9      770.49       0.002795
     10      943.64      0.0019943

See Also
modalfit | modalfrf | ssest
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Signal Analyzer App

• “Using Signal Analyzer App” on page 21-2
• “Select Signals to Analyze” on page 21-9
• “Preprocess Signals” on page 21-13
• “Explore Signals” on page 21-19
• “Share Analysis” on page 21-26
• “Find Delay Between Correlated Signals” on page 21-30
• “Plot Signals from the Command Line” on page 21-35
• “Resolve Tones by Varying Window Leakage” on page 21-39
• “Resolve Tones by Varying Window Leakage” on page 21-43
• “Analyze Signals with Inherent Time Information” on page 21-45
• “Spectrogram View of Dial Tone Signal” on page 21-48
• “Find Interference Using Persistence Spectrum” on page 21-51
• “Extract Regions of Interest from Whale Song” on page 21-56
• “Modulation and Demodulation Using Complex Envelope” on page 21-61
• “Find and Track Ridges Using Reassigned Spectrogram” on page 21-70
• “Scalogram of Hyperbolic Chirp” on page 21-75
• “Extract Voices from Music Signal” on page 21-78
• “Resample and Filter a Nonuniformly Sampled Signal” on page 21-84
• “Declip Saturated Signals Using Your Own Function” on page 21-91
• “Compute Envelope Spectrum of Vibration Signal” on page 21-96
• “Edit Sample Rate and Other Time Information” on page 21-103
• “Data Types Supported by Signal Analyzer” on page 21-106
• “Spectrum Computation in Signal Analyzer” on page 21-109
• “Persistence Spectrum in Signal Analyzer” on page 21-113
• “Spectrogram Computation in Signal Analyzer” on page 21-115
• “Scalogram Computation in Signal Analyzer” on page 21-120
• “Keyboard Shortcuts for Signal Analyzer” on page 21-124
• “Signal Analyzer Tips and Limitations” on page 21-126
• “Customize Signal Analyzer” on page 21-130
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Using Signal Analyzer App

App Workflow
A typical workflow for inspecting and comparing signals using the Signal Analyzer app is:

1 Select Signals to Analyze on page 21-9 — Select any signal available in the MATLAB
workspace. The app accepts numeric arrays and signals with inherent time information, such as
MATLAB timetable arrays, timeseries objects, and labeledSignalSet objects. See “Data
Types Supported by Signal Analyzer” on page 21-106 for more information.

2 “Preprocess Signals” on page 21-13 — Lowpass, highpass, bandpass, or bandstop filter signals.
Remove trends and compute signal envelopes. Smooth signals using moving averages,
regression, Savitzky-Golay filters, or other methods. Change sample rates of signals or
interpolate nonuniformly sampled signals onto uniform grids. Preprocess signals using your own
custom functions. Generate MATLAB functions to automate preprocessing operations.

3 Explore Signals on page 21-19 — Add time information to signals using sample rates, numeric
vectors, duration arrays, or MATLAB expressions. Plot, measure, and compare data, their
spectra, their spectrograms, or their scalograms. Look for features and patterns in the time
domain, in the frequency domain, and in the time-frequency domain. Compute persistence
spectra to analyze sporadic signals and sharpen spectrogram estimates using reassignment.
Extract regions of interest from signals.

4 Share Analysis on page 21-26 — Copy displays from the app to the clipboard as images. Export
signals to the MATLAB workspace or save them to MAT-files. Generate MATLAB scripts to
automate the computation of power spectrum, spectrogram, or persistence spectrum estimates
and the extraction of regions of interest. Save Signal Analyzer sessions to resume your analysis
later or on another machine.

Example: Extract Regions of Interest from Whale Song
Load a file that contains audio data from a Pacific blue whale, sampled at 4 kHz. The file is from the
library of animal vocalizations maintained by the Cornell University Bioacoustics Research Program.
The time scale in the data is compressed by a factor of 10 to raise the pitch and make the calls more
audible. Convert the signal to a MATLAB® timetable.

whaleFile = fullfile(matlabroot,'examples','matlab','data','bluewhale.au');
[w,fs] = audioread(whaleFile);

whale = timetable(seconds((0:length(w)-1)'/fs),w);

% To hear, type soundsc(w,fs)

Open Signal Analyzer and drag the timetable to a display. Four features stand out from the noise.
The first is known as a trill, and the other three are known as moans.
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On the Display tab, click Spectrum to open a spectrum view and click Panner to activate the
panner. Use the panner to create a zoom window with a width of about 2 seconds. Drag the zoom
window so that it is centered on the trill. The spectrum shows a noticeable peak at around 900 Hz.
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Isolate the single trill by highpass filtering. Right-click the signal in the Signal table and select
Duplicate to create a copy of the whale song. Remove the original signal from the display by clearing
the check box next to its name in the Signal table. On the Analyzer tab, click Preprocessing ▼ and
select Highpass. Set the passband frequency to 925 Hz and the stopband attenuation at 80 dB. Use
the default value for the steepness.

Clear the display and select the original signal. Extract the three moans to compare their spectra:

1 Center the panner zoom window on the first moan. The spectrum has eight clearly defined peaks,
located very close to multiples of 170 Hz. Click Extract Signals ▼ and select Between Time
Limits.

2 Click Panner to hide the panner. Press the space bar to see the full signal. Click Zoom in X and
zoom in on a 2-second interval of the time view centered on the second moan. The spectrum
again has peaks at multiples of 170 Hz. Click Extract Signals ▼ and select Between Time
Limits.

3 Press the space bar to see the full signal. Click Data Cursors ▼ and select Two. Place the time
domain cursors in a 2-second interval around the third moan. Again, there are peaks at multiples
of 170 Hz. Click Extract Signals ▼ and select Between Time Cursors.
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Plot the highpass-filtered signal and place the two data cursors at 1 second and 3.5 seconds. Extract
the region containing the trill.
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Remove the original signal from the display by clearing the check box next to its name in the Signal
table. Display the three regions of interest you just extracted. Their spectra lie approximately on top
of each other.

On the same display, plot the region of interest containing the trill that you extracted. The trill and
moan spectra are noticeably different.

21 Signal Analyzer App

21-6



Click on Export on the Analyzer tab to export the four regions of interest in a MAT-file.
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See Also
Signal Analyzer | Signal Labeler

Related Examples
• “Find Delay Between Correlated Signals” on page 21-30
• “Plot Signals from the Command Line” on page 21-35
• “Resolve Tones by Varying Window Leakage” on page 21-39
• “Analyze Signals with Inherent Time Information” on page 21-45
• “Spectrogram View of Dial Tone Signal” on page 21-48
• “Find Interference Using Persistence Spectrum” on page 21-51
• “Modulation and Demodulation Using Complex Envelope” on page 21-61
• “Find and Track Ridges Using Reassigned Spectrogram” on page 21-70
• “Scalogram of Hyperbolic Chirp” on page 21-75
• “Extract Voices from Music Signal” on page 21-78
• “Resample and Filter a Nonuniformly Sampled Signal” on page 21-84
• “Declip Saturated Signals Using Your Own Function” on page 21-91
• “Compute Envelope Spectrum of Vibration Signal” on page 21-96
• “Extract Regions of Interest from Whale Song” on page 21-56
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Select Signals to Analyze
The Signal Analyzer app works with vectors, matrices, MATLAB timetables, timeseries objects, or
labeledSignalSet objects in the MATLAB workspace. When you start the app, all usable signals in
the workspace appear in the Workspace browser at the bottom-left corner. See “Data Types
Supported by Signal Analyzer” on page 21-106 for more information.

Select Signals from the Workspace Browser
Select signals from the Workspace browser by clicking their names and dragging them to the Signal
table at the top-left corner. To plot a signal, drag it to a display. If you select the check box next to the
name of a signal in the Signal table, the signal is plotted in the selected display. You can also drag
signals directly from the Workspace browser to a display. The dragged signals are plotted in the
display and listed in the Signal table.

Note Signal Analyzer does not support matrices, time series, timetables, or labeled signal sets with
more than 8000 channels.

There are two different ways to choose signals in the Signal table. Each way gives you access to a
different set of operations.

• Selecting the signal by clicking the Name, Info, Time, or Start Time column in the Signal table
enables you to perform all the operations in the Analyzer tab. You can change the time
information, preprocess the signals, or duplicate them. You do not need to plot a signal to
preprocess it.

• Selecting the check box to the left of the signal name plots the signal in the currently selected
display and enables you to perform all the operations in the Display tab. You can display the
signal in the frequency domain or the time-frequency domain, or you can measure the signal using
cursors.

Note If you attempt to import signals with more than 100 columns, the app displays a warning. The
matrix you are trying to import might be the transpose of a multichannel signal that you want to
analyze. In that case, click No in the warning dialog box and transpose the matrix in the workspace.
If you do want to import the columns as separate signals, click Yes. If you drag the matrix to a display
and click Yes in the warning dialog box, then the app plots only the first 10 columns of the matrix but
imports all the columns. To plot signal columns beyond the 10th, drag them to the display.
Alternatively, in the Signal table, select the check boxes next to the names of the signals you want to
plot.

If you modify a signal in the MATLAB workspace, the Workspace browser updates automatically.
However, the app does not recognize the changes until you reimport the signal by dragging it again
to the Signal table or to a display.

If you add or remove matrix columns, the app deletes the signals, clears any plots of them, and
creates new signals with the modified matrix dimensions.

Matrices, timetables, time series, and labeled signal sets containing nested channels in a hierarchical
structure are shown in a tree view that displays the hierarchy explicitly.
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Note Signal Analyzer treats timetables as multichannel signals, even if they have only one channel.

• Example: A 100-by-3 matrix called sgn appears in the Signal table as sgn. If you expand the tree
view, you can see the three individual columns, labeled sgn(:,1), sgn(:,2), and sgn(:,3).

• Example: Create a timetable with four variables. "Temperature" has two channels,
"WindSpeed" has one channel, "Electric" has three channels, and "Magnetic" has one
channel.

tmt = timetable(seconds(0:99)', ...
    randn(100,2),randn(100,1),randn(100,3),randn(100,1));
tmt.Properties.VariableNames = ...
    ["Temperature" "WindSpeed" "Electric" "Magnetic"];

Drag the timetable to the Signal table. Expand the tree view to see the individual channels.

Filter Signals in the Signal Table
To help search through a large amount of data in the Signal table, you can filter signals. The filter
criteria can be any text that is contained in the signal name or in other columns.

• To show signals with a given name, enter a search phrase into the Filter Signals text box. The
matches are highlighted in the filter results.

Suppose that you have three sig signals, sig01, sig02, and sig03, and three sgn signals, sgn01,
sgn02, and sgn03. You can enter sg to show the three sgn signals, or enter 2 to show sig02 and
sgn02.
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• You can also filter signals according to their time information. To access this functionality, click
inside the search results box, and then click Advanced. For details on entering time information,
see Edit Sample Rate and Other Time Information on page 21-103.

Suppose that you have six signals with these sample times and start times:

The Advanced menu lets you search signals by Name, Samples, Start Time, or Time in terms of
sample rate or sample time.

If you select the Time option and enter 20, the app finds the four signals sampled at 200 Hz. If
you also select the Start Time option in the second text box and enter 0, the app finds sgn01
and sig01.

Note The filter matches values as text, not numbers. For instance, if you choose the Start Time
option and enter 00, then the filter does not return any results.

• You can save and store a filter for future use. From the Advanced menu of the search results box,
click Quick Search Settings. Enter a name in the Save Search As box, and click Save.
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Next Step
“Preprocess Signals” on page 21-13

See Also
Signal Analyzer

Related Examples
• “Extract Regions of Interest from Whale Song” on page 21-56

More About
• “Persistence Spectrum in Signal Analyzer” on page 21-113
• “Spectrogram Computation in Signal Analyzer” on page 21-115
• “Scalogram Computation in Signal Analyzer” on page 21-120
• “Spectrum Computation in Signal Analyzer” on page 21-109
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Preprocess Signals
You can use the Signal Analyzer app to perform several signal preprocessing tasks. The different
processing options appear in the Analyzer tab:

Preprocessing operations, undo operations, and function generation apply to all signals currently
selected in the Signal table. To select signals, click their Name, Info, Time, or Start Time column in
the Signal table.

Note

• Preprocessing is not supported for labeled signal sets. If you want to preprocess a signal that
belongs to a labeled signal set, you must first extract the signal from the set. See “Extract Signal
Regions of Interest” on page 21-24 for more information.

• Preprocessing operations overwrite the signal on which they work. If you want to keep the original
signal, duplicate it and operate on the duplicate.

You can perform preprocessing actions any number of times and in any order. The Info column in the

Signal table includes an icon  that indicates if any preprocessing has been performed on a signal.
Clicking the icon enumerates the actions and the order in which they were performed. Preprocessing
steps can be undone by clicking Undo Preprocessing on the Analyzer tab or on any tab arising
from a preprocessing action. The steps are undone one at a time, starting with the most recent.

Tip To see a full summary of the preprocessing steps you took, including all settings you chose, click
Generate Function on the Analyzer tab.

You can preprocess individual channels of a multichannel signal. If you select a multichannel signal
and one of its channels for preprocessing, the app preprocesses the individual channel only once.

Duplicate and Rename Signals
Signal Analyzer enables you to duplicate and rename signals that you can then preprocess or export
for further analysis.
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To duplicate a signal, use the Duplicate button on the Analyzer tab or on any tab arising from a
preprocessing action. Alternatively, right-click the signal in the Signal table and select Duplicate.
The duplicate has the same name as the original signal with _copy appended.

If you select a signal and one of its channels for duplication, the app creates a duplicate of the signal
and an independent duplicate of the selected channel.

To rename a signal, double-click the signal name in the Signal table and change the name.
Alternatively, right-click the signal in the Signal table and select Rename.

Note You cannot rename individual channels of a multichannel signal.

Filter Signals
To filter one or more selected signals, on the Analyzer tab, click the Lowpass, Highpass, Bandpass,
or Bandstop icon in the Preprocessing gallery. The app uses the lowpass, highpass, bandpass,
and bandstop functions to perform the filtering. You can control the stopband attenuation, the
passband frequencies, and the widths of the transition regions. See the function reference pages for
additional information. Filtering does not support nonuniformly sampled signals.

Smooth Signals
To smooth one or more selected signals, on the Analyzer tab, click the Smooth icon in the
Preprocessing gallery. The app uses the MATLAB function smoothdata to perform the smoothing.
The following smoothing methods are available:

• Moving mean
• Moving median
• Gaussian
• Linear regression
• Quadratic regression
• Robust linear regression
• Robust quadratic regression
• Savitzky-Golay filtering

Resample Signals
To resample one or more selected signals, on the Analyzer tab, expand the Preprocessing gallery
and click the Resample icon. Signal Analyzer uses the Signal Processing Toolbox function
resample to perform the resampling. The following options are available:

• When your signal is nonuniformly sampled, you can use the app to interpolate it onto a uniform
grid. You can specify the interpolation method and the sample rate at which you want the signal to
be sampled. The following interpolation methods are available:

• Linear interpolation
• Shape-preserving piecewise cubic interpolation
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• Cubic spline interpolation using not-a-knot end conditions

See the interp1 reference page for more information.
• When your signal is uniformly sampled, you can use the app to change its sample rate. You can

specify either the desired sample rate or the factor by which you want to upsample or downsample
the signal. In this case, the interpolation panel in the Resample tab is disabled because the
interpolation operation does not make sense with uniformly sampled signals.

The resampling operation requires time information. If you try to resample a signal in samples, the
app issues a warning.

Detrend Signals
To detrend one or more selected signals, on the Analyzer tab, expand the Preprocessing gallery and
click the Detrend icon. Signal Analyzer uses the MATLAB function detrend to perform the
detrending. The app can remove the following trends from signals:

• Constant trends.
• Linear trends.
• Piecewise linear trends. To remove a piecewise linear trend, specify the breakpoints as a comma-

separated list.

Compute Signal Envelopes
To compute the envelope of one or more selected signals, on the Analyzer tab, expand the
Preprocessing gallery and click the Envelope icon. Signal Analyzer uses the Signal Processing
Toolbox function envelope to estimate envelopes. You can compute the upper envelope or the lower
envelope of each signal. The following envelope estimation algorithms are available:

• Hilbert — The app computes the signal envelope as the magnitude of the analytic signal found
using the discrete Fourier transform as implemented in hilbert.

• FIR — The app computes the signal envelope by filtering the signal with a Hilbert FIR filter of
adjustable size and using the result as the imaginary part of the analytic signal.

• RMS — The app computes the signal envelope by connecting RMS values computed using a moving
window of adjustable length.

• Peak — The app computes the signal envelope by using spline interpolation over local maxima
separated by an adjustable number of samples.

Note Envelope computation does not support complex signals.

Add Custom Preprocessing Functions
To add a custom preprocessing function, on the Analyzer tab, click the arrow next to the
Preprocessing gallery and then select Add Custom Function. The app prompts you to enter the
function name and a brief description:

• If you have already written a preprocessing function, and the function is in the current folder or in
the MATLAB path, the app incorporates it to the gallery. You can use tab completion to search for
the function name.
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• If you have not written the function yet, the app opens a blank template in the Editor.

Custom preprocessing functions have mandatory and optional arguments:

• The first input argument, x, is the input signal. This argument must be a vector and is treated as a
single channel.

• The second input argument, tIn, is a vector of time values. The vector must have the same length
as the signal. If the input signal has no time information, the function reads this argument as an
empty array.

• Use varargin to specify additional input arguments. If you do not have additional input
arguments, you can omit varargin. Enter the additional arguments as an ordered comma-
separated list in the Preprocess tab.

• The first output argument, y, is the preprocessed signal.
• The second output argument, tOut, is a vector of output time values. If the input signal has no

time information, tOut is returned as an empty array.
• To implement your algorithm, you can use any MATLAB or Signal Processing Toolbox function.

See “Declip Saturated Signals Using Your Own Function” on page 21-91 for more details.

Example: This function removes the DC value of a signal by subtracting its mean.

function [y,tOut] = removeDC(x,tIn)
% Remove the DC value of a signal by subtracting its mean
   y = x - mean(x);
   tOut = tIn;
end

Example: This function changes the starting time of a signal to a specified value.

function [y,tOut] = timealign(x,tIn,startTime)
% Change the starting time of a signal
   y = x;
   t = tIn;
   if ~isempty(t)
       t = t - t(1) + startTime;
   end
   tOut = t;
end

At any time, you can edit functions, edit their descriptions, or remove them, using the Manage
Custom Functions option in the gallery.
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Note Custom preprocessing functions must not change the complexity of the input signal.
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Previous Step
“Select Signals to Analyze” on page 21-9

Next Step
“Explore Signals” on page 21-19

See Also
Signal Analyzer

More About
• “Edit Sample Rate and Other Time Information” on page 21-103
• “Data Types Supported by Signal Analyzer” on page 21-106
• “Keyboard Shortcuts for Signal Analyzer” on page 21-124
• “Signal Analyzer Tips and Limitations” on page 21-126
• “Customize Signal Analyzer” on page 21-130
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Explore Signals

Plot Signals
Select a signal by clicking its name in the Workspace browser or the Signal table. Then plot your
selection by dragging it to a display. This action also selects the check box to the left of the signal
Name on the Signal table. You can also plot a signal by selecting this check box. The app displays a
set of axes with the time-domain waveform and a Time tab with options to control the view.

If you drag a matrix from the Workspace browser to a display, the app automatically plots each
column as a separate signal, up to a maximum of 10 columns. The app creates signals in the Signal
table for the remaining columns, but you must drag the additional signals to the display.

Note Signals with no time information are plotted in units of samples on the x-axis. Signals with time
information are plotted in units of time on the x-axis. To plot several signals on the same display,
ensure that they all have time information or are all in samples. Otherwise, you get a warning.

View Signals on Multiple Plots

Click Display Grid  to create or remove displays.

Move Signals Between Displays
To move a signal from one display to another, click the plotted line or select its name on its Legend,
for example, . Click the resulting thicker line and drag it to the target display.

Note If you move the real part or the imaginary part of a complex signal from one display to another,
the app moves both parts of the signal.

Visualize Signal Spectra
Use the Signal Analyzer app to analyze signals in the frequency domain. To activate the frequency-

domain view of a signal, click Spectrum  ▼ on the Display tab and select Spectrum. The app
displays a set of axes with the signal spectrum, and a Spectrum tab with options to control the view.

• If the panner is activated and is zoomed in on a particular region of interest, the spectrum in the
display corresponds to the region of interest, not the whole signal.

• If you zoom in on a region of the signal in the time plot using one of the zoom actions on the
Display tab, the spectrum in the display corresponds to the region of interest, not the whole
signal.

• You cannot zoom out in frequency beyond the Nyquist range.
• To see a time plot and a spectrum plot of the same signal side-by-side, use different displays. Drag

the signal to two displays. Click Time  or Spectrum  on the Display tab to control what
is plotted on each display.
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Signal Analyzer scales the spectrum so that, if the frequency content of a signal falls exactly within
a bin, its amplitude in that bin is the true average power of the signal. For example, the average
power of a sinusoid is one-half the square of the sinusoid amplitude. For more details, see “Measure
Power of Deterministic Periodic Signals” on page 24-289. For more information on how Signal
Analyzer computes spectra, see “Spectrum Computation in Signal Analyzer” on page 21-109.

Note When displaying a spectrum, Signal Analyzer converts the power to dB using 10 log10(Power).

If any complex signals are plotted, Signal Analyzer displays centered two-sided spectra.

If a signal is nonuniformly sampled, then Signal Analyzer interpolates the signal to a uniform grid to
compute spectral estimates. The app uses linear interpolation and assumes a sample time equal to
the median of the differences between adjacent time points. For a nonuniformly sampled signal to be
supported, the median time interval and the mean time interval must obey

1
100 < Median time interval

Mean time interval < 100.

Visualize Persistence Spectra
Use the Signal Analyzer app to visualize the persistence spectrum of a signal: The persistence
spectrum contains time-dependent probabilities of occurrence of signals at given frequency locations
and power levels. This type of spectrum is useful for detecting brief events.

To activate the persistence spectrum, click Spectrum  ▼ on the Display tab and select
Persistence Spectrum. The app displays a set of axes with the persistence spectrum, and a
Persistence Spectrum tab with options to control the view. You cannot zoom out in frequency
beyond the Nyquist range.

Note You can plot the persistence spectrum of only one signal per display.

For more information on how Signal Analyzer computes persistence spectra, see “Persistence
Spectrum in Signal Analyzer” on page 21-113.

For complex input signals, Signal Analyzer displays centered two-sided persistence spectra.

Visualize Signal Spectrograms
Use the Signal Analyzer app to analyze a signal in the time-frequency domain. To activate the

spectrogram view of a signal, click Time-Frequency  ▼ on the Display tab and select
Spectrogram. The app displays a set of axes with the signal spectrogram, and a Spectrogram tab
with options to control the view.

Note You can plot the spectrogram of only one signal per display.

• If the panner is activated and is zoomed in on a particular region of interest, the spectrogram in
the display corresponds to the region of interest, not the whole signal.
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• If you zoom in on a region of the signal in the time plot using one of the zoom actions on the
Display tab, the spectrogram in the display corresponds to the region of interest, not the whole
signal.

• You cannot zoom out in frequency beyond the Nyquist range.
• To see a time plot and a spectrogram plot of the same signal side-by-side, use different displays.

Drag the signal to two displays. Click Time  or Time-Frequency  on the Display tab to
control what is plotted on each display.

For more information on how Signal Analyzer computes spectrograms, see “Spectrogram
Computation in Signal Analyzer” on page 21-115.

The reassignment technique sharpens the time and frequency localization of spectrograms by
reassigning each power spectrum estimate to the location of its center of energy. If your signal
contains well-localized temporal or spectral components, then this option generates a spectrogram
that is easier to read and interpret. To apply reassignment to a spectrogram, check Reassign in the
Spectrogram tab.

If a signal is nonuniformly sampled, then Signal Analyzer interpolates the signal to a uniform grid to
compute spectral estimates. The app uses linear interpolation and assumes a sample time equal to
the median of the differences between adjacent time points. For a nonuniformly sampled signal to be
supported, the median time interval and the mean time interval must obey

1
100 < Median time interval

Mean time interval < 100.

For complex input signals, Signal Analyzer displays centered two-sided spectrograms.

Visualize Signal Scalograms
Use the Signal Analyzer app to visualize the scalogram of a signal. The scalogram is useful for
identifying signals with low-frequency components and for analyzing signals whose frequency content
changes rapidly with time. You need a Wavelet Toolbox license to use the scalogram view.

To activate the scalogram view of a signal, click Time-Frequency  ▼ on the Display tab and
select Scalogram. The app displays a set of axes with the signal scalogram and a Scalogram tab
with options to control the view.

Note You can plot the scalogram of only one signal per display.

• If the panner is activated and is zoomed in on a particular region of interest, the scalogram in the
display corresponds to the whole signal, not just the region of interest. Signal Analyzer performs
an optical zooming, using interpolation to display a smooth curve.

• If you zoom in on a region of the signal in the time plot using one of the zoom actions on the
Display tab, the scalogram in the display corresponds to the whole signal, not just the region of
interest. Signal Analyzer performs an optical zooming, using interpolation to display a smooth
curve.

• To see a time plot and a scalogram plot of the same signal side by side, use different displays. On
the Display tab, click Display Grid, create a side-by-side pair of displays, and drag-and-drop the
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signal on both displays. Click Time  or Time-Frequency  on the Display tab to control
what is plotted on each display.

Note

• Scalogram view does not support complex signals.
• Scalogram view does not support nonuniformly sampled signals.

For more information on how Signal Analyzer computes scalograms, see “Scalogram Computation in
Signal Analyzer” on page 21-120.

Zoom and Pan Through Signals
The Signal Analyzer app features a panner that enables you to zoom in on and navigate through
signals to see how they change in frequency and time. To activate the panner, on the Display tab,

click Panner .

The panner renders signals in their entire duration. To select a region of interest, click the panner
and drag to create a zoom window. Use the mouse to resize or slide the zoom window along the
length of the signal.

• If the spectrum of the signal is plotted, it corresponds to the region of interest, not the whole
signal. For more details, see “Spectrum Computation in Signal Analyzer” on page 21-109.

• If the persistence spectrum of the signal is plotted, it corresponds to the region of interest, not the
whole signal. For more details, see “Persistence Spectrum in Signal Analyzer” on page 21-113.

• If the spectrogram of the signal is plotted, it corresponds to the region of interest, not the whole
signal. For more details, see “Spectrogram Computation in Signal Analyzer” on page 21-115.

• If the scalogram of the signal is plotted, it corresponds to the whole signal, not the region of
interest. Signal Analyzer performs an optical zooming, using interpolation to display a smooth
curve. For more details, see “Scalogram Computation in Signal Analyzer” on page 21-120.

• You cannot zoom out in frequency beyond the Nyquist range.

Edit Time Information and Link Displays in Time
Use the Signal Analyzer app to add time information to signals. In the Signal table, select the
signals whose time information you want to add or modify. Add time information to the signals by
clicking Time Values in the Analyzer tab.

Note

• You cannot edit the time information of a timetable or time series with inherent time information.
• You cannot edit the time information of a labeled signal set.
• You cannot edit the time information for individual channels of a multichannel signal. You must

edit the time information for the whole signal.
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You can express the time information in terms of a sample rate or sample time, and a start time. You
can also add explicit time values using a numeric vector, a duration array, or a MATLAB expression.
Time values must be unique and cannot be NaN, but they need not be uniformly spaced. The app
derives a sample rate from the time values and displays it in the Time column of the Signal table. For
more details, see “Edit Sample Rate and Other Time Information” on page 21-103.

Note Filtering and scalogram view do not support nonuniformly sampled signals.

• If a signal is nonuniformly sampled, then Signal Analyzer interpolates the signal to a uniform
grid to compute spectral estimates. The app uses linear interpolation and assumes a sample time
equal to the median of the differences between adjacent time points. The derived sample rate in
the Signal table has an asterisk to indicate that the signal is nonuniformly sampled. For a
nonuniformly sampled signal to be supported, the median time interval and the mean time interval
must obey

1
100 < Median time interval

Mean time interval < 100.

Note The interpolation is used only to compute spectral estimates. Time plots are not resampled.
• You can link display time spans so that plot responses are synchronized when you pan and zoom

horizontally. The signals in the displays you want to link must contain time information. To link the
time span of a display to the time spans of the displays linked already, select the display and, on
the Display tab, select Link Time. To unlink a display, select it and clear Link Time.

Note Selecting Link Time links the selected display to the complete collection of displays that
have already been linked.

Displays with linked time spans have the following operations synchronized:

• Panning by selecting and dragging the plot or by using the display panner.
• Zooming in, zooming out, or zooming on the time axis. Zooming in or out on one display affects

only the time axis in the remaining linked displays.
• Fitting data to view. The app stretches the common time axis so that it shows the span from the

earliest to the latest time among all signals in the linked displays.
• If the axes of two displays are linked in time, then the time cursors in the displays are linked.

The time axis of a linked display might update as you add or remove signals.

Note Frequency axes are never linked between displays.

Measure Signal, Spectrum, and Time-Frequency Data
Measure your data using data cursors:

1 On the Display tab, click Data Cursors ▼ to add one or two data cursors to all the displays.
Time-domain and frequency-domain cursors are not linked and can be moved independently.
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2 The persistence spectrum, spectrogram, and scalogram views display two-dimensional crosshair
cursors.

3 To move a data cursor, drag it left, right, up, or down to a point of interest. To move the cursor
sample-by-sample, click the time or frequency field and use the arrow keys.

4 You can move a data cursor to a specific point without dragging it. Click the data cursor time or
frequency field and enter a value.

If the signal was not sampled at a point of interest, then the app linearly interpolates the value. If
the value is interpolated, an asterisk appears in the data cursor label.

5 By default, cursors snap to the nearest data point. To change this behavior, clear the Snap to
Data check box on the Display tab.

6 To toggle the cursors, click Data Cursors.

Extract Signal Regions of Interest
The Signal Analyzer app enables you to extract regions of interest from the signals you are studying
and export them for further analysis. To extract regions of interest, select the display that has them.
On the Display tab, click Extract Signals, or right-click the display and select Extract Signals.

• Select Between Time Limits to extract a region of interest defined by the time limits of the
selected display. To change the time limits, you can use the panner, select one of the zoom actions
on the Display tab, or change the limit values on the Display, Time, Spectrogram, or
Scalogram tabs.

• Select Between Time Cursors to extract a region of interest defined by the locations of the
time-domain cursors in the selected display.

• If a signal has time information, you can preserve the start time of the region of interest by
checking Preserve Start Time.

The extracted regions of interest are added at the bottom of the Signal table.

Previous Step
“Preprocess Signals” on page 21-13

Next Step
“Share Analysis” on page 21-26

See Also
Signal Analyzer
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Related Examples
• “Spectrogram View of Dial Tone Signal” on page 21-48

More About
• “Using Signal Analyzer App” on page 21-2
• “Edit Sample Rate and Other Time Information” on page 21-103
• “Data Types Supported by Signal Analyzer” on page 21-106
• “Persistence Spectrum in Signal Analyzer” on page 21-113
• “Spectrogram Computation in Signal Analyzer” on page 21-115
• “Scalogram Computation in Signal Analyzer” on page 21-120
• “Keyboard Shortcuts for Signal Analyzer” on page 21-124
• “Signal Analyzer Tips and Limitations” on page 21-126
• “Nonparametric Methods” on page 7-8
• “Customize Signal Analyzer” on page 21-130
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Share Analysis
Copy Displays
You can share the plots that you have produced using the Signal Analyzer app by copying one or
more displays to the clipboard as images and pasting them into another application.

To copy displays to the clipboard, on the Display tab, click Copy All Displays ▼. You can then copy
either the selected display or the complete display layout.

To copy a single display to the clipboard, you can also right-click the display and select Copy
Display.

Export Signals
You can export any signals in the Signal Analyzer Signal table to the MATLAB workspace or to a
MAT-file.

To export signals:

1 Select one or more signals from the Signal table.
2 On the Analyzer tab, click Export .
3 Choose whether you want to export the selected signals to the MATLAB workspace or save them

to a MAT-file. If you choose to save the signals, browse to where you want to save the file, name
the file, and click Save.

You can also select the signals, right-click, and select Export.

Signals are exported differently, depending on their type:

• Signals with no time information are exported or saved as numeric vectors.
• Signals stored as timetables are exported or saved as timetables.
• Signals that have time information but are not stored as timetables are exported or saved as

numeric vectors. If you want to preserve the time information, you can save the signals as
timetables. On the Analyzer tab, click Preferences and check Always use timetables when
signals have time information.

• The export behavior for multichannel signals depends on the signals and channels that you select
and on the preferences you have set.

• Whenever possible, the app exports signals of the same name and type (numeric or timetable)
as the originals.

• If you select a signal with several channels, the app exports it as a single matrix or timetable if
the individual channels have the same length and time information.

• If you select a signal with several channels that have different lengths or different time
information, the app exports them as independent signals.

• If you select a signal and one or more of its channels at the same time, the app exports a copy
of the whole signal and independent variables corresponding to the selected channels.

Example: Create three two-channel signals. Each channel of sgn has 100 samples. Each channel
of sgt has 200 samples. The timetable tmb has two 20-sample channels sampled at 1 Hz.

21 Signal Analyzer App

21-26



sgn = randn(100,2);
sgt = randn(200,2);
tmb = timetable(seconds(0:19)',randn(20,2));

Drag the signals to the Signal table. Expand the tree view to see the individual channels. Select
sgt and, on the Analyzer tab, click Time Values. Select Sample Rate and Start Time and
specify a sample rate of 25 Hz. Select sgn, the first channel of sgt, and the second channel of the
only variable of tmb.

On the Analyzer tab, click Export to export the selected signals to a MAT-file. Use the default file
name. Load the file into the MATLAB workspace.

load New_Export
whos

  Name              Size            Bytes  Class

  sgn             100x2              1600  double
  sgt_1           200x1              1600  double
  tmb_Var1_2       20x1              1368  timetable

The app exported sgt_1 as a vector, even though it has time information. On the Analyzer tab,
click Preferences and check Always use timetables when signals have time
information. Export the signals again. sgt_1 becomes a timetable.

Example: Create a timetable with four variables. "Temperature" has two channels,
"WindSpeed" has one channel, "Electric" has three channels, and "Magnetic" has one
channel.

tmt = timetable(seconds(0:99)', ...
    randn(100,2),randn(100,1),randn(100,3),randn(100,1));
tmt.Properties.VariableNames = ...
    ["Temperature" "WindSpeed" "Electric" "Magnetic"];

Drag the timetable to the Signal table. Expand the tree view to see the individual channels. Select
tmt, tmt.Temperature, the second channel of tmt.Electric, and tmt.Magnetic.
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On the Analyzer tab, click Export to export the selected signals to a MAT-file. Use the default file
name. Load the file into the MATLAB workspace.

load New_Export
whos

  Name                   Size            Bytes  Class

  tmt                  100x4              8180  timetable
  tmt_Electric_2       100x1              2656  timetable
  tmt_Magnetic         100x1              2652  timetable
  tmt_Temperature      100x1              3458  timetable

The app exported tmt as a four-variable timetable, tmt_Temperature as a timetable with a two-
channel variable, and the two single-variable, single-channel timetables tmt_Electric_2 and
tmt_Magnetic.

Generate MATLAB Scripts and Functions
You can generate MATLAB scripts to extract signal regions of interest or automate the computation of
power spectrum, persistence spectrum, spectrogram, or scalogram estimates obtained with the
Signal Analyzer app.

To generate a MATLAB script, on the Display tab, click Generate Script. The generated script opens
in the Editor.

• Select ROI Script Between Time Limits to generate a MATLAB script that extracts a region
of interest defined by the time limits of the selected display. Depending on the preferences, the
regions of interest are saved as numeric vectors or as a timetable.

• Select ROI Script Between Time Cursors to generate a MATLAB script that extracts a
region of interest defined by the locations of the time-domain cursors in the selected display.
Depending on the preferences, the regions of interest are saved as numeric vectors or as a
timetable.

• Select Spectrum Script to generate a MATLAB script that computes the power spectrum
appearing in the spectrum view of the selected display, including all current settings.
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• Select Persistence Spectrum Script to generate a MATLAB script that computes the
persistence spectrum appearing in the spectrum view of the selected display, including all current
settings.

• Select Spectrogram Script to generate a MATLAB script that computes the spectrogram
appearing in the spectrogram view of the selected display, including all current settings.

• Select Scalogram Script to generate a MATLAB script that computes the scalogram appearing
in the scalogram view of the selected display, including all current settings. You need a Wavelet
Toolbox license to use the scalogram view.

You can generate MATLAB functions to automate signal preprocessing steps performed with the
Signal Analyzer app.

To generate a MATLAB preprocessing function, on the Analyzer tab, click Generate Function. The
generated function opens in the Editor.

Save and Load Signal Analyzer Sessions
If you want to share session snapshots or archive them to view later, save the Signal Analyzer
session to a MAT-file or MLDATX-file. Using MLDATX-files results in faster save and load times.

To save a session to a MAT-file or MLDATX-file:

1 On the Analyzer tab, click Save ▼ and select Save.
2 Browse to where you want to save the file, name the file, choose the format, and click Save.

If you want to update the file, click Save. If you want to save the session to a different file, click Save
▼ and select Save as.

To load a saved session:

1 On the Analyzer tab, click Open.
2 Browse to the MAT-file or MLDATX-file saved from a previous session, select it, and click Open.

The signal data and properties appear as they were when the file was last saved.

To start a new session, on the Analyzer tab, click New.

Previous Step
“Explore Signals” on page 21-19

See Also
Signal Analyzer

Related Examples
• “Compute Envelope Spectrum of Vibration Signal” on page 21-96

More About
• “Signal Analyzer Tips and Limitations” on page 21-126
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Find Delay Between Correlated Signals
Three sensors at different locations measure vibrations caused by a car as it crosses a bridge. The
signals they produce arrive at the analysis station at different times. The sample rate is 11,025 Hz.
Use the Signal Analyzer app to determine the delays between the signals.

Load the signals into the MATLAB® workspace and start the app. The name of each signal includes
the number of the sensor that took it. Create three displays. Drag each signal from the Workspace
browser to its own display. The signal from Sensor 2 arrives earlier than the signal from Sensor 1.
The signal from Sensor 1 arrives earlier than the signal from Sensor 3.

load sensorData

Add time information. Select the three signals in the Signal table and click the Time Values button on
the Analyzer tab. Select the Sample Rate and Start Time option and enter the sample rate of
11,025 Hz. For more information, see Edit Sample Rate and Other Time Information.
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The signals share a common time axis. Link their time spans by selecting each display and selecting
Link Time on the Display tab.

To estimate the delays between the signals, pan them horizontally and line up a salient feature to the
end of the time axis. From the Time tab, read the time from the lower limit of the time-axis. Choose a
region where the signal-to-noise ratio is high, such as the signal maximum toward the end of each
signal. In the signal from Sensor 2, that feature occurs about 0.197 second after the clock starts.
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Similarly, the signal from Sensor 1 has that feature about 0.229 second after the start, and the signal
from Sensor 3 has it about 0.243 second after the start. Thus, the delays are approximately
0.032 second and 0.014 second long.

You can also use data cursors to find the delays. Press the space bar to reset the view. On the Display
tab, click the arrow under the Data Cursors ▼ and select Two. Place a cursor on the maximum of
each of the top two signals. You can read the lag of approximately 0.032 second directly from the app.
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Similarly, the lag between the top and bottom signals is 0.014 second.

You can get similar results with the finddelay and xcorr functions.

See Also
Apps
Signal Analyzer

Functions
alignsignals | finddelay | xcorr

Related Examples
• “Plot Signals from the Command Line” on page 21-35
• “Resolve Tones by Varying Window Leakage” on page 21-39
• “Analyze Signals with Inherent Time Information” on page 21-45
• “Spectrogram View of Dial Tone Signal” on page 21-48
• “Find Interference Using Persistence Spectrum” on page 21-51
• “Modulation and Demodulation Using Complex Envelope” on page 21-61
• “Find and Track Ridges Using Reassigned Spectrogram” on page 21-70
• “Scalogram of Hyperbolic Chirp” on page 21-75
• “Extract Voices from Music Signal” on page 21-78
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• “Resample and Filter a Nonuniformly Sampled Signal” on page 21-84
• “Declip Saturated Signals Using Your Own Function” on page 21-91
• “Compute Envelope Spectrum of Vibration Signal” on page 21-96
• “Extract Regions of Interest from Whale Song” on page 21-56

More About
• “Using Signal Analyzer App” on page 21-2
• “Edit Sample Rate and Other Time Information” on page 21-103
• “Data Types Supported by Signal Analyzer” on page 21-106
• “Spectrum Computation in Signal Analyzer” on page 21-109
• “Persistence Spectrum in Signal Analyzer” on page 21-113
• “Spectrogram Computation in Signal Analyzer” on page 21-115
• “Scalogram Computation in Signal Analyzer” on page 21-120
• “Keyboard Shortcuts for Signal Analyzer” on page 21-124
• “Signal Analyzer Tips and Limitations” on page 21-126
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Plot Signals from the Command Line
You can plot signals in the Signal Analyzer app by calling the app in the command line.

Create a three-channel random signal sampled for 1 second at 1 kHz. Plot the signal in Signal
Analyzer.

signalAnalyzer(randn(1000,3),'SampleRate',1e3)

Use Display Grid on the Display tab to open an empty display. Select the new display and click
Spectrum. Create a two-channel sinusoidal signal sampled for 1 second at 100 Hz. The sinusoids
have frequencies of 5 Hz and 7 Hz. Plot the signal in the new display.

signalAnalyzer(sin(2*pi*[5 7].*(0:100)'/100),'SampleRate',100)
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Select the display with the three random signals. Remove the random signals from the display by
clearing the check boxes next to their names. Click Time-Frequency. Create a quadratic chirp
sampled for 5 seconds at 600 Hz. The chirp has an initial frequency of 60 Hz that increases to 240 Hz
by the end of the measurement. Plot the chirp.

signalAnalyzer(chirp(0:1/600:5,60,5,240,'quadratic'),'SampleRate',600)
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See Also
Apps
Signal Analyzer

Functions
chirp

Related Examples
• “Find Delay Between Correlated Signals” on page 21-30
• “Resolve Tones by Varying Window Leakage” on page 21-39
• “Analyze Signals with Inherent Time Information” on page 21-45
• “Spectrogram View of Dial Tone Signal” on page 21-48
• “Find Interference Using Persistence Spectrum” on page 21-51
• “Modulation and Demodulation Using Complex Envelope” on page 21-61
• “Find and Track Ridges Using Reassigned Spectrogram” on page 21-70
• “Scalogram of Hyperbolic Chirp” on page 21-75
• “Extract Voices from Music Signal” on page 21-78
• “Resample and Filter a Nonuniformly Sampled Signal” on page 21-84
• “Declip Saturated Signals Using Your Own Function” on page 21-91
• “Compute Envelope Spectrum of Vibration Signal” on page 21-96
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• “Extract Regions of Interest from Whale Song” on page 21-56

More About
• “Using Signal Analyzer App” on page 21-2
• “Edit Sample Rate and Other Time Information” on page 21-103
• “Data Types Supported by Signal Analyzer” on page 21-106
• “Spectrum Computation in Signal Analyzer” on page 21-109
• “Persistence Spectrum in Signal Analyzer” on page 21-113
• “Spectrogram Computation in Signal Analyzer” on page 21-115
• “Scalogram Computation in Signal Analyzer” on page 21-120
• “Keyboard Shortcuts for Signal Analyzer” on page 21-124
• “Signal Analyzer Tips and Limitations” on page 21-126
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Resolve Tones by Varying Window Leakage
You can adjust the spectral leakage of the analysis window to resolve sinusoids in Signal Analyzer.

Generate a two-channel signal sampled at 100 Hz for 2 seconds.

1 The first channel consists of a 20 Hz tone and a 21 Hz tone. Both tones have unit amplitude.
2 The second channel also has two tones. One tone has unit amplitude and a frequency of 20 Hz.

The other tone has an amplitude of 1/100 and a frequency of 30 Hz.

fs = 100;

t = (0:1/fs:2-1/fs)';

x = sin(2*pi*[20 20].*t)+[1 1/100].*sin(2*pi*[21 30].*t);

Embed the signal in white noise. Specify a signal-to-noise ratio of 40 dB. Open Signal Analyzer and
plot the signal using the sample rate fs.

x = x + randn(size(x)).*std(x)/db2mag(40);

Click Spectrum to add spectral plots to the display. Click the Spectrum tab that appears.

The slider that controls the spectral leakage is in the middle position, corresponding to a resolution
bandwidth of about 1.29 Hz. The two tones in the first channel are not resolved. The 30 Hz tone in
the second channel is visible, despite being much weaker than the other one.

Increase the leakage so that the resolution bandwidth is approximately 0.84 Hz. The weak tone in the
second channel is clearly resolved.
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Move the slider to the maximum value. The resolution bandwidth is approximately 0.5 Hz. The two
tones in the first channel are resolved. The weak tone in the second channel is masked by the large
window sidelobes.
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Click the Display tab. Use the horizontal zoom to magnify the frequency axis. Add frequency-domain
cursors to estimate the frequencies of the tones.
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Resolve Tones by Varying Window Leakage
Go back to example on page 21-39
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Analyze Signals with Inherent Time Information
Load a file that contains measurements of the international normalized ratio (INR) performed on a
patient over a five-year period. The INR measures the effect of warfarin, a blood thinner used to treat
people predisposed to clotting.

The file includes a datetime array with the date and time of each measurement, and a vector of INR
readings. Display the first five time points.

load INR

Date(1:5)

ans = 5x1 datetime
   05/15/09 11:28 AM
   06/16/09 09:05 AM
   07/02/09 09:50 AM
   07/16/09 11:20 AM
   07/31/09 12:05 PM

Convert the time readings to a duration array by subtracting the first time point. Convert the
duration array to seconds.

t = Date-Date(1);
s = seconds(t);

Create a timetable with the duration array and the INR readings.

TT = timetable(t,INR);

Create a timeseries object with the time in seconds and the INR readings.

ts = timeseries(INR,s,'Name','inr');

Open Signal Analyzer. Under Display Grid, select three displays.

1 Drag the timetable to the first display. The app calls this signal TT.INR.
2 Drag the timeseries object to the second display. The app calls this signal ts.inr.
3 Drag the array of INR readings to the third display. Add time information. Select the signal by

clicking its legend. From the Analyzer tab, click Time Values. Select the Time Values option
and in the Time Values field, enter t.
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Spectrogram View of Dial Tone Signal
Create a signal, sampled at 4 kHz, that resembles dialing all the keys of a digital telephone. Save the
signal as a MATLAB® timetable.

fs = 4e3;
t = 0:1/fs:0.5-1/fs;

ver = [697 770 852 941];
hor = [1209 1336 1477];

tones = [];

for k = 1:length(ver)
    for l = 1:length(hor)
        tone = sum(sin(2*pi*[ver(k);hor(l)].*t))';
        tones = [tones;tone;zeros(size(tone))];
    end
end

% To hear, type soundsc(tones,fs)

S = timetable(seconds(0:length(tones)-1)'/fs,tones);

Open Signal Analyzer and drag the timetable to a display. Click Time-Frequency to add a
spectrogram view. On the Spectrogram tab, under Time Resolution, select Specify. Enter a time
resolution of 0.5 second and zero overlap between adjoining segments.
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The spectrogram view shows that each key is dialed for half a second, with half-second silent pauses
between keys. The first tone has its frequency content concentrated around 697 Hz and 1209 Hz,
corresponding to the digit '1' in the DTMF standard.
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Find Interference Using Persistence Spectrum
Visualize an interference narrowband signal embedded in a broadband signal.

Generate a chirp sampled at 1 kHz for 500 seconds. The frequency of the chirp increases from 180
Hz to 220 Hz during the measurement.

fs = 1000;
t = (0:1/fs:500)';
x = chirp(t,180,t(end),220) + 0.15*randn(size(t));

The signal also contains a 210 Hz sinusoid. The sinusoid has an amplitude of 0.05 and is present only
for 1/6 of the total signal duration.

idx = floor(length(x)/6);
x(1:idx) = x(1:idx) + 0.05*cos(2*pi*t(1:idx)*210);

Save the signal as a MATLAB® timetable.

S = timetable(seconds(t),x);

Open Signal Analyzer and drag the timetable from the Workspace browser to a display. Click the
Time-Frequency button to add a spectrogram view. On the Spectrogram tab, under Time
Resolution, select Specify and enter a time resolution of 1 second. Set the Frequency Limits to
100 Hz and 290 Hz. Both signal components are visible.

 Find Interference Using Persistence Spectrum

21-51



Go back to the Display tab. Click the Time button to remove the time view and click the Spectrum
button to add a power spectrum view. The frequency range continues to be from 100 Hz to 290 Hz.
The weak sinusoid is obscured by the chirp.
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Click the Spectrum ▼ button to change the Spectrum view to a Persistence Spectrum view. On
the Persistence Spectrum tab, under Time Resolution, select Specify and enter a time resolution
of 1 second. Specify zero overlap between adjoining segments. Set the Power Limits to –50 dB and 0
dB and the Density Limits to 0.1 and 4. Now both signal components are clearly visible.
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On the Display tab, under Share, click Generate Script ▼ and select Persistence Spectrum
Script. The script appears in the MATLAB Editor.

% Compute persistence spectrum

% Generated by MATLAB(R) 9.7 and Signal Processing Toolbox 8.2.
% Generated on: 26-Dec-2018 16:07:45

% Parameters
timeLimits = seconds([0 500]); % seconds
frequencyLimits = [100 290]; % Hz
timeResolution = 1; % seconds
overlapPercent = 0;

%%
% Index into signal time region of interest
S_x_ROI = S(:,'x');
S_x_ROI = S_x_ROI(timerange(timeLimits(1),timeLimits(2),'closed'),1);

% Compute spectral estimate
% Run the function call below without output arguments to plot the results
[P,F,PWR] = pspectrum(S_x_ROI, ...
    'persistence', ...
    'FrequencyLimits',frequencyLimits, ...
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    'TimeResolution',timeResolution, ...
    'OverlapPercent',overlapPercent);
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Extract Regions of Interest from Whale Song
Load a file that contains audio data from a Pacific blue whale, sampled at 4 kHz. The file is from the
library of animal vocalizations maintained by the Cornell University Bioacoustics Research Program.
The time scale in the data is compressed by a factor of 10 to raise the pitch and make the calls more
audible. Convert the signal to a MATLAB® timetable.

whaleFile = fullfile(matlabroot,'examples','matlab','data','bluewhale.au');
[w,fs] = audioread(whaleFile);

whale = timetable(seconds((0:length(w)-1)'/fs),w);

% To hear, type soundsc(w,fs)

Open Signal Analyzer and drag the timetable to a display. Four features stand out from the noise.
The first is known as a trill, and the other three are known as moans.

On the Display tab, click Spectrum to open a spectrum view and click Panner to activate the
panner. Use the panner to create a zoom window with a width of about 2 seconds. Drag the zoom
window so that it is centered on the trill. The spectrum shows a noticeable peak at around 900 Hz.
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Extract the three moans to compare their spectra:

1 Center the panner zoom window on the first moan. The spectrum has eight clearly defined peaks,
located very close to multiples of 170 Hz. Click Extract Signals ▼ and select Between Time
Limits.

2 Click Panner to hide the panner. Press the space bar to see the full signal. Click Zoom in X and
zoom in on a 2-second interval of the time view centered on the second moan. The spectrum
again has peaks at multiples of 170 Hz. Click Extract Signals ▼ and select Between Time
Limits.

3 Press the space bar to see the full signal. Click Data Cursors ▼ and select Two. Place the time-
domain cursors in a 2-second interval around the third moan. Again, there are peaks at multiples
of 170 Hz. Click Extract Signals ▼ and select Between Time Cursors.
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Remove the original signal from the display by clearing the check box next to its name in the Signal
table. Display the three regions of interest you just extracted. Their spectra lie approximately on top
of each other. Move the frequency-domain cursors to the locations of the first and third spectral
peaks. Asterisks in cursor labels indicate interpolated signal values.
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Modulation and Demodulation Using Complex Envelope
This example simulates the different steps of a basic communication process. Communication systems
work by modulating chunks of information into a higher carrier frequency, transmitting the
modulated signals through a noisy physical channel, receiving the noisy waveforms, and
demodulating the received signals to reconstruct the initial information.

All the information carried in a real-valued signal s t  can be represented by a corresponding lowpass
complex envelope:

s t = Re g t e j2πfct = i t cos2 π fct + q t sin2 π fct.

In this equation:

• fc is the carrier frequency.

• Re represents the real part of a complex-valued quantity.
• g t = i t + jq t is the complex envelope of s t .
• i t  is the inphase component of the complex envelope.
• q t  is the quadrature component of the complex envelope.

The complex envelope is modulated to the carrier frequency and sent through the channel. At the
receiver, the noisy waveform is demodulated using the carrier frequency.

The phase variation due to the carrier frequency is predictable and thus does not convey any
information. The complex envelope does not include the phase variation and can be sampled at a
lower rate.

Generate a signal whose complex envelope consists of a sinusoid and a chirp. The inphase component
is a sinusoid with a frequency of 19 Hz. The quadrature component is a quadratic chirp whose
frequency ranges from 61 Hz to 603 Hz. The signal is sampled at 2 kHz for 1 second.

fs = 2e3;
t = (0:1/fs:1-1/fs)';
inph = sin(2*pi*19*t);
quad = chirp(t-0.6,61,t(end),603,'quadratic');

Compute the complex envelope and store it as a MATLAB® timetable of sample rate fs.

env = inph + 1j*quad;
g = timetable(env,'SampleRate',fs);

Open Signal Analyzer and drag the complex envelope from the Workspace browser to the Signal
table. The display shows the inphase and quadrature components of the envelope as lines of the same
hue and saturation, but different luminosity. The first line color represents the inphase component
and the second line color represents the quadrature component. Click Spectrum ▼ on the Display
tab and select Spectrum. The app displays a set of axes with the signal spectrum. The complex
envelope has a two-sided spectrum, displayed as a line of the same color of the inphase component of
the complex envelope.
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On the Display tab, click Panner to activate the panner. Use the panner to create a zoom window
between 300 ms and 720 ms. Drag the zoom window so that it is centered at 0 Hz. The spectrum has
an impulse at 0.19 kHz and a wider tapering profile at higher frequencies. The negative-frequency
region of the spectrum is a mirror image of the positive-frequency region.
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Modulate the signal using a carrier frequency of 200 Hz. Multiply by 2 so that the power of the
modulated signal equals the power of the original signal. Add white Gaussian noise such that the
signal-to-noise ratio is 40 dB.

fc = 200;
mod = sqrt(2)*real(env.*exp(2j*pi*fc*t));

SNR = 40;
mod = mod + randn(size(mod))*std(mod)/db2mag(SNR);
s = timetable(mod,'SampleRate',fs);

Click Display Grid ▼ to add a second display. Drag the modulated signal to the Signal table and enter
the time information. The modulation has moved the spectrum to positive frequencies centered on the
carrier frequency.
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Calculate the analytic signal and demodulate the signal by multiplying the analytic signal with a
complex-valued negative exponential of frequency 200 Hz.

dem = hilbert(mod).*exp(-2j*pi*fc*t)/sqrt(2);

Click Display Grid ▼ to create a three-by-one grid of displays. Drag the demodulated signal to the
Signal table. Add time information to the complex envelope by clicking Time Values in the Analyzer
tab. The two-sided spectrum shows the recovered inphase and quadrature components of the
baseband signal.
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Click Display Grid ▼ to create a one-by-one grid of displays and plot the demodulated signal. Click
Data Cursors ▼ and select Two. Place the time-domain cursors at 300 ms and 900 ms, so they
enclose the spectral peaks. Click Extract Signals ▼ and select Between Time Cursors. Check the
Preserve Start Time box. Clear the display and plot the extracted signal. The app extracts both
inphase and quadrature components of the demodulated signal in the region of interest. Select the
extracted signal by clicking its Name column in the Signal table. On the Analyzer tab, click Export
and save the signal to a MAT-file called dem_ROI.mat.
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Load the dem_ROI file to the workspace. Compute the demodulated inphase and quadrature
components by taking the real and imaginary parts of the extracted signal. Store the time information
of the extracted signal in a time variable t_dem.

load dem_ROI
inph_dem = real(dem_ROI);
quad_dem = imag(dem_ROI);
t_dem = 0.3+(0:length(dem_ROI)-1)/fs;

Compare the transmitted waveforms and the extracted regions of interest. Also compare their
spectra.

subplot(2,1,1)
plot(t,inph,t_dem,inph_dem,'--')
legend('Transmitted Inphase Signal','Received Inphase Signal')

subplot(2,1,2)
plot(t,quad,t_dem,quad_dem,'--')
legend('Transmitted Quadrature Signal','Received Quadrature Signal')
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figure
subplot(2,1,1)
pspectrum(inph,fs)
hold on
pspectrum(inph_dem,fs)
legend('Transmitted Inphase Signal','Received Inphase Signal')
hold off

subplot(2,1,2)
pspectrum(quad,fs)
hold on
pspectrum(quad_dem,fs)
legend('Transmitted Quadrature Signal','Received Quadrature Signal')
hold off
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Find and Track Ridges Using Reassigned Spectrogram
Load a datafile containing an echolocation pulse emitted by a big brown bat (Eptesicus fuscus) and
measured with a sampling interval of 7 microseconds. Create a MATLAB® timetable using the signal
and the time information.

load batsignal

t = (0:length(batsignal)-1)*DT;
sg = timetable(seconds(t)',batsignal);

Open Signal Analyzer and drag the timetable from the Workspace browser to the Signal table. Click
Display Grid ▼ to create two side-by-side displays. Select each display and click the Time-
Frequency button to add a spectrogram view.

Drag the timetable to both displays.

Select the Spectrogram tab. On the display at right, check Reassign. For each display:

• Set the time resolution to 280 microseconds and specify 85% overlap between adjoining segments.
• Use the Leakage slider to increase the leakage until the RBW is about 4.5 kHz.
• Set the power limits to –45 dB and –20 dB.
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The reassigned spectrogram clearly shows three time-frequency ridges. To track the ridges, select
the display at right. On the Display tab, click Generate Script and select Spectrogram Script.
The script appears in the Editor.

% Compute spectrogram

% Generated by MATLAB(R) 9.7 and Signal Processing Toolbox 8.2.
% Generated on: 26-Dec-2018 17:21:44

% Parameters
timeLimits = seconds([0 0.002793]); % seconds
frequencyLimits = [0 71428.57]; % Hz
leakage = 0.9;
timeResolution = 0.00028; % seconds
overlapPercent = 85;
reassignFlag = true;

%%
% Index into signal time region of interest
sg_batsignal_ROI = sg(:,'batsignal');
sg_batsignal_ROI = sg_batsignal_ROI(timerange(timeLimits(1),timeLimits(2),'closed'),1);

% Compute spectral estimate
% Run the function call below without output arguments to plot the results
[P,F,T] = pspectrum(sg_batsignal_ROI, ...

 Find and Track Ridges Using Reassigned Spectrogram

21-71



    'spectrogram', ...
    'FrequencyLimits',frequencyLimits, ...
    'Leakage',leakage, ...
    'TimeResolution',timeResolution, ...
    'OverlapPercent',overlapPercent, ...
    'Reassign',reassignFlag);

Run the script. Plot the reassigned spectrogram.

mesh(seconds(T),F,P)
xlabel('Time')
ylabel('Frequency')
axis tight
view(2)
colormap pink

Use the tfridge function to track the ridges.

[fridge,~,lridge] = tfridge(P,F,0.01,'NumRidges',3,'NumFrequencyBins',10);

hold on
plot3(seconds(T),fridge,P(lridge),':','linewidth',3)
hold off
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Thanks to Curtis Condon, Ken White, and Al Feng of the Beckman Center at the University of Illinois
for the bat data and permission to use it in this example.
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• “Extract Voices from Music Signal” on page 21-78
• “Resample and Filter a Nonuniformly Sampled Signal” on page 21-84
• “Declip Saturated Signals Using Your Own Function” on page 21-91
• “Compute Envelope Spectrum of Vibration Signal” on page 21-96
• “Extract Regions of Interest from Whale Song” on page 21-56

More About
• “Using Signal Analyzer App” on page 21-2
• “Edit Sample Rate and Other Time Information” on page 21-103
• “Data Types Supported by Signal Analyzer” on page 21-106
• “Spectrum Computation in Signal Analyzer” on page 21-109
• “Persistence Spectrum in Signal Analyzer” on page 21-113
• “Spectrogram Computation in Signal Analyzer” on page 21-115
• “Scalogram Computation in Signal Analyzer” on page 21-120
• “Keyboard Shortcuts for Signal Analyzer” on page 21-124
• “Signal Analyzer Tips and Limitations” on page 21-126
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Scalogram of Hyperbolic Chirp
Use Signal Analyzer to display a hyperbolic chirp and its scalogram. This example requires a
Wavelet Toolbox license.

Generate a signal sampled at 1 kHz for 1 second. The signal consists of two hyperbolic chirps. One of
the chirps is active between 0.1 second and 0.68 second. The other chirp has twice the amplitude and
one-third of the instantaneous frequency of the first chirp. The second chirp is active between 0.1
second and 0.75 second.

n = 1000;
t = (0:n-1)/n;

ff = [1 2]*(sin(pi*[15 5]'./(t-0.8001)).*(t>0.1 & t<[0.68 0.75]'));

The chirp is modulated by an envelope that starts at 0.1 second and is nonzero for 0.7 second.

envl = zeros(size(t));
M = 0.7*n;
envl(n/10+(1:M)) = tukeywin(M,0.8);

nw = ff.*envl;

Display the signal in Signal Analyzer. Click Time-Frequency  ▼ on the Display tab and select
Scalogram.

signalAnalyzer(nw,'TimeValues',t)
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On the Scalogram tab, set the Voices Per Octave to the maximum value. Set the lower magnitude
limit to 0.5.

See Also
Apps
Signal Analyzer

Functions
cwt | cwtfilterbank | pspectrum

Related Examples
• “Find Delay Between Correlated Signals” on page 21-30
• “Plot Signals from the Command Line” on page 21-35
• “Resolve Tones by Varying Window Leakage” on page 21-39
• “Analyze Signals with Inherent Time Information” on page 21-45
• “Spectrogram View of Dial Tone Signal” on page 21-48
• “Find Interference Using Persistence Spectrum” on page 21-51
• “Modulation and Demodulation Using Complex Envelope” on page 21-61
• “Find and Track Ridges Using Reassigned Spectrogram” on page 21-70
• “Extract Voices from Music Signal” on page 21-78
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• “Resample and Filter a Nonuniformly Sampled Signal” on page 21-84
• “Declip Saturated Signals Using Your Own Function” on page 21-91
• “Compute Envelope Spectrum of Vibration Signal” on page 21-96
• “Extract Regions of Interest from Whale Song” on page 21-56

More About
• “Using Signal Analyzer App” on page 21-2
• “Edit Sample Rate and Other Time Information” on page 21-103
• “Data Types Supported by Signal Analyzer” on page 21-106
• “Spectrum Computation in Signal Analyzer” on page 21-109
• “Persistence Spectrum in Signal Analyzer” on page 21-113
• “Spectrogram Computation in Signal Analyzer” on page 21-115
• “Scalogram Computation in Signal Analyzer” on page 21-120
• “Keyboard Shortcuts for Signal Analyzer” on page 21-124
• “Signal Analyzer Tips and Limitations” on page 21-126
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Extract Voices from Music Signal
Implement a basic digital music synthesizer and use it to play a traditional song in a three-voice
arrangement. Specify a sample rate of 2 kHz. Save the song as a MATLAB® timetable.

fs = 2e3;
t = 0:1/fs:0.3-1/fs;

l = [0 130.81 146.83 164.81 174.61 196.00 220 246.94];
m = [0 261.63 293.66 329.63 349.23 392.00 440 493.88];
h = [0 523.25 587.33 659.25 698.46 783.99 880 987.77];
note = @(f,g) [1 1 1]*sin(2*pi*[l(g) m(g) h(f)]'.*t);

mel = [3 2 1 2 3 3 3 0 2 2 2 0 3 5 5 0 3 2 1 2 3 3 3 3 2 2 3 2 1]+1;
acc = [3 0 5 0 3 0 3 3 2 0 2 2 3 0 5 5 3 0 5 0 3 3 3 0 2 2 3 0 1]+1;

song = [];
for kj = 1:length(mel)
    song = [song note(mel(kj),acc(kj)) zeros(1,0.01*fs)];
end
song = song'/(max(abs(song))+0.1);

% To hear, type sound(song,fs)

tune = timetable(seconds((0:length(song)-1)'/fs),song);

Open Signal Analyzer and drag the timetable from the Workspace browser to the Signal table. Click
Display Grid ▼ to create a two-by-two grid of displays. Select the top two displays and the lower left
display and click the Spectrum button to add a spectrum view. Select the lower right display, click
Time-Frequency to add a spectrogram view, and click Time to remove the time view. Drag the song
to all four displays. Select the lower right display, and in the Spectrogram tab, specify a time
resolution of 0.31 second (310 ms) and 0% overlap between adjoining segments. Set the Power
Limits to −50 dB and −10 dB.
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On the Analyzer tab, click Duplicate three times to create three copies of the song. Rename the
copies as high, medium, and low by double-clicking the Name column in the Signal table. Move the
copies to the top two and lower left displays.

Preprocess the duplicate signals using filters.

1 Select the high signal by clicking its name in the Signal table. On the Analyzer tab, click
Highpass. On the Highpass tab that appears, enter a passband frequency of 450 Hz and
increase the steepness to 0.95. Click Highpass.

2 Select the medium signal by clicking its name in the Signal table. On the Analyzer tab, click
Preprocessing ▼ and select Bandpass. On the Bandpass tab that appears, enter 230 Hz and
450 Hz as the lower and upper passband frequencies, respectively. Increase the steepness to
0.95. Click Bandpass.

3 Select the low signal by clicking its name in the Signal table. On the Analyzer tab, click
Lowpass. On the Lowpass tab that appears, enter a passband frequency of 230 Hz and increase
the steepness to 0.95. Click Lowpass.
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On each of the three displays containing filtered signals:

1 Remove the original signal by clearing the check box next to its name.
2 On the Display tab, click Time-Frequency to add a spectrogram view and click Time to remove

the time view.
3 On the Spectrogram tab, specify a time resolution of 0.31 second and 0% overlap between

adjoining segments. Set the Power Limits to −50 dB and −10 dB.
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Select the three filtered signals by clicking their Name column in the Signal table. On the Analyzer
tab, click Export and save the signals to a MAT-file called music.mat. In MATLAB, load the file to the
workspace. Plot the spectra of the three signals.

load music

pspectrum(low)
hold on
pspectrum(medium)
pspectrum(high)
hold off
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% To hear the different voices, type 
% sound(low.low,fs), pause(5), sound(medium.medium,fs), pause(5), sound(high.high,fs)

See Also
Apps
Signal Analyzer

Functions
bandpass | bandstop | highpass | lowpass | pspectrum

Related Examples
• “Find Delay Between Correlated Signals” on page 21-30
• “Plot Signals from the Command Line” on page 21-35
• “Resolve Tones by Varying Window Leakage” on page 21-39
• “Analyze Signals with Inherent Time Information” on page 21-45
• “Spectrogram View of Dial Tone Signal” on page 21-48
• “Find Interference Using Persistence Spectrum” on page 21-51
• “Modulation and Demodulation Using Complex Envelope” on page 21-61
• “Find and Track Ridges Using Reassigned Spectrogram” on page 21-70
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• “Scalogram of Hyperbolic Chirp” on page 21-75
• “Resample and Filter a Nonuniformly Sampled Signal” on page 21-84
• “Declip Saturated Signals Using Your Own Function” on page 21-91
• “Compute Envelope Spectrum of Vibration Signal” on page 21-96
• “Extract Regions of Interest from Whale Song” on page 21-56

More About
• “Using Signal Analyzer App” on page 21-2
• “Edit Sample Rate and Other Time Information” on page 21-103
• “Data Types Supported by Signal Analyzer” on page 21-106
• “Spectrum Computation in Signal Analyzer” on page 21-109
• “Persistence Spectrum in Signal Analyzer” on page 21-113
• “Spectrogram Computation in Signal Analyzer” on page 21-115
• “Scalogram Computation in Signal Analyzer” on page 21-120
• “Keyboard Shortcuts for Signal Analyzer” on page 21-124
• “Signal Analyzer Tips and Limitations” on page 21-126
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Resample and Filter a Nonuniformly Sampled Signal
A person recorded their weight in pounds during the leap year 2012. The person did not record their
weight every day, so the data are nonuniform. Use the Signal Analyzer app to preprocess and study
the recorded weight. The app enables you to fill in the missing data points by interpolating the signal
to a uniform grid. (This procedure gives the best results if the signal has only small gaps.)

Load the data and convert the measurements to kilograms. The data file has the missing readings set
to NaN. There are 27 data points missing, most of them during a two-week stretch in August.

wt = datetime(2012,1,1:366)';

load weight2012.dat
wgt = weight2012(:,2)/2.20462;

validpoints = ~isnan(wgt);
missing = wt(~validpoints);
missing(15:26)

ans = 12x1 datetime
   09-Aug-2012
   10-Aug-2012
   11-Aug-2012
   12-Aug-2012
   15-Aug-2012
   16-Aug-2012
   17-Aug-2012
   18-Aug-2012
   19-Aug-2012
   20-Aug-2012
   22-Aug-2012
   23-Aug-2012

Store the data in a MATLAB® timetable. Remove the missing points. Remove the DC value to
concentrate on fluctuations. Convert the time information to a duration array by subtracting the
first time point. For more details, see “Data Types Supported by Signal Analyzer” on page 21-106.

wgt = wgt(validpoints);
wgt = wgt - mean(wgt);

wt = wt(validpoints);
wt = wt - wt(1);

wg = timetable(wt,wgt);

Open Signal Analyzer and drag the timetable to a display. On the Display tab, click Spectrum to
open a spectrum view. On the Time tab, select Show Markers. Zoom into the missing stretch by
setting the Time Limits to 200 and 250 days.
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Right-click the signal in the Signal table and select Duplicate. Rename the copy as Preprocessed
by double-clicking the Name column in the Signal table. Leave the Preprocessed signal selected.
On the Analyzer tab, click Preprocessing ▼ and select Resample. On the Resample tab that
appears, enter a sample rate of 1 cycles/day and select the Shape Preserving Cubic method.
Click Resample. Overlay the resampled signal on the display by selecting the check box next to its
name.
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Zoom out to reveal the data for the whole year. On the Spectrum tab, set the leakage to the
maximum value. The spectra of the original and resampled signals agree well for most frequencies.
The spectrum shows two noticeable peaks, one at around 0.14 cycles/day and the other at very low
frequencies. To locate the peaks better, click Data Cursors ▼ and select Two. Place the cursors on
the peaks. Hover over the frequency field of each cursor to get a more precise value of its location.

• The medium-frequency peak is at 0.142857 = 1/7 cycles/day, which corresponds to a one-week
cycle.

• The low-frequency peak is at 0.004762 cycles/day, which corresponds to a 210-day cycle.
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Remove the cursors by clicking the Data Cursors icon. Remove the original signal from the display.
Filter the Preprocessed signal to remove the effects of the cycles.

1 To remove the low-frequency cycle, highpass-filter the signal. On the Analyzer tab, select
Highpass. On the Highpass tab that appears, enter a passband frequency of 0.05 cycles/
day. Use the default values of the other parameters. Click Highpass.

2 To remove the weekly cycle, bandstop-filter the signal. On the Analyzer tab, click
Preprocessing ▼ and select Bandstop. On the Bandstop tab that replaces the Highpass tab,
enter a lower passband frequency of 0.135 cycles/day and a higher passband frequency of
0.15 cycles/day. Use the default values of the other parameters. Click Bandstop.
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The preprocessed signal shows less fluctuation than the original. The shape of the signal suggests the
person's weight varies less in the summer months than in winter, but that may be an artifact of the
resampling. Click the icon on the Info column in the Signal table entry for the Preprocessed signal
to see the preprocessing steps performed on it.
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To see a full summary of the preprocessing steps, including all the settings you chose, click Generate
Function on the Analyzer tab. The generated function appears in the MATLAB® Editor.

function [y,ty] = preprocess(x,tx)
%  Preprocess input x
%    This function expects an input vector x and a vector of time values
%    tx. tx is a numeric vector in units of seconds.
%    Follow the timetable documentation (type 'doc timetable' in
%    command line) to learn how to index into a table variable and its time
%    values so that you can pass them into this function.

% Generated by MATLAB(R) 9.5 and Signal Processing Toolbox 8.1.
% Generated on: 08-Jun-2018 14:35:38

targetSampleRate = 1.1574074074074073e-05;
[y,ty] = resample(x,tx,targetSampleRate,'pchip');
Fs = 1/mean(diff(ty)); % Average sample rate
y = highpass(y,5.787e-07,Fs,'Steepness',0.85,'StopbandAttenuation',60);
y = bandstop(y,[1.5625e-06 1.73611111111111e-06],Fs,'Steepness',0.85,'StopbandAttenuation',60);
end

See Also
Apps
Signal Analyzer

Functions
bandstop | highpass | resample
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Related Examples
• “Find Delay Between Correlated Signals” on page 21-30
• “Plot Signals from the Command Line” on page 21-35
• “Resolve Tones by Varying Window Leakage” on page 21-39
• “Analyze Signals with Inherent Time Information” on page 21-45
• “Spectrogram View of Dial Tone Signal” on page 21-48
• “Find Interference Using Persistence Spectrum” on page 21-51
• “Modulation and Demodulation Using Complex Envelope” on page 21-61
• “Find and Track Ridges Using Reassigned Spectrogram” on page 21-70
• “Scalogram of Hyperbolic Chirp” on page 21-75
• “Extract Voices from Music Signal” on page 21-78
• “Declip Saturated Signals Using Your Own Function” on page 21-91
• “Compute Envelope Spectrum of Vibration Signal” on page 21-96
• “Extract Regions of Interest from Whale Song” on page 21-56

More About
• “Using Signal Analyzer App” on page 21-2
• “Edit Sample Rate and Other Time Information” on page 21-103
• “Data Types Supported by Signal Analyzer” on page 21-106
• “Spectrum Computation in Signal Analyzer” on page 21-109
• “Persistence Spectrum in Signal Analyzer” on page 21-113
• “Spectrogram Computation in Signal Analyzer” on page 21-115
• “Scalogram Computation in Signal Analyzer” on page 21-120
• “Keyboard Shortcuts for Signal Analyzer” on page 21-124
• “Signal Analyzer Tips and Limitations” on page 21-126
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Declip Saturated Signals Using Your Own Function
Sensors can return clipped readings if the data are larger than a given saturation point. To
reconstruct the readings, you can fit a polynomial through the points adjacent to the saturated
intervals. Write a function that performs the reconstruction and integrate it into Signal Analyzer.

Generate a three-channel signal sampled at 1 kHz for 14 seconds. The signal has several peaks of
varying sizes and shapes. A sensor that reads the signal saturates at 0.1 V.

fs = 1000;
t = 0:1/fs:14-1/fs;

sig = [chirp(t-1,0.1,17,2,'quadratic',1).*sin(2*pi*t/5);
    chirp(t-2,2,2,2.1,'quadratic',100).*exp(-(t-6.5).^2/20).*sin(2*pi*t*2);
    0.85*besselj(0,5*(sin(2*pi*(t+1.5).^2/20).^2)).*sin(2*pi*t/9)]';

sigsat = sig;
stv = 0.1;
sigsat(sigsat >= stv) = stv;

Open Signal Analyzer and drag the original signal and the saturated signal to the Signal table. Drag
each original and saturated channel to its own display.

Write a function that uses a polynomial to reconstruct the signal peaks:

• The first input argument, x, is the input signal. This argument must be a vector and is treated as a
single channel.
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• The second input argument, tIn, is a vector of time values. The vector must have the same length
as the signal. If the input signal has no time information, the function reads this argument as an
empty array.

• Use varargin to specify additional input arguments. If you do not have additional input
arguments, you can omit varargin. Enter the additional arguments as an ordered comma-
separated list in the Preprocess tab.

• The first output argument, y, is the preprocessed signal.
• The second output argument, tOut, is a vector of output time values. If the input signal has no

time information, tOut is returned as an empty array.
• To implement your algorithm, you can use any MATLAB® or Signal Processing Toolbox™ function.

function [y,tOut] = declip(x,tIn,varargin)
% Declip saturated signal by fitting a polynomial

    % Initialize the output signal

    y = x;

    % For signals with no time information, use sample numbers as abscissas
    
    if isempty(tIn)
        tOut = [];
        t = (1:length(x))';
    else
        t = tIn;
        tOut = t;
    end
    
    % Specify the degree of the polynomial as an optional input argument
    % and provide a default value of 4
    
    if nargin<3
        ndx = 4;
    else
        ndx = varargin{1};
    end

    % To implement your algorithm, you can use any MATLAB or Signal
    % Processing Toolbox function
    
    % Find the intervals where the signal is saturated and generate an 
    % array containing the interval endpoints
    idx = find(x==max(x)); 
    fir = [true;diff(idx)~=1];
    ide = [idx(fir) idx(fir([2:end 1]))];
    % For each interval, fit a polynomial of degree ndx over the ndx+1 points
    % before the interval and the ndx+1 points after the interval
    for k = 1:size(ide,1)
        bef = ide(k,1); aft = ide(k,2);
        intv = [bef-1+(-ndx:0) aft+1+(0:ndx)];
        [pp,~,mu] = polyfit(t(intv),x(intv),ndx);
        y(bef:aft) = polyval(pp,t(bef:aft),[],mu);
    end

end
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Add the function to Signal Analyzer as a custom preprocessing function. On the Analyzer tab, click
Preprocessing ▼ and select Add Custom Function. Input the function name and description. Paste
the text of your function in the editor window that appears. Save the file. The function appears in the
preprocessing gallery.

Demonstrate that the function you created reconstructs the saturated regions.

1 Select the first channel of the saturated signal in the Signal table.
2 On the Analyzer tab, click Preprocessing ▼ and select declip.
3 On the Preprocessing tab that appears, click Preprocess.

Verify that the preprocessing function works when the signals have time information.

1 Select sig and sigsat in the Signal table. Do not select individual channels.
2 On the Analyzer tab, click Time Values, select Sample Rate and Start Time, and specify

fs as the sample rate.
3 The signal in the top panel, including the reconstructed regions, has time information.
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Check that the function works when you specify optional inputs.

1 Select the second and third channels of the saturated signal in the Signal table.
2 On the Preprocessing tab, enter 8 in the Arguments field and click Preprocess. The

preprocessing function uses a polynomial of degree 8 to reconstruct the saturated regions.

See Also
Apps
Signal Analyzer

21 Signal Analyzer App

21-94



Functions
polyfit | polyval | varargin

Related Examples
• “Find Delay Between Correlated Signals” on page 21-30
• “Plot Signals from the Command Line” on page 21-35
• “Resolve Tones by Varying Window Leakage” on page 21-39
• “Analyze Signals with Inherent Time Information” on page 21-45
• “Spectrogram View of Dial Tone Signal” on page 21-48
• “Find Interference Using Persistence Spectrum” on page 21-51
• “Modulation and Demodulation Using Complex Envelope” on page 21-61
• “Find and Track Ridges Using Reassigned Spectrogram” on page 21-70
• “Scalogram of Hyperbolic Chirp” on page 21-75
• “Extract Voices from Music Signal” on page 21-78
• “Resample and Filter a Nonuniformly Sampled Signal” on page 21-84
• “Compute Envelope Spectrum of Vibration Signal” on page 21-96
• “Extract Regions of Interest from Whale Song” on page 21-56

More About
• “Using Signal Analyzer App” on page 21-2
• “Edit Sample Rate and Other Time Information” on page 21-103
• “Data Types Supported by Signal Analyzer” on page 21-106
• “Spectrum Computation in Signal Analyzer” on page 21-109
• “Persistence Spectrum in Signal Analyzer” on page 21-113
• “Spectrogram Computation in Signal Analyzer” on page 21-115
• “Scalogram Computation in Signal Analyzer” on page 21-120
• “Keyboard Shortcuts for Signal Analyzer” on page 21-124
• “Signal Analyzer Tips and Limitations” on page 21-126
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Compute Envelope Spectrum of Vibration Signal
Use Signal Analyzer to compute the envelope spectrum of a bearing vibration signal and look for
defects. Generate MATLAB® scripts and functions to automate the analysis.

Generate Bearing Vibration Data

A bearing with the dimensions shown in the figure is driven at f0 = 25 cycles per second. An
accelerometer samples the bearing vibrations at 10 kHz.

Generate vibration signals from two defective bearings using the bearingdata on page 21-0
function at the end of the example. In one of the signals, xBPFO, the bearing has a defect in the outer
race. In the other signal, xBPFI, the bearing has a defect in the inner race. For more details on
modeling and diagnosing defects in bearings, see “Vibration Analysis of Rotating Machinery” on page
24-435 and envspectrum.

[t,xBPFO,xBPFI,bpfi] = bearingdata;

Compute Envelope Spectrum Using Signal Analyzer

Open Signal Analyzer and drag the BPFO signal to a display. Add time information to the signal by
selecting it in the Signal table and clicking the Time Values button on the Analyzer tab. Select the
Sample Rate and Start Time option and enter the 10 kHz sample rate.

On the Display tab, click Spectrum to open a spectrum view. The spectrum of the vibration signal
shows BPFO harmonics modulated by the 3 kHz impact frequency. At the low end of the spectrum,
the driving frequency and its orders obscure other features.
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Select the signal and, on the Analyzer tab, click Duplicate to generate a copy of it. Give the new
signal the name envspec and drag it to the display. Compute the envelope spectrum of the signal
using the Hilbert transform:

1 Remove the DC value of the signal. On the Analyzer tab, click Preprocessing ▼ and select
Detrend. On the Detrend tab that appears, select Constant as the method. Click Detrend.

2 Bandpass-filter the detrended signal. On the Analyzer tab, click Preprocessing ▼ and select
Bandpass. On the Bandpass tab that appears, enter 2250 Hz and 3750 Hz as the lower and
upper passband frequencies, respectively. Click Bandpass.

3 Compute the envelope of the filtered signal. On the Analyzer tab, click Preprocessing ▼ and
select Envelope. On the Envelope tab that appears, select Hilbert as the method. Click
Envelope.

4 Remove the DC value of the envelope using Detrend.

The envelope spectrum appears in the spectrum view of the display. The envelope spectrum clearly
displays the BPFO harmonics.
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Steps to Create an Integrated Analysis Script

The computation of the envelope spectrum can get tedious if it has to be repeated for many different
bearings. Signal Analyzer can generate MATLAB® scripts and functions to help you automate the
computation.

As an exercise, repeat the previous analysis for the BPFI signal. Signal Analyzer generates two
components useful for the automation:

1 preprocess on page 21-0 , a function that preprocesses the signal by detrending it, filtering
it, and computing its envelope

2 Compute power spectrum on page 21-0 , a script that computes the envelope spectrum

To create the integrated analysis script, put the preprocessing function and the plotting script
together unchanged in a single file. (Alternatively, you can save functions in separate files.)

• If you save the script and the function in a single MATLAB® script, keep in mind that functions
must appear at the end.

• You must add the keyword end at the end of each function.

1. Create Preprocessing Function

Initially, create the function that reproduces the preprocessing steps. Select the envspec signal. On
the Analyzer tab, click Generate Function. The function, called preprocess by default, appears in
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the Editor. Save the generated function at the end of your integrated analysis script. The function
expects a second argument specifying the time information. Preprocess the BPFI signal using the
function.

envspec = preprocess(xBPFI,t);

2. Create Spectrum Script

In the app, remove the unprocessed signal from the display by clearing the check box next to its
name. On the Display tab, click Generate Script ▼ and select Spectrum Script. The script
appears in the Editor. Include the generated code in your integrated analysis script. When you run
the analysis script, the generated spectrum script computes the envelope spectrum of the
preprocessed BPFI signal.

% Compute power spectrum

% Generated by MATLAB(R) 9.6 and Signal Processing Toolbox 8.2.
% Generated on: 12-Nov-2018 15:13:34

% Parameters
timeLimits = [0 0.9999]; % seconds
frequencyLimits = [0 5000]; % Hz

%%
% Index into signal time region of interest
envspec_ROI = envspec(:);
sampleRate = 10000; % Hz
startTime = 0; % seconds
minIdx = ceil(max((timeLimits(1)-startTime)*sampleRate,0))+1;
maxIdx = floor(min((timeLimits(2)-startTime)*sampleRate,length(envspec_ROI)-1))+1;
envspec_ROI = envspec_ROI(minIdx:maxIdx);

% Compute spectral estimate
% Run the function call below without output arguments to plot the results
[Penvspec_ROI, Fenvspec_ROI] = pspectrum(envspec_ROI,sampleRate, ...
    'FrequencyLimits',frequencyLimits);

3. Plot Envelope Spectrum

Plot the envelope spectrum. Compare the peak locations to the frequencies of the first ten BPFI
harmonics. You can also plot the envelope spectrum using the pspectrum command with no output
arguments.

plot(Fenvspec_ROI,(Penvspec_ROI))
hold on
[X,Y] = meshgrid((1:10)*bpfi,ylim);
plot(X,Y,':k')
hold off
xlim([0 10*bpfi])
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Function Code

Signal Preprocessing Function

The signal preprocessing function generated by the app combines detrending, bandpass filtering, and
envelope computation.

function y = preprocess(x,tx)
%  Preprocess input x
%    This function expects an input vector x and a vector of time values
%    tx. tx is a numeric vector in units of seconds.

% Generated by MATLAB(R) 9.6 and Signal Processing Toolbox 8.2.
% Generated on: 12-Nov-2018 15:09:44

y = detrend(x,'constant');
Fs = 1/mean(diff(tx)); % Average sample rate
y = bandpass(y,[2250 3750],Fs,'Steepness',0.85,'StopbandAttenuation',60);
[y,~] = envelope(y);
y = detrend(y,'constant');
end

Bearing Data Generating Function

The bearing has pitch diameter p = 12 cm and a bearing contact angle θ = 0. Each of the n = 8
rolling elements has a diameter d = 2 cm. The outer race remains stationary as the inner race is
driven at f0 = 25 cycles per second. An accelerometer samples the bearing vibrations at 10 kHz.
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function [t,xBPFO,xBPFI,bpfi] = bearingdata

p = 0.12;
d = 0.02;
n = 8;
th = 0;
f0 = 25;
fs = 10000;

For a healthy bearing, the vibration signal is a superposition of several orders of the driving
frequency, embedded in white Gaussian noise.

t = 0:1/fs:1-1/fs;
z = [1 0.5 0.2 0.1 0.05]*sin(2*pi*f0*[1 2 3 4 5]'.*t);

xHealthy = z + randn(size(z))/10;

A defect in the outer race causes a series of 5 millisecond impacts that over time result in bearing
wear. The impacts occur at the ball pass frequency outer race (BPFO) of the bearing,

BPFO = 1
2nf0 1 − d

pcos θ .

Model the impacts as a periodic train of 3 kHz exponentially damped sinusoids. Add the impacts to
the healthy signal to generate the BPFO vibration signal.

bpfo = n*f0/2*(1-d/p*cos(th));

tmp = 0:1/fs:5e-3-1/fs;
xmp = sin(2*pi*3000*tmp).*exp(-1000*tmp);

xBPFO = xHealthy + pulstran(t,0:1/bpfo:1,xmp,fs)/4;

If the defect is instead in the inner race, the impacts occur at a frequency

BPFI = 1
2nf0 1 + d

pcos θ .

Generate the BPFI vibration signal by adding the impacts to the healthy signals.

bpfi = n*f0/2*(1+d/p*cos(th));

xBPFI = xHealthy + pulstran(t,0:1/bpfi:1,xmp,fs)/4;

end

See Also
Apps
Signal Analyzer

Functions
polyfit | polyval | varargin
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Related Examples
• “Find Delay Between Correlated Signals” on page 21-30
• “Plot Signals from the Command Line” on page 21-35
• “Resolve Tones by Varying Window Leakage” on page 21-39
• “Analyze Signals with Inherent Time Information” on page 21-45
• “Spectrogram View of Dial Tone Signal” on page 21-48
• “Find Interference Using Persistence Spectrum” on page 21-51
• “Modulation and Demodulation Using Complex Envelope” on page 21-61
• “Find and Track Ridges Using Reassigned Spectrogram” on page 21-70
• “Scalogram of Hyperbolic Chirp” on page 21-75
• “Extract Voices from Music Signal” on page 21-78
• “Resample and Filter a Nonuniformly Sampled Signal” on page 21-84
• “Declip Saturated Signals Using Your Own Function” on page 21-91
• “Extract Regions of Interest from Whale Song” on page 21-56

More About
• “Using Signal Analyzer App” on page 21-2
• “Edit Sample Rate and Other Time Information” on page 21-103
• “Data Types Supported by Signal Analyzer” on page 21-106
• “Spectrum Computation in Signal Analyzer” on page 21-109
• “Persistence Spectrum in Signal Analyzer” on page 21-113
• “Spectrogram Computation in Signal Analyzer” on page 21-115
• “Scalogram Computation in Signal Analyzer” on page 21-120
• “Keyboard Shortcuts for Signal Analyzer” on page 21-124
• “Signal Analyzer Tips and Limitations” on page 21-126
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Edit Sample Rate and Other Time Information
You can add and edit the time information in the Signal Analyzer app for any signal that is not a
timetable or a timeseries object. Select one or more signals with no inherent time information in
the Signal table and on the Analyzer tab, click Time Values.

Note Select a signal in the Signal table by clicking its Name column. The complete row is
highlighted, indicating that the signal is selected. The check box next to the name of the signal
indicates whether or not the signal is plotted in the active display.

In the Time Values dialog box, select a Time Specification option.

Time Specification Option Description
Work in Samples (default) This option enables you to explore signals without

the need to specify a sample rate or a sample
time. It is equivalent to plotting the signal in
MATLAB without x-axis information.

Sample Rate and Start Time Use this option when you know the rate at which
the signal has been sampled. Specify the sample
rate and the instant corresponding to the first
sample.

The Sample Rate can be expressed in Hz, kHz,
MHz, or GHz.

The Start Time can be expressed in seconds,
years, days, hours, minutes, milliseconds,
microseconds, or nanoseconds.

Set the sample rate so that the signal is plotted in
units of time on a display.

Sample Time and Start Time Use this option when you know the time interval
between samples. Specify the sample time and
the instant corresponding to the first sample.

The Sample Time and Start Time each can be
expressed in seconds, years, days, hours,
minutes, milliseconds, microseconds, or
nanoseconds.

Set the sample time so that the signal is plotted
in units of time on a display.
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Time Specification Option Description
Time Values Use this option when you know the time value

corresponding to each sample. Specify the time
values using a MATLAB expression or the name
of a variable in the MATLAB workspace.

The Time Values can be stored in a numeric
vector with real time values expressed in
seconds. The values must be unique and cannot
be NaN, but they need not be uniformly spaced.
The vector must have the same length as the
signal.

The time values can also be stored in a duration
array. The values must be unique and cannot be
NaN, but they need not be uniformly spaced. The
array must have the same length as the signal.

The time values can also be entered as a MATLAB
expression. The expression must specify an array
with the same length as the signal. The values
must be unique and cannot be NaN, but they need
not be uniformly spaced. Valid examples include:

• (0:length(s)-1)'/Fs, where s is the
signal and Fs is a scalar in the workspace
representing a sample rate.

• linspace(2,2.5,length(s))', where s is
the signal.

• minutes(0:15)', equivalent to taking
measurements every minute for 15 minutes.

• [0:10 20:30], equivalent to taking two sets
of measurements at 1 Hz with a long pause
between the sets.

In all cases, the app derives a sample rate from
the time values and displays it in the Time
column of the Signal table. An asterisk preceding
the sample rate indicates that the signal is
nonuniformly sampled.

Note Signals with no time information are plotted in units of samples on the x-axis. Signals with time
information are plotted in units of time on the x-axis. To plot several signals on the same display,
ensure that they all have time information or are all in samples. Otherwise, you get a warning:
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• If a signal has missing or duplicate time points, you can fix it using the tips in “Clean Timetable
with Missing, Duplicate, or Nonuniform Times”.

• If a signal is nonuniformly sampled, then Signal Analyzer interpolates the signal to a uniform
grid to compute spectral estimates. The app uses linear interpolation and assumes a sample time
equal to the median difference between adjacent time points. The derived sample rate in the
Signal table has an asterisk to indicate that the signal is nonuniformly sampled.

Note The interpolation is used only to compute spectral estimates. Time plots are not resampled.

For a nonuniformly sampled signal to be supported, the median time interval and the mean time
interval must obey

1
100 < Median time interval

Mean time interval < 100.

• Filtering and scalogram view do not support nonuniformly sampled signals.
• The app does not support adding time information to labeledSignalSet objects or editing the

time information of labeledSignalSet objects.

See Also
Signal Analyzer

Related Examples
• “Find Delay Between Correlated Signals” on page 21-30
• “Plot Signals from the Command Line” on page 21-35
• “Analyze Signals with Inherent Time Information” on page 21-45
• “Modulation and Demodulation Using Complex Envelope” on page 21-61
• “Extract Voices from Music Signal” on page 21-78
• “Compute Envelope Spectrum of Vibration Signal” on page 21-96
• “Extract Regions of Interest from Whale Song” on page 21-56

More About
• “Data Types Supported by Signal Analyzer” on page 21-106
• “Keyboard Shortcuts for Signal Analyzer” on page 21-124
• “Signal Analyzer Tips and Limitations” on page 21-126
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Data Types Supported by Signal Analyzer

Numeric Data
• Numeric vectors and matrices with finite elements are supported.

Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal consisting of
sinusoids embedded in white noise.

• Scalars, empty arrays, multidimensional arrays, and the ans variable are not supported.

MATLAB Timetables
• Timetables with one or more variables are supported. Each variable can be a vector or a matrix.

Signal Analyzer supports timetable inputs only when the time values are increasing and finite.
Signals with missing, nonfinite, or duplicate time points are not imported. For some timetables,
this restriction might mean that the app imports some signals but does not import others. To make
sure that all signals are imported, you can fix them using the tips in “Clean Timetable with
Missing, Duplicate, or Nonuniform Times”.

Example: timetable(seconds(0:4)',rand(5,2)) and
timetable(seconds(0:4)',rand(5,1),rand(5,1)) both specify a two-channel random
variable sampled at 1 Hz for 4 seconds.

• Empty timetables and timetables with row times specified as datetime arrays are not supported.

Tip To analyze timetables with time values stored as a datetime array, convert the array to a
duration array by subtracting the first time point, and then convert the duration array to seconds.
See “Analyze Signals with Inherent Time Information” on page 21-45 for an example.

timeseries Objects
• Single-channel and multichannel timeseries objects are supported. To be supported, a

timeseries object must have its DataInfo.Interpolation property set to 'linear'. Use
setinterpmethod to change the property.

Example: timeseries(rand(5,2)) and timeseries(rand(5,2),0:4) both specify a two-
channel random variable sampled at 1 Hz for 4 seconds.

• Signal Analyzer supports timeseries inputs only when the time values are increasing and
finite. Signals with missing, nonfinite, or duplicate time points are not imported. For some
timeseries objects, this restriction might mean that the app imports some signals but does not
import others. To make sure that all signals are imported, you can fix them using the tips in “Time
Series Objects and Collections”.

• Empty timeseries objects, timeseries objects with time vectors specified as MATLAB date
strings, and timeseries objects whose Name property is not a valid MATLAB variable name are
not supported. See isvarname for more information on valid variable names.

Note Signal Analyzer does not support matrices, time series, timetables, or labeled signal sets with
more than 8000 channels.
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Nonuniformly Sampled Signals
• Filtering and scalogram view do not support nonuniformly sampled signals.
• If a signal is nonuniformly sampled, then Signal Analyzer interpolates the signal to a uniform

grid to compute spectral estimates. The app uses linear interpolation and assumes a sample time
equal to the median difference between adjacent time points. The derived sample rate in the
Signal table has an asterisk to indicate that the signal is nonuniformly sampled. For a
nonuniformly sampled signal to be supported, the median time interval and the mean time interval
must obey

1
100 < Median time interval

Mean time interval < 100.

Note The interpolation is used only to compute spectral estimates. Time plots are not resampled.

Labeled Signal Sets
• labeledSignalSet objects are supported.

Example: The code

lbs = labeledSignalSet({randn(100,2) randn(200,3)},'SampleRate',400);
setMemberNames(lbs,["Water" "Earth"]);
addMembers(lbs,{randn(120,1) randn(300,2)},100,["Air" "Fire"]);

specifies a labeled signal set with four members. Each member has a different length and a
different number of channels. Two members, "Water" and "Earth", are sampled at 400 Hz. The
other two members, "Air" and "Fire", are sampled at 100 Hz.

• Preprocessing is not supported for labeled signal sets.
• The app does not support adding time information to labeledSignalSet objects or editing the

time information of labeledSignalSet objects.

See Also
Apps
Signal Analyzer

Functions
labeledSignalSet | timeseries | timetable

Related Examples
• “Plot Signals from the Command Line” on page 21-35
• “Analyze Signals with Inherent Time Information” on page 21-45
• “Modulation and Demodulation Using Complex Envelope” on page 21-61
• “Resample and Filter a Nonuniformly Sampled Signal” on page 21-84
• “Extract Regions of Interest from Whale Song” on page 21-56
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More About
• “Edit Sample Rate and Other Time Information” on page 21-103
• “Keyboard Shortcuts for Signal Analyzer” on page 21-124
• “Signal Analyzer Tips and Limitations” on page 21-126
• “Customize Signal Analyzer” on page 21-130
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Spectrum Computation in Signal Analyzer
To compute signal spectra, Signal Analyzer finds a compromise between the spectral resolution
achievable with the entire length of the signal and the performance limitations that result from
computing large FFTs.

• If the resolution resulting from analyzing the full signal is achievable, the app computes a single
modified periodogram of the whole signal using an adjustable Kaiser window.

• If the resolution resulting from analyzing the full signal is not achievable, the app computes a
Welch periodogram: It divides the signal into overlapping segments, windows each segment using
a Kaiser window, and averages the periodograms of the segments.

Spectral Windowing
Any real-world signal is measurable only for a finite length of time. This fact introduces nonnegligible
effects into Fourier analysis, which assumes that signals are either periodic or infinitely long.
Spectral windowing, which consists of assigning different weights to different signal samples, deals
systematically with finite-size effects.

The simplest way to window a signal is to assume that it is identically zero outside of the
measurement interval and that all samples are equally significant. This “rectangular window” has
discontinuous jumps at both ends that result in spectral ringing. All other spectral windows taper at
both ends to lessen this effect by assigning smaller weights to samples close to the signal edges.

The windowing process always involves a compromise between conflicting aims: improving resolution
and decreasing leakage.

• Resolution is the ability to know precisely how the signal energy is distributed in the frequency
space. A spectrum analyzer with ideal resolution can distinguish two different tones (pure
sinusoids) present in the signal, no matter how close in frequency. Quantitatively, this ability
relates to the mainlobe width of the transform of the window.

• Leakage is the fact that, in a finite signal, every frequency component projects energy content
throughout the complete frequency span. The amount of leakage in a spectrum can be measured
by the ability to detect a weak tone from noise in the presence of a neighboring strong tone.
Quantitatively, this ability relates to the sidelobe level of the frequency transform of the window.

The better the resolution, the higher the leakage, and vice versa. At one end of the range, a
rectangular window has the narrowest possible mainlobe and the highest sidelobes. This window can
resolve closely spaced tones if they have similar energy content, but it fails to find the weaker one if
they do not. At the other end, a window with high sidelobe suppression has a wide mainlobe in which
close frequencies are smeared together.

Signal Analyzer uses Kaiser windows to carry out windowing. For Kaiser windows, the fraction of
the signal energy captured by the mainlobe depends most importantly on an adjustable shape factor,
β. The shape factor ranges from β = 0, which corresponds to a rectangular window, to β = 40, where
a wide mainlobe captures essentially all the spectral energy representable in double precision. An
intermediate value of β ≈ 6 approximates a Hann window closely. To control β, use the Leakage
slider on the Spectrum and Spectrogram tabs. If you set the leakage to ℓ using the slider, then ℓ
and β are related by β = 40(1 – ℓ). See kaiser for more details.
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Parameter and Algorithm Selection
To compute the spectra of the signals appearing on a given display, Signal Analyzer initially
determines the resolution bandwidth, which measures how close two tones can be and still be
resolved. The resolution bandwidth has a theoretical value of

RBWtheory = ENBW
tmax− tmin

.

• tmax – tmin, the record length, is the time-domain duration of the selected signal region.

Use the panner to select and adjust the record length or region of interest. Equivalently, you can
zoom in on the time-domain plot or change the limits on the Time tab.

• ENBW is the equivalent noise bandwidth of the spectral window. See enbw for more details.

Use the Leakage slider in the Spectrum tab to control the ENBW. The minimum value in the
slider range corresponds to a Kaiser window with β = 40. The maximum value corresponds to a
Kaiser window with β = 0.

In practice, however, the app might lower the resolution. Lowering the resolution makes it possible to
compute the spectrum in a reasonable amount of time and to display it with a finite number of pixels.
For these practical reasons, the lowest resolution bandwidth the app can use is

RBWperformance =
fspan

4096 − 1,

where fspan is the width of the frequency range specified by setting Frequency Limits values on the
Spectrum tab. If you do not specify a frequency range, the app uses as fspan the maximum sample
rate among all the signals in the display. RBWperformance cannot be adjusted.

To compute the spectrum of a signal, the app chooses the larger of the two values:

RBW = max(RBWtheory, RBWperformance) .

This target resolution bandwidth is displayed on the Spectrum tab.

• If the resolution bandwidth is RBWtheory, then Signal Analyzer computes a single modified
periodogram for the whole signal. The app uses a Kaiser window with the slider-controlled shape
factor and applies zero-padding when the time limits on the axes exceed the signal duration. See
periodogram for more details.

• If the resolution bandwidth is RBWperformance, then Signal Analyzer computes a Welch
periodogram for the signal. The app:

1 Divides the signals into overlapping segments.
2 Windows each segment separately using a Kaiser window with the specified shape factor.
3 Averages the periodograms of all the segments.

Welch’s procedure is designed to reduce the variance of the spectrum estimate by averaging
different “realizations” of the signals, given by the overlapping sections, and using the window to
remove redundant data. See pwelch for more details.

• The length of each segment (or, equivalently, of the window) is computed using

Segment length =
max(fNyquist) × ENBW

RBW ,
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where max(fNyquist) is the highest Nyquist frequency among all the signals in the display. (If
there is no aliasing, the Nyquist frequency is one-half the sample rate.)

• The stride length is found by adjusting an initial estimate,

Stride length ≡ Segment length − Overlap = Segment length
2 × ENBW− 1 ,

so that the first window starts exactly on the first sample of the first segment and the last
window ends exactly on the last sample of the last segment.

Zooming
If you zoom in on a region of a signal spectrum using one of the zoom actions on the Display tab, the
app does not change the resolution bandwidth. Instead, Signal Analyzer performs an optical
zooming, using bandlimited interpolation to display a smooth spectral curve.

Zooming in on a time-domain region of a signal is equivalent to setting the record length or region of
interest with the panner.

If the selected time interval extends beyond the ends of a signal, the app zero-pads the signal. If a
signal has no samples within the selected time interval, the app displays nothing.

References
[1] harris, fredric j. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier

Transform.” Proceedings of the IEEE. Vol. 66, January 1978, pp. 51–83.

[2] Welch, Peter D. “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A
Method Based on Time Averaging Over Short, Modified Periodograms.” IEEE Transactions on
Audio and Electroacoustics. Vol. 15, June 1967, pp. 70–73.

See Also
Apps
Signal Analyzer

Functions
enbw | kaiser | periodogram | pspectrum | pwelch

Related Examples
• “Resolve Tones by Varying Window Leakage” on page 21-39
• “Spectrogram View of Dial Tone Signal” on page 21-48
• “Find Interference Using Persistence Spectrum” on page 21-51
• “Modulation and Demodulation Using Complex Envelope” on page 21-61
• “Find and Track Ridges Using Reassigned Spectrogram” on page 21-70
• “Scalogram of Hyperbolic Chirp” on page 21-75
• “Extract Voices from Music Signal” on page 21-78
• “Compute Envelope Spectrum of Vibration Signal” on page 21-96
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More About
• “Edit Sample Rate and Other Time Information” on page 21-103
• “Persistence Spectrum in Signal Analyzer” on page 21-113
• “Spectrogram Computation in Signal Analyzer” on page 21-115
• “Scalogram Computation in Signal Analyzer” on page 21-120
• “Nonparametric Methods” on page 7-8
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Persistence Spectrum in Signal Analyzer
The persistence spectrum of a signal is a time-frequency view that shows the percentage of the time
that a given frequency is present in a signal. The persistence spectrum is a histogram in power-
frequency space. The longer a particular frequency persists in a signal as the signal evolves, the
higher its time percentage and thus the brighter or "hotter" its color in the display. Use the
persistence spectrum to identify signals hidden in other signals.

To compute the persistence spectrum, Signal Analyzer performs these steps:

1 Compute the spectrogram using the specified leakage, time resolution, and overlap. (When you
zoom in time using the panner or a zoom button, the app computes and displays the persistence
spectrum using the segments that fall within the visible zoomed-in region of interest, including
those segments that are only partially visible. See “Spectrogram Computation in Signal Analyzer”
on page 21-115 for more details.)

2 Partition the power and frequency values into 2-D bins. (To adjust the power or the frequency
limits, enter the minimum and maximum Power Limits or Frequency Limits values on the
Persistence Spectrum tab.)

3 For each time value, compute a bivariate histogram of the logarithm of the power spectrum. For
every power-frequency bin where there is signal energy at that instant, increase the
corresponding matrix element by 1. Sum the histograms for all the time values.

4 Plot the accumulated histogram against the power and the frequency, with the color proportional
to the logarithm of the histogram counts expressed as normalized percentages. To represent zero
values, use one-half of the smallest possible magnitude.

(To adjust the range of histogram counts represented in the colormap, enter the minimum and
maximum Density Limits on the Persistence Spectrum tab. To fit the colormap to the current
density limits, click the Fit colormap  button on the Display tab.)

Power Spectra

Histograms

Accumulated Histogram
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See Also
Apps
Signal Analyzer

Functions
histcounts2 | pspectrum

Related Examples
• “Resolve Tones by Varying Window Leakage” on page 21-39
• “Analyze Signals with Inherent Time Information” on page 21-45
• “Spectrogram View of Dial Tone Signal” on page 21-48
• “Find Interference Using Persistence Spectrum” on page 21-51
• “Find and Track Ridges Using Reassigned Spectrogram” on page 21-70
• “Scalogram of Hyperbolic Chirp” on page 21-75
• “Compute Envelope Spectrum of Vibration Signal” on page 21-96

More About
• “Spectrum Computation in Signal Analyzer” on page 21-109
• “Spectrogram Computation in Signal Analyzer” on page 21-115
• “Scalogram Computation in Signal Analyzer” on page 21-120
• “Keyboard Shortcuts for Signal Analyzer” on page 21-124
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Spectrogram Computation in Signal Analyzer
A nonstationary signal is a signal whose frequency content changes with time. The spectrogram of a
nonstationary signal is an estimate of the time evolution of its frequency content. To construct the
spectrogram of a nonstationary signal, Signal Analyzer follows these steps:

1 Divide the signal into equal-length segments. The segments must be short enough that the
frequency content of the signal does not change appreciably within a segment. The segments
may or may not overlap.

2 Window each segment and compute its spectrum to get the short-time Fourier transform.
3 Display segment-by-segment the power of each spectrum in decibels. Depict the magnitudes

side-by-side as an image with magnitude-dependent colormap.

The spectrogram view is available in displays that contain only one signal.
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Divide Signal into Segments
To construct a spectrogram, first divide the signal into possibly overlapping segments. In Signal
Analyzer, you can control the length of the segments and the amount of overlap between adjoining
segments using Time Resolution and Overlap. If you do not specify the length and overlap, Signal
Analyzer chooses a length based on the entire length of the signal, and 50% overlap. The app aligns
the time axis of the spectrogram with the axis of the time-domain plot.

Specified Time Resolution

On the Spectrogram tab, in the Time Resolution section, click Specify.

• If the signal does not have time information, specify the time resolution (segment length) in
samples. The time resolution must be an integer greater than or equal to 1 and smaller than or
equal to the signal length.

If the signal has time information, specify the time resolution in seconds. The app converts the
result into a number of samples and rounds it to the nearest integer that is less than or equal to
the number but not smaller than 1. The time resolution must be smaller than or equal to the signal
duration.

• Specify the overlap as a percentage of the segment length. The app converts the result into a
number of samples and rounds it to the nearest integer that is less than or equal to the number.

Default Time Resolution

If you select Auto for the time resolution computation, then Signal Analyzer uses the length of the
entire signal to choose the length of the segments. The app sets the time resolution as ⌈N/d⌉ samples,
where the brackets denote the ceiling function, N is the length of the signal, and d is a divisor that
depends on N:

Signal Length (N) Divisor (d) Segment Length
2 samples – 63 samples 2 1 sample – 32 samples
64 samples – 255 samples 8 8 samples – 32 samples
256 samples – 2047 samples 8 32 samples – 256 samples
2048 samples – 4095 samples 16 128 samples – 256 samples
4096 samples – 8191 samples 32 128 samples – 256 samples
8192 samples – 16383 samples 64 128 samples – 256 samples
16384 samples – N samples 128 128 samples – ⌈N / 128⌉ samples

You can still specify the overlap between adjoining segments. Specifying the overlap changes the
number of segments. Segments that extend beyond the signal endpoint are zero-padded.

Consider the seven-sample signal [s0 s1 s2 s3 s4 s5 s6]. Because ⌈7/2⌉ = ⌈3.5⌉ = 4, the app
divides the signal into two segments of length four when there is no overlap. The number of segments
changes as the overlap increases.

Number of Overlapping Samples Resulting Segments
0 s0 s1 s2 s3

            s4 s5 s6 0
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Number of Overlapping Samples Resulting Segments
1 s0 s1 s2 s3

         s3 s4 s5 s6

2 s0 s1 s2 s3
      s2 s3 s4 s5
            s4 s5 s6 0

3 s0 s1 s2 s3
   s1 s2 s3 s4
      s2 s3 s4 s5
         s3 s4 s5 s6

Time Alignment

Once the segment length and overlap are set, the number of segments and their edge locations stay
fixed and are independent of any zooming or panning. When you zoom and pan, the app computes
and displays the spectrogram using the segments that fall within the visible zoomed-in region of
interest.

The app:

• Aligns the time axis of the spectrogram with the axis of the corresponding time-domain plot. That
way, the spectral content at a given time aligns with its occurrence.

• For nonzero overlap, extends the first and last segments to the signal endpoints.
• Zero-pads the signal if the last segment extends beyond the signal endpoint.

When the segments have 0% overlap, each segment is centered at the actual time of occurrence.
When the overlap is nonzero, the alignment of the spectrogram time axis with the time-domain axis
has the effect that the first and last time intervals are elongated. All other time intervals are of the
same length. In other words, the center of each segment, except for the first and last, corresponds to
the actual time of occurrence. Consider this example:
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Window the Segments and Compute Spectra
After Signal Analyzer divides the signal into overlapping segments, the app windows each segment
with a Kaiser window. The shape factor β of the window, and therefore the leakage, is adjustable.

Note The leakage used to compute the signal spectrum and the leakage used to window the
spectrogram segments are independent of each other. You can adjust them separately.

The app then computes the spectrum of each segment, following the procedure outlined in “Spectrum
Computation in Signal Analyzer” on page 21-109, except that the lower limit of the resolution
bandwidth is

RBWperformance =
fspan

1024 − 1 .
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In summary, Signal Analyzer finds a compromise between the spectral resolution achievable with
the entire length of the segment and the performance limitations that result from computing large
FFTs.

• If the resolution resulting from analyzing the full segment is achievable, the app computes a single
modified periodogram of the whole segment using a Kaiser window with the specified shape
factor.

• If the resolution resulting from analyzing the full segment is not achievable, the app computes a
Welch periodogram: It divides the segment into overlapping subsegments, windows each
subsegment, and averages the periodograms of the subsegments. The app chooses the
subsegment size, the window, and the overlap so that the composite periodogram is equivalent to
a modified periodogram of the whole segment with the specified Kaiser window.

Display Spectrum Power
The app displays the power of the short-time Fourier transform in decibels, using a color bar with the
default MATLAB colormap. The color bar comprises the full power range of the spectrogram and does
not change if you zoom or pan.

You can change the magnitude levels represented by a given color range. On the Spectrogram tab,
change the minimum and maximum power values to display. You can also set the colormap so that it
comprises the full power range of the zoomed-in section of the spectrogram. On the Display tab,
click the scale color button .

See Also
Apps
Signal Analyzer

Functions
pspectrum | spectrogram | xspectrogram

Related Examples
• “Spectrogram View of Dial Tone Signal” on page 21-48
• “Find Interference Using Persistence Spectrum” on page 21-51
• “Find and Track Ridges Using Reassigned Spectrogram” on page 21-70
• “Scalogram of Hyperbolic Chirp” on page 21-75
• “Compute Envelope Spectrum of Vibration Signal” on page 21-96

More About
• “Edit Sample Rate and Other Time Information” on page 21-103
• “Spectrum Computation in Signal Analyzer” on page 21-109
• “Persistence Spectrum in Signal Analyzer” on page 21-113
• “Scalogram Computation in Signal Analyzer” on page 21-120
• “Nonparametric Methods” on page 7-8
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Scalogram Computation in Signal Analyzer
The scalogram is the absolute value of the continuous wavelet transform (CWT) of a signal, plotted as
a function of time and frequency. The scalogram can be more useful than the spectrogram for
analyzing real-world signals with features occurring at different scales — for example, signals with
slowly varying events punctuated by abrupt transients. Use the scalogram when you want better time
localization for short-duration, high-frequency events, and better frequency localization for low-
frequency, longer-duration events.

Note You need a Wavelet Toolbox license to use the scalogram view.

The spectrogram is obtained by windowing the input signal with a window of constant length
(duration) that is shifted in time and frequency. (See “Spectrogram Computation in Signal Analyzer”
on page 21-115 for more information.) The window used in the spectrogram is even, real-valued, and
does not oscillate. Because the spectrogram uses a constant window, the time-frequency resolution of
the spectrogram is fixed.

By contrast, the CWT is obtained by windowing the signal with a wavelet that is scaled and shifted in
time. The wavelet oscillates and can be complex-valued. The scaling and shifting operations are
applied to a prototype wavelet. The scaling used in the CWT both shrinks and stretches the prototype
wavelet. Shrinking the prototype wavelet yields short duration, high-frequency wavelets that are
good at detecting transient events. Stretching the prototype wavelet yields long duration, low-
frequency wavelets which are good at isolating long-duration, low frequency events.

To compute the scalogram, Signal Analyzer performs these steps:

1 If the signal has more than 1 million samples, divide the signal into overlapping segments.
2 Compute the CWT of each segment to get its scalogram.
3 Display the scalogram segment by segment.

As implemented, the CWT uses L1 normalization. Therefore, the amplitudes of the oscillatory
components in a signal agree with the amplitudes of the corresponding wavelet coefficients.

Tip

• Scalogram view does not support complex signals.
• Scalogram view does not support nonuniformly sampled signals. To compute the scalogram of a

nonuniformly sampled signal, resample your signal to a uniform grid by using the resample
function.

• Scalogram view is available in displays that contain only one signal. To compare scalograms of
different signals, open separate displays and drag each signal to its own display.

Divide the Signal into Segments
If the input signal has 1 million samples or less, Signal Analyzer uses the cwt function directly. If
the signal has more than 1 million samples, the app performs these steps:

1 Divide the signal into segments of 1 million samples, with 50% overlap between adjoining
segments.
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2 If the last segment extends beyond the signal endpoint, zero-pad the signal until the last segment
has 1 million samples.

3 After computing the scalogram of each segment, remove edge effects:

• Discard the first 250,000 and the last 250,000 scalogram samples of all segments except the
first and the last.

• Discard the last 250,000 scalogram samples of the first segment.
• In the last segment, discard the first 250,000 scalogram samples and the samples

corresponding to the zero-padded region.

Consider, for example, a signal with 2.6 × 106 samples:

Compute the Continuous Wavelet Transform
Signal Analyzer computes the CWT using the default settings of the cwt function. The app uses
generalized analytic Morse wavelets with gamma factor γ = 3. See “Morse Wavelets” (Wavelet
Toolbox) for more information.

Signal Analyzer provides two separate controls for frequency resolution.

• The Time-Bandwidth slider controls the time-bandwidth product, which is proportional to the
wavelet duration in the time domain. Increasing the time-bandwidth product results in wavelets
with more oscillations in their central portions, larger spreads in time, and narrower spreads in
frequency. The slider moves in the range from 3 to 120. The default value is 60. The figure shows
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some Morse wavelets with varying time-bandwidth product P. The real part is in blue, the
imaginary part is in red, and the absolute value is in black.

• The Voices Per Octave slider controls the number of scales per octave used to discretize the
CWT. As the number of voices per octave increases, the scale resolution becomes finer. The slider
moves in steps of multiples of 4 in the range from 4 to 16. The default value is 8.

Display the Scalogram
Signal Analyzer plots the absolute value of the CWT coefficients as a function of time and frequency.
If the signal was divided into segments, the app concatenates portions of the scalograms of the
individual segments and displays them. The app also plots the cone of influence, which shows where
edge effects become significant. See “Boundary Effects and the Cone of Influence” (Wavelet Toolbox)
for more information.

See Also
Apps
Signal Analyzer

Functions
cwt | cwtfilterbank | pspectrum
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Related Examples
• “Spectrogram View of Dial Tone Signal” on page 21-48
• “Find Interference Using Persistence Spectrum” on page 21-51
• “Find and Track Ridges Using Reassigned Spectrogram” on page 21-70
• “Scalogram of Hyperbolic Chirp” on page 21-75
• “Compute Envelope Spectrum of Vibration Signal” on page 21-96

More About
• “Continuous and Discrete Wavelet Transforms” (Wavelet Toolbox)
• “Spectrum Computation in Signal Analyzer” on page 21-109
• “Persistence Spectrum in Signal Analyzer” on page 21-113
• “Spectrogram Computation in Signal Analyzer” on page 21-115
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Keyboard Shortcuts for Signal Analyzer
You can use several keyboard shortcuts to facilitate working with the Signal Analyzer app.

Note On Macintosh platforms, use the Command key instead of Ctrl.

General Actions
Task Shortcut
Start a new session Ctrl+N
Open a session Ctrl+O
Save a session Ctrl+S
Link or unlink a display Ctrl+U
Delete a signal Del
Copy a display to the clipboard Ctrl+C

Multichannel Signals
Task Shortcut
Expand signal hierarchy Ctrl+Shift+=
Collapse signal hierarchy Ctrl+=

Zooming
Task Shortcut
Zoom in X-axis (time or frequency) Ctrl+Shift+T
Zoom in Y-axis Ctrl+Shift+Y
Zoom in X and Y Ctrl++ (numeric keypad only)
Zoom out Ctrl+- (numeric keypad only)
Fit to view Spacebar
Fit colormap to current power limits Ctrl+Spacebar
Cancel zoom operation or signal dragging Esc

Data Cursors
Task Shortcut
Show a data cursor Ctrl+I
Hide all data cursors Shift+Del
Move a selected data cursor to the next data
point

Right arrow
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Task Shortcut
Move a selected data cursor to the previous data
point

Left arrow

Activate first (left) cursor Ctrl+1
Activate second (right) cursor Ctrl+2

See Also
Signal Analyzer

Related Examples
• “Analyze Signals with Inherent Time Information” on page 21-45
• “Extract Voices from Music Signal” on page 21-78
• “Declip Saturated Signals Using Your Own Function” on page 21-91
• “Extract Regions of Interest from Whale Song” on page 21-56

More About
• “Edit Sample Rate and Other Time Information” on page 21-103
• “Data Types Supported by Signal Analyzer” on page 21-106
• “Signal Analyzer Tips and Limitations” on page 21-126
• “Customize Signal Analyzer” on page 21-130
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Signal Analyzer Tips and Limitations
Frequently asked questions and current limitations of the Signal Analyzer app.

Select Signals to Analyze
1 "I dragged a 512-by-24 matrix into a display, but the app plotted only 10 of the 24 signals. How

do I plot the others?"

By default, Signal Analyzer imports all the columns of a multichannel signal but plots only the
first 10 columns. To plot signal columns beyond the 10th, drag them to the display. Alternatively,
on the Signal table, select the check boxes next to the names of the signals you want to plot.

2 "My data is saved in structures. How can I analyze them in Signal Analyzer?"

To study a structure in Signal Analyzer, convert it to a timetable. The easiest way to do the
conversion is to convert the structure to a table and then convert the table to a timetable. The
second step involves converting the time variable to a duration array. The following example
creates a structure with three fields, one of them containing the time values, and converts the
structure to a timetable readable by Signal Analyzer.

str.st = (0:999)'/1000;
str.s1 = randn(1000,1);
str.s2 = sin(2*pi*20*str.st);

T = struct2table(str);
T.st = seconds(T.st);
TT = table2timetable(T,'RowTimes','st');

If your structure does not have time information, you can use other MATLAB functions. The
following function takes a structure as input, extracts from it the arrays of signal values, and
calls Signal Analyzer to plot the signals.

function structSig(x)
   names = fieldnames(x);
   for i = 1:length(names)
      signalAnalyzer(getfield(x,names{i}))
   end
end

3 "What does it mean when a row in the Signal table is highlighted in gray and what does the
check box mean?"

There are two different ways to choose signals in the Signal table. Each way gives you access to a
different set of operations.

• Selecting the signal by clicking the Name, Info, Time, or Start Time column in the Signal
table enables you to perform all the operations in the Analyzer tab. You can change the time
information and smooth, filter, or duplicate the signals. You can run preprocessing operations
on a signal without plotting the signal.

• Selecting the check box to the left of the signal name plots the signal in the currently selected
display and enables you to perform all the operations in the Display tab. You can display the
signal in the frequency domain or the time-frequency domain, or you can measure the signal
using cursors.
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4 "I use timetables with the time values stored as datetime arrays. How can I analyze them?"

To analyze timetables with time values stored as a datetime array, convert the array to a
relative duration array by subtracting the first element from all the others. The following
example creates a timetable with datetime row times and converts it to a timetable readable by
Signal Analyzer.

tt = timetable(datetime(2016,11,9,2,30,1:10)',randn(10,1));
dt = tt.Time-tt.Time(1);
tn = timetable(dt,tt.Var1);

See “Analyze Signals with Inherent Time Information” on page 21-45 for another example.
5 "I have a timetable but only some of its variables were imported. How can I import them?"

Signal Analyzer lists only the variables that it can display and process. If some variables of a
timetable are not being imported, they probably are complex or have NaNs. To be able to import
them to the app, you must fix them in MATLAB first. To fix timetables, you can use the tips in
“Clean Timetable with Missing, Duplicate, or Nonuniform Times”.

6 "I changed a variable in the MATLAB workspace. Why is there no change in the Signal Analyzer
display?"

If you modify a signal in the MATLAB workspace, the Workspace browser updates automatically.
To have the app recognize the changes, reimport the signal by dragging it again to the Signal
table or to a display.

Preprocess Signals
1 "How do I apply a lowpass filter to a signal that is not uniformly sampled?"

The filtering functionality of Signal Analyzer supports only uniformly sampled signals. You can
resample your signal to a uniform grid by using Signal Analyzer's resampling functionality,
which you can find in the Preprocessing gallery on the Analyzer tab. Alternatively, you can use
the Signal Processing Toolbox resample function.

2 "How do I know what parameters were used for a preprocessing operation?"

To see a full summary of the preprocessing steps you took, including all settings you chose, click
Generate Function on the Analyzer tab.

Explore Signals
1 "I want to view a scalogram of my signal, but I get a warning saying that I have to create a

uniformly sampled signal. How do I resample my signal?"

You can resample your signal to a uniform grid by using Signal Analyzer's resampling
functionality, which you can find in the Preprocessing gallery on the Analyzer tab. Alternatively,
you can use the Signal Processing Toolbox resample function.

2 "Why can I not zoom out beyond the Nyquist range of a scalogram?"

If a real signal is sampled properly, then all of its frequency information is contained within the
Nyquist range.

3 "How can I compare spectrograms of 10 different signals?"
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The time-frequency views of Signal Analyzer support only one signal per display. To compare
spectrograms of 10 different signals, open 10 displays and drag each signal to its own display.
You can use the same procedure for persistence spectra and scalograms.

Share or Reuse Analysis
1 "I generated a script that does not run because the variable it uses does not exist. Why?"

If you extract, duplicate, or rename a signal in Signal Analyzer and generate a MATLAB script
without exporting the modified signal, the script will throw an error because the variables do not
exist in the MATLAB workspace. Remember to export any signals used by generated scripts.

2 "How do I reproduce a Signal Analyzer spectrum, persistence spectrum, spectrogram, or
scalogram in MATLAB?"

Click Spectrum or Spectrogram on the Display tab to compute and display the spectrum,
persistence spectrum, spectrogram, or scalogram of a plotted signal. When you have the optimal
settings for your signal, click Generate Script and select Spectrum Script, Persistence
Spectrum Script, Spectrogram Script, or Scalogram Script to generate a script that
you can use in MATLAB.

3 "How can I automate computation using Signal Analyzer generated MATLAB scripts and
functions?"

Signal Analyzer can generate MATLAB functions that reproduce any combination of
preprocessing steps performed on a signal. The app can also generate MATLAB scripts for
extracting regions of interest or for computing the spectrum, spectrogram, persistence spectrum,
or scalogram of a signal. You can combine scripts and functions to automate your analysis. See
“Compute Envelope Spectrum of Vibration Signal” on page 21-96 for an example.

Troubleshooting
1 "I cannot get Signal Analyzer to start."

• Signal Analyzer can fail to start if MATLAB is using a software implementation of OpenGL®.
To solve the problem, upgrade your graphics hardware driver or use opengl to switch to a
hardware-accelerated implementation of OpenGL. See “Resolving Low-Level Graphics Issues”
for more information.

• Attempting to start Signal Analyzer can cause JavaScript® support for WebGL™ to fail. To
solve the problem, update your graphics hardware driver.

• Signal Analyzer can fail to start due to a network error. Check your organization's proxy
settings and, if possible, disable the proxy that is interfering with the app startup process.

2 "When I start Signal Analyzer, I get an error saying it is unable write the file
temp_signalAnalyzer_datarepository.mat."

You cannot launch Signal Analyzer from multiple instances of MATLAB running on the same
computer.

See Also
Signal Analyzer

21 Signal Analyzer App

21-128



Related Examples
• “Plot Signals from the Command Line” on page 21-35
• “Resolve Tones by Varying Window Leakage” on page 21-39
• “Analyze Signals with Inherent Time Information” on page 21-45
• “Resample and Filter a Nonuniformly Sampled Signal” on page 21-84
• “Declip Saturated Signals Using Your Own Function” on page 21-91

More About
• “Edit Sample Rate and Other Time Information” on page 21-103
• “Data Types Supported by Signal Analyzer” on page 21-106
• “Keyboard Shortcuts for Signal Analyzer” on page 21-124
• “Customize Signal Analyzer” on page 21-130
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Customize Signal Analyzer

Specify Line Color and Style
To specify the line style and color, click in the Line column of a signal. If the line column is not
shown, add the column using the column selector button . Select a color from the palette and a line
style. Click Custom to choose custom colors for your signals. You can specify custom colors as RGB
triplets or as hexadecimal codes. For complex signals, the color that you set corresponds to the real
part. The color of the imaginary part has the same hue and saturation with a different value of
luminosity.

Add or Remove Columns in the Signal Table
Columns in the Signal table display the plot configuration and signal properties. To add or remove a
column, click the column selector button . From the list, select the columns that you want to display
and click OK. After you select a column, the new column is added to the table in the order that it
appears in the column selection list.
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Modify Signal Analyzer Displays
Goal Action
Hide the Workspace browser or the Signal table
to enlarge the display area.

On the Analyzer tab, click one of the layout
buttons.

Zoom and pan to inspect the data. On the Display tab, select one of the zoom
actions.

Alternatively, activate the panner by clicking

Panner .
Fit spectrogram, scalogram, or persistence
spectrum colormap to current power or density
limits.

On the Display tab, click the Fit Colormap
button .
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Goal Action
Set the minimum and maximum values of the plot
axes.

On the Time, Spectrum, Persistence
Spectrum, Spectrogram, or Scalogram tab,
enter the axes limit values. You can also change
the minimum and maximum time values on the
Display tab.

When setting axes for a display, you can specify
time or frequency units before specifying limit
values. Several engineering units are available:

Quantity Units
Time ps, ns, μs, ms, seconds,

minutes, hours, days,
years

Frequency cycles/year, cycles/day,
cycles/hour, cycles/
minute, mHz, Hz, kHz,
MHz, GHz, THz

Note Selecting different time or frequency units
for axes limit values does not change any plots.

Show or hide legends identifying plotted signals.
On the Display tab, click Legend .

Each display gets its own legend. The legends
appear either at the top of the display or to the
right of the display.

For each signal on a display, the legend shows the
signal name and signal color. For complex signals,
the first signal color represents the real part, and
the second signal color represents the imaginary
part.

Link or unlink a display. Select a display. On the Display tab, select Link
Time. Link Time is enabled only when there are
two or more displays and at least one signal
contains time information.

To unlink a display, select it and clear Link Time.

Frequency axes are never linked between
displays.
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Goal Action
Normalize the data for each signal from 0 to 1
along the y-axis of a time plot.

On the Time tab, select Normalize Y Axis.

Show markers at each sample point in a time plot
of a signal.

On the Time tab, select Show Markers.

Signal Analyzer Preferences
• If you export or save signals that have time information but are not stored as timetables, the time

information by default is not saved. If you want to preserve the time information by saving the
signals as timetables, on the Analyzer tab, click Preferences and check Always use
timetables when signals have time information.

• If you generate scripts involving signals that have time information but are not stored as
timetables, the time information by default is not saved. If you want to preserve the time
information by generating scripts that treat signals as timetables, on the Analyzer tab, click
Preferences and check Always use timetables when signals have time information.

See Also
Apps
Signal Analyzer

Related Examples
• “Analyze Signals with Inherent Time Information” on page 21-45
• “Resample and Filter a Nonuniformly Sampled Signal” on page 21-84
• “Declip Saturated Signals Using Your Own Function” on page 21-91

More About
• “Edit Sample Rate and Other Time Information” on page 21-103
• “Keyboard Shortcuts for Signal Analyzer” on page 21-124
• “Signal Analyzer Tips and Limitations” on page 21-126
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Signal Labeler

• “Using Signal Labeler App” on page 22-2
• “Import Data into Signal Labeler” on page 22-6
• “Create or Import Signal Label Definitions” on page 22-13
• “Label Signals Interactively or Automatically” on page 22-17
• “Custom Labeling Functions” on page 22-25
• “Customize Labeling View” on page 22-30
• “Export Labeled Signal Sets and Signal Label Definitions” on page 22-36
• “Signal Labeler Usage Tips” on page 22-38
• “Label Signal Attributes, Regions of Interest, and Points” on page 22-40
• “Examine Labeled Signal Set” on page 22-46
• “Label QRS Complexes and R Peaks of ECG Signals Using Deep Learning Network”

on page 22-51
• “Label Spoken Words in Audio Signals Using External API” on page 22-60
• “Choose an App to Label Ground Truth Data” on page 22-65
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Using Signal Labeler App

App Workflow
A typical workflow for labeling signals using the Signal Labeler app is:

1 “Import Data into Signal Labeler” on page 22-6 — Select any real signal available in the
MATLAB Workspace. The app accepts numeric arrays, MATLAB timetables, and
labeledSignalSet objects. Read data from files or use signalDatastore objects as input.

2 “Create or Import Signal Label Definitions” on page 22-13 — Define labels to annotate signal
attributes, regions, or points of interest quickly and consistently using logical, categorical,
numerical, or string values. You can also import signal label definitions stored in MAT-files.

3 “Label Signals Interactively or Automatically” on page 22-17 — Label signals interactively.
Automatically label signal peaks or use your own “Custom Labeling Functions” on page 22-25.
Label several signals at once or use the autolabeling mode of the app to inspect labeling results
before committing them.

4 “Customize Labeling View” on page 22-30 — Use spectrum and spectrogram to aid labeling and
show or hide the label viewer.

5 “Export Labeled Signal Sets and Signal Label Definitions” on page 22-36 — Export labeled
signal sets and label signal definitions to the MATLAB Workspace or to MAT-files.

Example: Label Points and Regions of Interest in Signal
Define a vector with two acute peaks and one flat peak. Use Signal Labeler to label the peaks and
mark the flat peak as different from the others.

data = [25 8 15 5 6 10 10 3 1 20 7];

Open Signal Labeler. Import the data vector. On the Labeler tab, click Import ▼, select Members
from workspace, select the data signal in the dialog box that appears, click Import, and close the
dialog box. Select the check box next to the signal name in the Labeled Signal Set Browser to
display the signal in the time plot.

Label the signal peaks. Start by creating a signal label definition. Click Add Definition ▼. In the
dialog box, specify Label Name as Peak, Label Type as Point, and Data Type as numeric.

With the Peak definition highlighted in the Label Definitions browser, select Peak Labeler in the
Automate Value gallery. Click Auto-Label ▼ and select Auto-Label Signals. Click OK in the
dialog box that appears. Signal Labeler labels the three peaks and annotates its locations.
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Create a sublabel for Peak to annotate the flat peak, which is the second of the three. With Peak still
selected in the Label Definitions browser, click Add Definition ▼ and select Add sublabel
definition. Specify Label Name as Flat, Label Type as ROI, and Data Type as logical.

Select the point label for the flat peak. You can select the label by clicking it in the Labeled Signal
Set Browser, in the time plot, or in the label viewer. Selecting the label highlights it in all three
places. Select Flat in the Label Definitions browser. A shaded region appears on the signal plot.
Move and resize the region until it encloses the flat peak. To accept a label, click the Accept check
mark next to the Label button, press Enter, or double-click the shaded region.
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Export the labeled signal. Click Export ▼ and select Labeled Signal Set To File. Name the file
peaks.mat. Click Export.

Inspect the labeled signal set you created. Load peaks.mat into the MATLAB® Workspace. The
labeledSignalSet object is called ls. Verify that the data source is the vector you created at the
beginning. Inspect the signal and subsignal label definitions.

load peaks
src = getSignal(ls,1)'

src = 1×11

    25     8    15     5     6    10    10     3     1    20     7

lbl = getLabelDefinitions(ls)

lbl = 
  signalLabelDefinition with properties:

                      Name: "Peak"
                 LabelType: "point"
             LabelDataType: "numeric"
        ValidationFunction: []
    PointLocationsDataType: "double"
              DefaultValue: []
                 Sublabels: [1x1 signalLabelDefinition]
                       Tag: ""
               Description: ""

 Use labeledSignalSet to create a labeled signal set.
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See Also
Apps
Signal Analyzer | Signal Labeler

Functions
labeledSignalSet | signalLabelDefinition

Related Examples
• “Label Signal Attributes, Regions of Interest, and Points” on page 22-40
• “Examine Labeled Signal Set” on page 22-46
• “Label QRS Complexes and R Peaks of ECG Signals Using Deep Learning Network” on page 22-

51
• “Label Spoken Words in Audio Signals Using External API” on page 22-60

More About
• “Import Data into Signal Labeler” on page 22-6
• “Create or Import Signal Label Definitions” on page 22-13
• “Label Signals Interactively or Automatically” on page 22-17
• “Custom Labeling Functions” on page 22-25
• “Customize Labeling View” on page 22-30
• “Export Labeled Signal Sets and Signal Label Definitions” on page 22-36
• “Signal Labeler Usage Tips” on page 22-38
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Import Data into Signal Labeler
Supported Signal Types
The Signal Labeler app works with real-valued vectors, matrices, MATLAB timetables, and
labeledSignalSet objects. The app also supports MAT-files and CSV files.

Note Signal Labeler does not support complex-valued signals, signals with Inf or NaN values,
multidimensional arrays, or sparse matrices.

• Example: Numeric Arrays

num = cos(pi./[4;2]*(0:159))'+randn(160,2);

specifies a two-channel signal consisting of sinusoids embedded in white noise. The signal does
not contain time information unless you specify it. In Signal Labeler, you can import the signal in
samples, or you can add time information when you import it.

• Example: MATLAB Timetables

tt1 = timetable(num,'SampleRate',100);
tt2 = timetable(seconds((0:159)'/100),num);

both specify that the noisy two-channel sinusoid is sampled at 100 Hz. For more information, see
the timetable documentation.

• Example: labeledSignalSet Objects

lss = labeledSignalSet(num);

specifies that the noisy sinusoid is in samples.
• Example: labeledSignalSet Objects with Time Information

lst1 = labeledSignalSet(num,'SampleRate',100);
lst2 = labeledSignalSet(timetable(seconds((0:159)'/100),num));

both specify that the noisy sinusoid is sampled at 100 Hz.
• Example: Multisignal Members

msn = labeledSignalSet({randn(10,3),randn(17,9)});

has two members. The first member contains three 10-sample signals. The second member
contains nine 17-sample signals.

mst = labeledSignalSet({{timetable(seconds(1:10)',randn(10,3))}, ...
    {timetable(seconds(1:7)',randn(7,2)), ...
    timetable(randn(30,1),'SampleRate',100)}});

has two members. The first member contains three signals sampled at 1 Hz for 10 seconds. The
second member contains two signals sampled at 1 Hz for 7 seconds and one 30-sample signal
sampled at 100 Hz.

• Example: signalDatastore Object Pointing to Files

Specify the path to a set of sample sound signals included as MAT-files with MATLAB®. Each file
contains a signal variable and a sample rate. List the names of the files.
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folder = fullfile(matlabroot,"toolbox","matlab","audiovideo");
lst = dir(append(folder,"/*.mat"));
nms = {lst(:).name}'

nms = 7x1 cell
    {'chirp.mat'   }
    {'gong.mat'    }
    {'handel.mat'  }
    {'laughter.mat'}
    {'mtlb.mat'    }
    {'splat.mat'   }
    {'train.mat'   }

Create a signal datastore that points to the specified folder. Set the sample rate variable name to
Fs, which is common to all files. Generate a subset of the datastore that excludes the file
mtlb.mat, which differs from the other files in that the signal variable is not called y.

sds = signalDatastore(folder,"SampleRateVariableName","Fs");
sdss = subset(sds,~strcmp(nms,"mtlb.mat"));

Use the subset datastore as the source for a labeledSignalSet object.

lss = labeledSignalSet(sdss)

lss = 
  labeledSignalSet with properties:

             Source: [1x1 signalDatastore]
         NumMembers: 6
    TimeInformation: "inherent"
             Labels: [6x0 table]
        Description: ""

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Specify Time Information
The signals you import into Signal Labeler can be labeled in samples or in time. This specification
stays fixed to ensure consistent labeling. You cannot mix signals in samples and signals with time
information in the same session.

When specifying the time information for a set of signals that do not have it, select a time
specification option in the import dialog box.

Time Specification Option Description
Samples This option enables you to explore and label

signals without the need to specify a sample rate
or a sample time. It is equivalent to plotting the
signal in MATLAB without x-axis information.
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Time Specification Option Description
Sample Rate Use this option when you know the rate at which

the signal has been sampled. The sample rate can
be expressed in Hz, kHz, MHz, or GHz. To specify
the sample rate, you can use a numeric value, the
name of a scalar variable in the MATLAB
Workspace, or any valid MATLAB expression. Set
the sample rate so that the members are plotted
in units of time.

Sample Rate Variable From File Use this option when the sample rate is saved as
a variable in the file being imported.

Sample Time Use this option when you know the time interval
between samples. The sample time can be
expressed in seconds, years, days, hours,
minutes, milliseconds, microseconds, or
nanoseconds. To specify the sample time, you can
use a numeric value, the name of a scalar
variable in the MATLAB Workspace, or any valid
MATLAB expression. Set the sample time so that
the members are plotted in units of time.

Sample Time Variable From File Use this option when the sample time is saved as
a variable in the file being imported.

Time Values Use this option when you know the time value
corresponding to each sample. Specify the time
values using a valid MATLAB expression or the
name of a variable in the MATLAB Workspace.
The time values can be stored in a numeric or
duration vector with real time values expressed
in seconds. The values must be unique and
cannot be NaN, but need not be uniformly spaced.
The time array must have the same length as the
members.

In all cases, the app derives a sample rate from
the time values and displays it in the Time
column of the Labeled Signal Set Browser. An
asterisk preceding the sample rate indicates that
the members are nonuniformly sampled.

Time Values Variable From File Use this option when the time values are saved as
a variable in the file being imported.

Once a signal or set of signals has been imported into Signal Labeler, the chosen time specification
stays fixed throughout the labeling session.

Import Signals from the MATLAB Workspace
To import signals to Signal Labeler from the MATLAB Workspace, on the Labeler tab, click Import
▼ and select From workspace in the Members list. In the dialog box, select the signals you want to
import.
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• If you initially imported a numeric array and specified it in samples, or if you initially imported a
labeledSignalSet object in samples, you can subsequently choose only signals in samples. If
you choose a numeric array, Signal Labeler imports it and treats it in samples.

• If you initially imported a numeric array and specified its time information, or if you initially
imported a MATLAB timetable or a labeledSignalSet object with time information, you can
subsequently choose only signals with time information. If you choose a numeric array, you must
set its time information when importing it.
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Note You cannot modify the time information of a labeledSignalSet object from within Signal
Labeler. If the labeled signal set has no time information, the app treats its members as being in
samples. If the labeled signal set has time information, the app incorporates this information when it
imports the signals. For more information, see the labeledSignalSet documentation.

To be imported successfully, labeled signal sets must obey these additional rules:

• If the selection includes two or more labeled signal sets, the labeled signal sets must have unique
signal label definitions. If two or more sets share a label definition, the definition must have the
same type and data type for all sets. For more information, see “Create or Import Signal Label
Definitions” on page 22-13.

• If the selection includes two or more labeled signal sets, the labeled signal sets must have unique
member names. You cannot change member names from within Signal Labeler. To change the
name of a member of a labeled signal set, use setMemberNames at the command line.

• If you select two or more labeledSignalSet objects for labeling, Signal Labeler merges them
and creates a single labeled signal set containing all the members and label values of the input
sets. This action is equivalent to using merge at the command line.

Import Signals from Files
To import signals to Signal Labeler from files, on the Labeler tab, click Import ▼ and select From
files in the Members list. In the dialog box, browse to select the signals you want to import.

Note

• Signal Labeler supports MAT-files and CSV files only. All values in a CSV file other than headers
must be numeric.

• Importing labeledSignalSet objects from files is not supported. To import a
labeledSignalSet object, load it into the MATLAB Workspace and import it from there.
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• All members to import must have the same extension and the same variables.
• Signal Labeler does not support working simultaneously with in-memory data and data from
files.

• If you initially imported in-memory members from the MATLAB Workspace, the From files
option is disabled from the Import menu of the Labeler tab.

• If you initially imported data from files, the only workspace variables you can then import from
the MATLAB Workspace are labeledSignalSet objects whose input data sources are
signalDatastore objects pointing to files. For an example, see “Supported Signal Types” on
page 22-6.

By default, Signal Labeler reads the first signal variable of each file. To determine the name of the
first variable in a file, signalDatastore follows these steps:

• For MAT-files:

s = load(fileName);
varNames = fieldnames(s);
firstVar = s.(varNames{1});

• For CSV files:

opts = detectImportOptions(fileName,'PreserveVariableNames',true);
varNames = opts.VariableNames;
firstVar = string(varNames{1});

To specify the signal variables that you want to read, click Specify and enter a comma-separated list
of signal variable names.
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Tip If a CSV file does not have variable names specified in a header line, then the variables are called
Var1 for the first column, Var2 for the second column, and so on.

See Also
Apps
Signal Analyzer | Signal Labeler

Functions
labeledSignalSet | signalLabelDefinition

Related Examples
• “Label Signal Attributes, Regions of Interest, and Points” on page 22-40
• “Examine Labeled Signal Set” on page 22-46
• “Label QRS Complexes and R Peaks of ECG Signals Using Deep Learning Network” on page 22-

51
• “Label Spoken Words in Audio Signals Using External API” on page 22-60

More About
• “Using Signal Labeler App” on page 22-2
• “Create or Import Signal Label Definitions” on page 22-13
• “Label Signals Interactively or Automatically” on page 22-17
• “Custom Labeling Functions” on page 22-25
• “Customize Labeling View” on page 22-30
• “Export Labeled Signal Sets and Signal Label Definitions” on page 22-36
• “Signal Labeler Usage Tips” on page 22-38
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Create or Import Signal Label Definitions
Use signal label definitions to define labels for signals. Labels can be of three types:

• Attribute labels define signal characteristics.
• Region-of-interest (ROI) labels define signal characteristics over regions of interest.
• Point labels define signal characteristics at points of interest.

Each label can have one of four data types:

• Logical labels can be either true or false.
• Categorical labels can belong to any one of a set of categories that you specify.
• Numeric labels can have any numeric value.
• String labels can have any value represented by a string.

A label can have any number of sublabels. Sublabels themselves cannot have sublabels.

In Signal Labeler, you can import already existing signalLabelDefinition objects stored in
MAT-files, or you can create signal label definitions directly in the app.

• Example: Create a definition to label a signal with its mean RMS value as a numeric attribute.

• At the command line, the code

lblRMS = signalLabelDefinition("MeanRMSattr", ...
'LabelType','attribute','LabelDataType','numeric');
save('MeanRMSdef','lblRMS')

creates a file, MeanRMSdef.mat, that you can load into Signal Labeler to import a label
definition called MeanRMSattr.

• In Signal Labeler, click Add Definition ▼ on the Labeler tab and select Add label
definition. In the dialog box, specify Label Name as MeanRMS, Label Type as Attribute,
and Data Type as numeric.

• Example: Create a definition to label the zero crossings of a signal as "rising" for positive-
going transitions and "falling" for negative-going transitions.

• At the command line, the code

ldf = signalLabelDefinition("Crosses",'LabelType','point', ...
'LabelDataType','categorical','Categories',["rising","falling"]);
save('CrossDef','ldf')

creates a file, CrossDef.mat, that you can load into Signal Labeler to import a label
definition called Crosses.

• In Signal Labeler, click Add Definition ▼ on the Labeler tab and select Add label
definition. In the dialog box, specify Label Name as crossings, Label Type as Point,
Data Type as categorical, and categories as rising and falling, with each category on a
new line.

Import Signal Label Definitions
To import existing signal label definitions, click Import ▼ on the Labeler tab and select Label
Definitions From file. In the dialog box, specify the name of the MAT-file that contains the label
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definitions you want to import. The MAT-file must contain only one vector of
signalLabelDefinition objects.

Create Label Definitions
To add a signal label definition to your labeled signal set, click Add Definition ▼ on the Labeler tab
and select Add label definition. In the dialog box, specify the following fields:

• Label Name — Specify the name in the text box.
• Label Type — Select one of Attribute, ROI, or Point.
• Label Description (optional) — Specify the description in the text box.
• Data Type — Select one of string, numeric, logical (the default), or categorical.
• Categories — This field appears if you specify Data Type as categorical. Enter each category

on a new line.
• Default (optional) — Specify a default value for the signal label. For logical labels, select either

true or false. For categorical labels, select any of the categories you specified.

This action is equivalent to using addLabelDefinitions at the command line.

Note If you want to reuse the signal label definitions that you created during a Signal Labeler
session, you must export the definitions to a MAT-file and import them in a subsequent session.
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Create Sublabel Definitions
To add a sublabel definition, select the definition in the Label Definitions browser, click Add
Definition ▼ on the Labeler tab, and select Add sublabel definition. The top of the dialog box
shows, as Parent Name, the name of the label to which you are adding the sublabel.

This action is equivalent to using addLabelDefinitions at the command line.

Edit Label or Sublabel Definitions
To edit a label or sublabel definition, select the definition in the Label Definitions browser and click
the Edit button. In the dialog box, specify the following fields:

• Label Name — Specify the value in the text box.
• Label Description — Specify the value in the text box.
• Categories — This field appears if you specify Data Type as categorical. You can add

categories, but you cannot remove any existing categories. Enter each new category on a new
line.

• Default — Specify a default value for the signal label. For logical labels, select either true or
false. For categorical labels, select any of the categories you specified.

Editing the default value does not affect existing labels. The new default value applies only to new
members, new regions, or new points.

You cannot modify the Label Type or Data Type fields. To change the label type or the data type of a
label definition, remove the definition and add a definition with the desired properties.

This action is equivalent to using editLabelDefinition at the command line.

Delete Label or Sublabel Definitions
To delete a label or sublabel definition, select the definition in the Label Definitions browser and
click the Delete button on the toolstrip.

This action is equivalent to using removeLabelDefinition at the command line.

See Also
Apps
Signal Analyzer | Signal Labeler

Objects
labeledSignalSet | signalLabelDefinition | signalMask

Related Examples
• “Label Signal Attributes, Regions of Interest, and Points” on page 22-40
• “Examine Labeled Signal Set” on page 22-46
• “Label QRS Complexes and R Peaks of ECG Signals Using Deep Learning Network” on page 22-

51
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• “Label Spoken Words in Audio Signals Using External API” on page 22-60

More About
• “Using Signal Labeler App” on page 22-2
• “Import Data into Signal Labeler” on page 22-6
• “Label Signals Interactively or Automatically” on page 22-17
• “Custom Labeling Functions” on page 22-25
• “Customize Labeling View” on page 22-30
• “Export Labeled Signal Sets and Signal Label Definitions” on page 22-36
• “Signal Labeler Usage Tips” on page 22-38
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Label Signals Interactively or Automatically
You can label signals with the Signal Labeler app in four different ways:

• “Bulk Manual Labeling” on page 22-17 — Apply a label to one or more signals by specifying its
value and, when necessary, its location.

• “Interactive Manual Labeling” on page 22-18 — Plot one or more signals from the Labeled
Signal Set Browser and interactively apply a label only to the plotted signals. Use “Fast
Navigation Mode” on page 22-17 to speed up the labeling process.

• “Bulk Autolabeling” on page 22-19 — Automatically apply labels to one or more signals using
Peak Labeler or “Custom Labeling Functions” on page 22-25.

• “Autolabeling Mode” on page 22-20 — Plot one or more signals from the Labeled Signal Set
Browser and automatically label them using Peak Labeler or “Custom Labeling Functions” on
page 22-25. Inspect the labeling, debug the autolabeling function, modify parameters, edit labels,
and save the labeling when it is satisfactory.

Fast Navigation Mode
To quickly navigate through channels or label members, click Fast Navigation in the Browser
section of the toolstrip. Choose the channel that you want to plot in the Signal Selection section.
The Signal Selector option is available when Plot Selected is active. In the dialog box, select the
check box next to the channels you want to plot in each member. Select Plot Previous or Plot Next
in the Browser section to navigate through members.

Note The Signal Selection window displays only as many channels as present in the member with
the smallest number of channels.

To apply a label to plotted signals in Fast Navigation mode, proceed as described in “Interactive
Manual Labeling” on page 22-18.

Label Signals Manually
Bulk Manual Labeling

Sometimes an attribute applies to several signals, or an event occurs at the same time for several
signals in your data set. To label a set of signals quickly, first select the label definition you want to
apply in the Label Definitions browser. On the Labeler tab, in the Set Value section, specify the
value that you want to assign to the label. Click Label All in the Set Value section. In the dialog box:

• Specify the signals you want to label by selecting the check boxes next to their names.
• Edit the label value if necessary.
• For region-of-interest (ROI) labels, specify the region endpoints using the Location (Min) and

Location (Max) fields.
• For point labels, specify the point location using the Location field.
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This action is equivalent to using setLabelValue at the command line.

Note Bulk manual labeling is not supported for sublabels.

Interactive Manual Labeling

To label one or more signals interactively, first choose the signals that you want to plot by selecting
the check boxes next to their names in the Labeled Signal Set Browser. Select the label definition
you want to apply in the Label Definitions browser. Draw Labels is automatically activated when a
signal and an ROI or point label are selected. Specify the label value in the Set Value section of the
Labeler tab, or assign the value after the label is drawn. Click the time plot to add the label:

• For ROI labels, a thick animated dashed line appears that expands into a shaded region when you
click and drag. (The animated frame indicates that the region is active.) Move and resize the
active region until it encloses the ROI.

• For point labels, an animated dashed (active) line appears for the point being labeled. Move the
active line until it crosses the signal at the point of your choice.

To accept a label, click the Accept check mark next to the Label button, press Enter, or double-click
the active region or line. The app automatically accepts a label when the next label is drawn. A label
is added to all channels within a member.

Tip To improve label placement, you can go to the Display tab and choose a zoom action or activate
the panner.

For an example of interactive manual labeling, see “Label Signal Attributes, Regions of Interest, and
Points” on page 22-40.

Edit Labels

To edit an existing signal label, you can do any of these:
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• In the Labeled Signal Set Browser, select the label, right-click, and select Edit. Input the new
values in the dialog box.

• To edit an attribute label, double-click in a cell of the label viewer attribute table.
• To edit an ROI or point label, select the label in the Labeled Signal Set Browser, the time plot,

or the label viewer. The chosen label is highlighted in all three regions and in the spectrogram.
Click the label in the time plot, spectrogram, or label viewer to make it active. You can then edit
its value and location. To accept the changes, click the Accept check mark next to the Label
button, press Enter, or double-click.

This action is equivalent to using setLabelValue at the command line.

Note

• You must select a parent label before you can label an ROI or point sublabel manually.
• To label an attribute sublabel manually, use the Labeled Signal Set Browser or the label viewer.

Label Signals Automatically
Bulk Autolabeling

To autolabel a set of signals using Peak Labeler or a custom function, start by creating a signal label
definition that you want to apply or by selecting one from the Label Definitions browser. The
Automate Value gallery shows the “Custom Labeling Functions” on page 22-25 that you can use
with the definition. Choose a function from the gallery, click Auto-Label ▼, and select Auto-Label
Signals. Signal Labeler prompts you to select the members you want to label and specify any
optional input arguments to the labeling function.

For examples of autolabeling functions, see “Custom Labeling Functions” on page 22-25.
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Note You can undo the last automated custom labeling you performed. However, you lose this ability
once you add, modify, or delete any labels or label definitions.

For examples of bulk autolabeling, see “Label QRS Complexes and R Peaks of ECG Signals Using
Deep Learning Network” on page 22-51 and “Label Spoken Words in Audio Signals Using External
API” on page 22-60.

Autolabeling Mode

To label one or more signals interactively, first choose the signals that you want to plot by selecting
the check boxes next to their names in the Labeled Signal Set Browser. Create a definition for the
label you want to apply or select one from the Label Definitions browser. The Automate Value
gallery shows the “Custom Labeling Functions” on page 22-25 that you can use with the definition.
Choose a function from the gallery, click Auto-Label ▼, and select Auto-Label and Inspect
Plotted. This action takes you to the Signal Labeler autolabeling mode.
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When in the autolabeling mode, you can run the selected function on the whole signal or run it within
a time range of your choice.

Tip The Run Time Limits section of the Autolabel tab shows the time range used by the
autolabeling function and defaults to the entire signal. The range values change if you zoom in or
specify values before running the autolabeling function. To reset the range to the entire signal, press
the spacebar or click the Fit to View button on the Display tab.

After running the function, you can inspect the labeling results. If the results are not satisfactory, you
can undo the labeling action, modify the autolabeling function, and label the signal again. You can
edit label values and locations either on the time plot or on the label viewer. You can also remove
labels, but if you remove labels you lose the ability to undo the previous labeling action. When you are
satisfied with the results, click Save Labels to save the labeling and exit the autolabeling mode.

Note For easier label inspection, the autolabeling mode displays only the labels generated during the
current function call.
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Label Signal Peaks Automatically Using Peak Labeler
To autolabel signal peaks using Peak Labeler, start by selecting or creating a numeric point label
definition. In the Automate Value gallery, select Peak Labeler and click Auto-Label ▼. You can
label peaks in bulk or interactively. Signal Labeler uses the MATLAB functions islocalmax and
islocalmin to find and label local maxima and minima. Peak Labeler returns the location of each
peak and the numeric value of its amplitude.

Note You can select multiple members for peak labeling, but you can label only one channel of each
member at a time. By default, Signal Labeler chooses the first channel of each selected member, but
you can select which signal of the member you want to use for labeling.

Note You can undo the last automated peak labeling action. However, you lose this ability once you
add, modify, or delete any labels or label definitions.

• You can choose to label all the peaks or valleys in the selected signal that satisfy the specified
conditions. Alternatively, you can label a specific number of peaks or valleys that satisfy the
specified conditions, sorted in order of descending prominence. See “Prominence” on page 18-22
for more information about peak prominence. Peak Labeler by default labels three peaks.

• If a local maximum or minimum value is repeated consecutively, the peak or valley belongs to a
flat region. For a signal with flat peak or valley regions, you can choose to label the center of the
region, the first point of the region, the last point of the region, or all points in the region.
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• You can choose to label only those peaks or valleys with prominence larger than a specified value.
You can also specify the width of the window centered on a peak or valley that is used to measure
its prominence.

• If you do not specify a window width, the Peak Labeler algorithm uses the entire signal as the
window.

• For a flat peak or valley region, the window is centered at the midpoint of the region.
• You can select to label only those peaks separated by a specified distance. The Peak Labeler

algorithm:

1 Chooses the most prominent peak in the signal and ignores all peaks within the specified
distance.

2 Repeats the procedure for the most prominent remaining peak.
3 Iterates until it runs out of peaks to consider.

Tip If you label peaks in a signal using Peak Labeler and then move one of the labels, Signal
Labeler still shows the amplitude value returned by Peak Labeler. To update the amplitude:

1 Read the new value on the data cursor you used to move the point label.
2 Edit the label.
3 Enter the new value in the Value field of the dialog box that appears.

For an example that uses Peak Labeler, see “Example: Label Points and Regions of Interest in
Signal” on page 22-2.

See Also
Apps
Signal Analyzer | Signal Labeler

Functions
labeledSignalSet | signalLabelDefinition

Related Examples
• “Label Signal Attributes, Regions of Interest, and Points” on page 22-40
• “Examine Labeled Signal Set” on page 22-46
• “Label QRS Complexes and R Peaks of ECG Signals Using Deep Learning Network” on page 22-

51
• “Label Spoken Words in Audio Signals Using External API” on page 22-60

More About
• “Using Signal Labeler App” on page 22-2
• “Import Data into Signal Labeler” on page 22-6
• “Create or Import Signal Label Definitions” on page 22-13
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• “Custom Labeling Functions” on page 22-25
• “Customize Labeling View” on page 22-30
• “Export Labeled Signal Sets and Signal Label Definitions” on page 22-36
• “Signal Labeler Usage Tips” on page 22-38
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Custom Labeling Functions
You can use Signal Labeler to perform automated labeling tasks. Apart from Peak Labeler, the
Automate Value gallery on the Label tab contains functions that you can use to label signals
automatically.

Create Custom Labeling Functions
The first line in every custom autolabeling function consists of a definition statement of the form

function [labelVals,labelLocs] = fx(x,t,parentLabelVal,parentLabelLoc,varargin)

The definition statement contains the function name and a set of mandatory and optional arguments:

• The first input argument, x, is the input signal. When writing the function, expect x to be a matrix
where each column contains data corresponding to a channel. If the channels have different
lengths, then expect x to be a cell array of column vectors.
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• The second input argument, t, stores the time values. When writing the function, expect t to be a
matrix where each column contains time information corresponding to a channel. If the channels
have different lengths, then expect t to be a cell array of column vectors.

Note

• For single-channel members, custom autolabeling functions get data and time values as double
precision vectors.

• For multichannel members, custom autolabeling functions get data and time values as matrices
or cell arrays.

• Custom autolabeling functions get all the channels of a member as input, but they do not have
to operate on all. You can choose which channels you want the function to operate on.

• The third input argument, parentLabelVal, is the parent label value associated with the output
sublabel and contains a numeric, logical, or string scalar. This argument is passed in only for
functions that automate the labeling of sublabels. If the function is for a parent label, expect
parentLabelVal to be empty.

• The fourth input argument, parentLabelLoc, contains:

• An empty vector when the parent label is an attribute
• A two-element numeric row vector of region of interest (ROI) limits when the parent label is an

ROI
• A numeric scalar representing a point location when the parent label is a point

This argument is passed in only for functions that automate the labeling of sublabels. If the
function is for a parent label, expect parentLabelLoc to be empty.

Note

• For parent labels, the autolabeling function operates on each selected member.
• For sublabels, the autolabeling function operates on one parent label instance at a time for

each selected member.

• Use varargin to specify additional input arguments. If you do not have additional input
arguments, you can omit varargin. Enter the additional arguments as an ordered comma-
separated list in the dialog box that appears when you click the Auto-Label button.

• The first output argument, labelVals, contains the label values. labelVals must be:

• A numeric, logical, or string scalar when the output labels are attributes
• A column vector with numeric, logical, or string values when the output labels are ROIs or

points
• The second output argument, labelLocs, contains the label locations. labelLocs must be:

• An empty vector when the output labels are attributes
• A two-column matrix of ROI limits when the output labels are ROIs
• A column vector of point locations when the output labels are points

• To implement your algorithm, you can use any function from MATLAB or from any toolbox
installed in your system.
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For more details, see “Label QRS Complexes and R Peaks of ECG Signals Using Deep Learning
Network” on page 22-51 and “Label Spoken Words in Audio Signals Using External API” on page 22-
60.

Example: Mean RMS Value

This function computes the mean RMS value of a signal and labels the signal with the value as a
numeric attribute. If a member has more than one channel, the function computes the RMS value of
each channel and averages the values. The channels can have different lengths.

function [labelVals,labelLocs] = meanRMS(x,t,parentLabelVal,parentLabelLoc,varargin)
% Label signal with its mean RMS value as attribute

if iscell(x)
    labelVals = mean(cellfun(@rms,x))
else
    labelVals = mean(rms(x));
end
labelLocs = [];

end

Example: Zero Crossings

This function finds the zero crossings of a signal and labels them as "rising" for positive-going
transitions and "falling" for negative-going transitions.

function [labelVals,labelLocs] = transitions(x,t,parentLabelVal,parentLabelLoc,varargin)
% Label zero crossings as "rising" or "falling"

nchan = size(x,2);
tt = t(:,1);

labelVals = cell(nchan,1);
labelLocs = cell(nchan,1);

for kj = 1:nchan

    [~,ltup,utup] = risetime(x(:,kj),tt,'StateLevels',0.1*[-1 1]);

    ups = (utup+ltup)/2;
    upc = repmat("rising",length(ups),1);

    [~,ltdn,utdn] = falltime(x(:,kj),tt,'StateLevels',0.1*[-1 1]);

    dns = (utdn+ltdn)/2;
    dnc = repmat("falling",length(dns),1);

    labelVals{kj} = [upc;dnc];
    labelLocs{kj} = [ups;dns];

end

labelVals = cat(1,labelVals{:});
labelLocs = cell2mat(labelLocs);

end
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Example: Multichannel Labeling

This logical function labels as true those regions of a multichannel signal where:

• The amplitude of the first channel is negative.
• The amplitude of the third channel is larger than a user-specified value, mx. If not specified, mx

defaults to 0.1.

function [labelVals,labelLocs] = greaterThan(x,t,parentLabelVal,parentLabelLoc,varargin)
% Label regions with negative first channel and third channel larger than a given value

if nargin<5
    mx = 0.1;
else
    mx = varargin{1};
end

xr = x(:,1);
xx = x(:,3);
tt = t(:,1);

ss = signalMask(xx >= mx & xr < 0);
x = roimask(ss);

labelLocs = tt(x.ROILimits);
labelVals = logical(double(x.Value));

end

Add Custom Labeling Functions to the Gallery
To add a custom autolabeling function, click the arrow next to the Automate Value gallery and then
select Add Custom Function. In the dialog box, specify these fields:

• Name — Specify the name of the function you want to add.
• Description — Add a short description of what the function does and describe the optional input

arguments.
• Label Type — Specify the type of label that the function generates. Select Attribute (the

default), ROI, or Point.

Note Based on the Label Type you specify, Signal Labeler places the function in the appropriate
category in the Automate Value gallery. When you select a label definition, the gallery enables
only those functions that can be used with that definition type.

If you have already written a function, and the function is in the current folder or in the MATLAB
path, Signal Labeler incorporates it in the gallery. If you have not written the function yet, Signal
Labeler opens a blank template in the Editor.

Manage Custom Labeling Functions in Gallery
At any time, you can edit functions, edit function descriptions, or remove functions using the Manage
Custom Functions option in the Automate Value gallery.
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Note Using the Manage Custom Functions option changes only the function descriptions
displayed in the Automate Value gallery. If you want to change the description in the file that
contains the function, you must edit the file.

See Also
Apps
Signal Analyzer | Signal Labeler

Functions
labeledSignalSet | signalLabelDefinition

Related Examples
• “Label Signal Attributes, Regions of Interest, and Points” on page 22-40
• “Examine Labeled Signal Set” on page 22-46
• “Label QRS Complexes and R Peaks of ECG Signals Using Deep Learning Network” on page 22-

51
• “Label Spoken Words in Audio Signals Using External API” on page 22-60
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• “Using Signal Labeler App” on page 22-2
• “Import Data into Signal Labeler” on page 22-6
• “Create or Import Signal Label Definitions” on page 22-13
• “Label Signals Interactively or Automatically” on page 22-17
• “Customize Labeling View” on page 22-30
• “Export Labeled Signal Sets and Signal Label Definitions” on page 22-36
• “Signal Labeler Usage Tips” on page 22-38
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Customize Labeling View

Tip To toggle the label viewer, click the Display tab and select Label Viewer in the Views section.

Visualize Signal Spectra and Spectrograms
Spectrum View

To activate the frequency-domain view of a signal, click the Display tab and select Spectrum in the
Views section. The app displays a set of axes with the signal power spectrum and a Spectrum tab
with options to control the view.

Signal Labeler scales the spectrum so that, if the frequency content of a signal falls exactly within a
bin, its amplitude in that bin is the true average power of the signal. For example, the average power
of a sinusoid is one-half the square of the sinusoid amplitude. For more details, see “Measure Power
of Deterministic Periodic Signals” on page 24-289. Signal Labeler computes spectra using the same
steps as Signal Analyzer. For more information, see “Spectrum Computation in Signal Analyzer” on
page 21-109.

Note When displaying a spectrum, Signal Labeler converts the power to dB using 10 log10(Power).

Spectrogram View

To activate the time-frequency view of a signal, click the Display tab and select Spectrogram in the
Views section. The app displays a set of axes with the signal spectrogram and a Spectrogram tab
with options to control the view.

To apply reassignment to a spectrogram, check Reassign in the Spectrogram tab. The reassignment
technique sharpens the time and frequency localization of spectrograms by reassigning each power
spectrum estimate to the location of its center of energy. If your signal contains well-localized
temporal or spectral components, then this option generates a spectrogram that is easier to read and
interpret.

Signal Labeler computes spectrograms using the same steps as Signal Analyzer. For more
information, see “Spectrogram Computation in Signal Analyzer” on page 21-115.

Note You can plot the spectrogram of only one signal per display.

Settings

• If the panner is activated and is zoomed in on a particular region of interest (ROI), the display
corresponds to the region of interest, not the entire signal.

• If you zoom in on a region of the signal in the time plot using one of the zoom actions on the
Display tab, the display corresponds to the region of interest, not the entire signal.

• You cannot zoom out in frequency beyond the Nyquist range.

If a signal is nonuniformly sampled, then Signal Labeler interpolates the signal to a uniform grid to
compute spectral estimates. The app uses linear interpolation and assumes a sample time equal to
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the median of the differences between adjacent time points. For a nonuniformly sampled signal to be
supported, the median time interval and the mean time interval must obey

1
100 < Median time interval

Mean time interval < 100.

Use Spectrogram to Aid Labeling
To label a signal using the spectrogram view, select the check box next to the signal name in the
Labeled Signal Set Browser and activate the spectrogram view. Select the label definition you want
to apply on the Label Definitions browser. Draw Labels is automatically activated when the label
definition is an ROI or a point. Specify the label value in the Set Value section of the Labeler tab, or
assign the value after the label is drawn. Click on the spectrogram to add the label:

• For ROI labels, click and drag the animated dashed line to create a shaded region. Move and
resize the active region until it encloses the region of interest.

• For point labels, move the animated dashed line until it crosses the signal at the point of your
choice.

To accept a label, click the Accept check mark in the Options section, press Enter, or double-click
the active region or line. A label is automatically accepted when a subsequent label is drawn.

Tip The time-frequency view can be used to identify and label transient narrowband signals
embedded in broadband signals. For more information, see “Find Interference Using Persistence
Spectrum” on page 21-51.

Example: Label a Signal in Spectrogram View

Generate a signal composed of a voltage-controlled oscillator and four Gaussian atoms. The signal is
sampled at 1.4 kHz. Use Spectrogram in Signal Labeler to label the Gaussian atoms in the signal.

fs = 1400;
t = (0:1/fs:2)';

gaussFun = @(A,x,mu,f) exp(-(x-mu).^2/(2*0.01^2)).*sin(2*pi*f.*x)*A';
s = gaussFun([1 1 1 1],t,[0.2 0.5 1 1.75],[2 6 2 5]*100)/10;
x = vco(chirp(t+.1,0,t(end),3).*exp(-2*(t-1).^2),[0.1 0.4]*fs,fs);

s = s/10+x;

Open Signal Labeler and import the signal:

1 On the Labeler tab, click Import ▼, select From workspace in the Members list, and select
the s variable in the dialog box that appears.

2 Set the time information. Select Time from the Working in drop-down list, select Sample Rate,
and specify the sample rate as 1.4 kHz.

3 Click Import ▼ and close the dialog box.
4 Select the check box next to the signal name in the Labeled Signal Set Browser to display the

signal in the time plot.

The oscillating chirp dominates the signal and obscures the atoms in the time plot.
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Create a signal label definition:

1 Click Add Definition ▼ and select Add label definition.
2 In the dialog box, specify Label Name as Atoms, Label Type as ROI, and Data Type as

logical.
3 Click OK.

On the Display tab, click Spectrogram in the Views section to activate the spectrogram view of the
signal. Adjust the spectrogram settings in the Spectrogram tab. In the Time Resolution section,
Specify a Resolution of 120 ms and an Overlap of 99%.

The locations of the atoms are visible in the spectrogram.
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Label the atoms:

1 In the Labeler tab, select the label definition in the Label Definitions browser.
2 Specify the label value as true in the Set Value section.
3 Click the spectrogram plot to draw the label. Click and drag the animated dashed line to create a

shaded region. Move and resize the active region until it encloses the first atom.
4 Click the spectrogram plot again to draw the label for a different atom. The app automatically

accepts the previous label.
5 Repeat the procedure to label the other two atoms.
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See Also
Apps
Signal Analyzer | Signal Labeler

Functions
labeledSignalSet | signalLabelDefinition

Related Examples
• “Label Signal Attributes, Regions of Interest, and Points” on page 22-40
• “Examine Labeled Signal Set” on page 22-46
• “Label QRS Complexes and R Peaks of ECG Signals Using Deep Learning Network” on page 22-

51
• “Label Spoken Words in Audio Signals Using External API” on page 22-60

More About
• “Using Signal Labeler App” on page 22-2
• “Import Data into Signal Labeler” on page 22-6
• “Create or Import Signal Label Definitions” on page 22-13
• “Label Signals Interactively or Automatically” on page 22-17
• “Custom Labeling Functions” on page 22-25
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• “Export Labeled Signal Sets and Signal Label Definitions” on page 22-36
• “Signal Labeler Usage Tips” on page 22-38
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Export Labeled Signal Sets and Signal Label Definitions
At the end of a labeling session, you can export any signal sets that you labeled or any label
definitions that you created. You can export labeled signal sets and definitions either to MAT-files or
to the MATLAB Workspace. Signal Labeler exports labeled signals as labeledSignalSet objects.

Export Label Definitions
To export signal label definitions, click Export ▼ on the Labeler tab and select To Workspace or To
File under Label Definitions. In the dialog box, specify the name of a variable or MAT-file. The
specified file or variable contains an array of signalLabelDefinition objects with all the
definitions you created, imported, and modified in the current Signal Labeler session.

Note If you want to reuse signal label definitions created during a Signal Labeler session, you must
export the definitions to a MAT-file and import them in a subsequent session.

Export Labeled Signal Sets
To export new labeled signal sets, click Export ▼ on the Labeler tab and select To Workspace or To
File under Labeled Signal Sets. In the dialog box, specify the name of a variable or MAT-file
and an optional brief description. The variable or file contains a labeledSignalSet object that
merges all the signals, label definitions, and label values that you created, imported, and modified in
the current Signal Labeler session. All signals that contain time information are converted to
MATLAB timetables.

Note When exporting labeled signal sets, Signal Labeler converts all signals with time information
to timetables. This conversion results in a deeper hierarchy of nested channels in the exported
labeledSignalSet object. You can see the deeper hierarchy if you import the labeled signal set
again into the app.

See Also
Apps
Signal Analyzer | Signal Labeler

Objects
labeledSignalSet | signalLabelDefinition | signalMask

Related Examples
• “Label Signal Attributes, Regions of Interest, and Points” on page 22-40
• “Examine Labeled Signal Set” on page 22-46
• “Label QRS Complexes and R Peaks of ECG Signals Using Deep Learning Network” on page 22-

51
• “Label Spoken Words in Audio Signals Using External API” on page 22-60
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More About
• “Using Signal Labeler App” on page 22-2
• “Import Data into Signal Labeler” on page 22-6
• “Create or Import Signal Label Definitions” on page 22-13
• “Label Signals Interactively or Automatically” on page 22-17
• “Custom Labeling Functions” on page 22-25
• “Customize Labeling View” on page 22-30
• “Signal Labeler Usage Tips” on page 22-38
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Signal Labeler Usage Tips

Keyboard Shortcuts

Note On Macintosh platforms, use the Command key instead of Ctrl.

Labeling

Task Shortcut
Accept labeling Enter
Delete label Del
Cancel labeling Esc
Activate Draw Labels mode Ctrl+L
Plot previous channel Ctrl+Up arrow
Plot next channel Ctrl+Down arrow

Zooming

Task Shortcut
Zoom in X-axis Ctrl+Shift+T
Zoom in Y-axis Ctrl+Shift+Y
Zoom in X and Y Ctrl++ (numeric keypad only)
Zoom out Ctrl+- (numeric keypad only)
Fit to view Spacebar
Cancel zoom operation Esc

Tip If you label peaks in a signal using Peak Labeler and then move one of the labels, Signal
Labeler still shows the amplitude value returned by Peak Labeler. To update the amplitude:

1 Read the new value on the data cursor you used to move the point label.
2 Edit the label.
3 Enter the new value in the Value field of the dialog box that appears.

Note

• You must select a parent label before you can label an ROI or point sublabel manually.
• To label an attribute sublabel manually, use the Labeled Signal Set browser or the label viewer.

22 Signal Labeler

22-38



Troubleshooting
• When you reduce the width of the Signal Labeler window, the attribute table under the time plot

shows a horizontal scrollbar. In Apple macOS systems, the scrollbar is hidden by default. If you
have a trackpad and scroll horizontally, the scrollbar appears. If you use a mouse and want the
scrollbar to be visible always, you can modify the system behavior in the System Preferences.

• Signal Labeler can fail to start if MATLAB is using a software implementation of OpenGL. To
solve the problem, upgrade your graphics hardware driver or use opengl to switch to a hardware-
accelerated implementation of OpenGL. See “Resolving Low-Level Graphics Issues” for more
information.

• Attempting to start Signal Labeler can cause JavaScript support for WebGL to fail. To solve the
problem, update your graphics hardware driver.

• Signal Labeler can fail to start due to a network error. Check your organization's proxy settings
and, if possible, disable the proxy that is interfering with the app startup process.

See Also
Apps
Signal Analyzer | Signal Labeler

Functions
labeledSignalSet | signalLabelDefinition

Related Examples
• “Label Signal Attributes, Regions of Interest, and Points” on page 22-40
• “Examine Labeled Signal Set” on page 22-46
• “Label QRS Complexes and R Peaks of ECG Signals Using Deep Learning Network” on page 22-

51
• “Label Spoken Words in Audio Signals Using External API” on page 22-60

More About
• “Using Signal Labeler App” on page 22-2
• “Import Data into Signal Labeler” on page 22-6
• “Create or Import Signal Label Definitions” on page 22-13
• “Label Signals Interactively or Automatically” on page 22-17
• “Custom Labeling Functions” on page 22-25
• “Customize Labeling View” on page 22-30
• “Export Labeled Signal Sets and Signal Label Definitions” on page 22-36
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Label Signal Attributes, Regions of Interest, and Points
Recordings of whale songs contain trills and moans. Trills sound like series of clicks. Moans are low-
frequency cries similar to the sound made by a ship's horn. You want to look at each signal and label
it to identify the whale type, the trill regions, and the moan regions. For each trill region, you also
want to label a few selected signal peaks.

Load Unlabeled Data

Start by loading a data set that includes two recordings of whale songs. The signals are called
whale1 and whale2 and are sampled at 4 kHz. whale1 consists of a trill followed by three moans.
whale2 consists of two moans, a trill, and another moan.

load labelwhalesignals

% To hear, type soundsc(whale1,Fs), pause(22), soundsc(whale2,Fs)

Bring the signals into Signal Labeler:

1 Open Signal Labeler. On the Labeler tab, click Import ▼ and select From workspace in the
Members list.

2 In the dialog box, select the signals. Add time information: Select Time from the drop-down list
and enter the sample rate, Fs, which is measured in kHz. Click Import to import the signals and
then click Close to close the dialog box. The signals appear in the Labeled Signal Set Browser.
To plot any of the signals, you can select the check box next to its name in the browser.

Add Signal Label Definitions

Define labels to attach to the signals. For more information about the kinds of labels you can define,
see “Create or Import Signal Label Definitions” on page 22-13.

For the whale song signals:

1 Define a categorical attribute label to store whale types. Call it WhaleType. The possible
categories are blue whale, humpback whale, and white whale.

2 Define a logical region-of-interest (ROI) label that is true for moan regions. Call it MoanRegions.
3 Define a logical ROI label that is true for trill regions. Call it TrillRegions.
4 Define a numeric point label to capture trill peaks. Call it TrillPeaks. Set this label as a

sublabel of the TrillRegions label.

To define each label, click Add Definition ▼ on the Labeler tab. To define the sublabel, select the
TrillRegions label in the Label Definitions browser, click Add Definition ▼, and select Add
sublabel definition.

Enter the following values in the fields in the dialog box that appears for each signal label or sublabel
definition. Leave the Default field empty in each case.
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Label Name Label Type Label Description Data Type Categories

WhaleType Attribute Whale type categorical
blue

humpback
white

MoanRegions ROI Regions where moans occur logical − − −
TrillRegions ROI Regions where trills occur logical − − −
TrillPeaks Point Trill peaks numeric − − −

You can export the signal definitions you created to a MAT-file or to the MATLAB® Workspace by
clicking Export ▼. A dialog box appears that prompts you for a file name. At any point you can import
signal definitions stored in a MAT-file by clicking Import ▼.

Label Signal Attributes

The songs in the data are from two blue whales. Set the WhaleType values for both signals:

1 Select WhaleType on the Label Definitions browser.
2 Click Label All.
3 In the dialog box that appears, verify that both whale1 and whale2 are selected and that the

Value field is set to blue. (If you do not specify a default value in a categorical signal label
definition, Signal Labeler sets the label to the first category specified in the definition.)

4 Click OK.

Set the WhaleType value for one signal at a time:

1 Check the box next to the signal name in the Labeled Signal Set Browser.
2 Select WhaleType on the Label Definitions browser.
3 Click Label Attribute. The value for WhaleType appears in the Labeled Signal Set Browser.
4 Select the value for WhaleType from the Value drop-down list.

Plot the whale1 signal by selecting the check box next to its name. Signal attributes appear both in
the Labeled Signal Set Browser and under the time plot.
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Label Signal Regions

Visualize the whale songs and label the trill and moan regions.

• Trill regions have distinct bursts of sound punctuated by silence. whale1 has a trill centered at
about 2 seconds.

• Moan regions are sustained low-frequency wails. whale1 has moans centered at about 7 seconds,
12 seconds, and 17 seconds.

Label the signals one at a time:

1 On the Plot column of the Labeled Signal Set Browser, check the box next to the signal name
to plot the signal.

2 To label a moan, on the Label Definitions browser, select the MoanRegions label definition.
Draw Labels is automatically activated.

3 Click the time plot. A thick animated dashed line appears that expands into a shaded region
when you click and drag.

4 Move and resize the active region until it encloses a moan region. For better label placement, you
can go to the Display tab and choose a zoom action or activate the panner.

5 Click the Accept check mark next to the Label button, press Enter, or double-click to label the
ROI. The region changes to a gradient of the signal color. If you do not specify a default value in a
logical label definition, Signal Labeler sets the label to true.
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6 Repeat the procedure for the other two moans.
7 To label a trill, on the Label Definitions browser, select the TrillRegions label definition.

Label the trill region using steps 3 and 4.
8 Before labeling the second signal, remove the first signal from the plot by clearing the check box

next to its name in the Labeled Signal Set Browser. If you have the two signals plotted when
you label a region or point, Signal Labeler associates the label with both signals.

Plot the two signals. The label viewer axes show the locations and widths of the regions of interest.
They also show the value assigned to each region.

Label Signal Points

Trill regions have distinct peaks that correspond to bursts of sound. Label three peaks in each trill
region. Because trill peaks are sublabels, each one must be associated with a particular
TrillRegions label.

Label the signals one at a time:

1 On the Plot column of the Labeled Signal Set Browser, check the box next to the signal name
to plot the signal. Also check the box corresponding to the trill region whose peaks you want to
label.

2 On the Label Definitions browser, select TrillPeaks. Draw Labels is automatically selected.
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3 On the toolstrip, under Value, enter 1, corresponding to the first peak.
4 On the Labeled Signal Set Browser, select the trill region.
5 Click the point on the time plot. The trill region is framed by a solid line, and an animated dashed

(active) line appears for the point being labeled.
6 Move the active line until it crosses the signal at a peak of your choice. For better label

placement, you can go to the Display tab and choose a zoom action or activate the panner.
7 Click the check mark next to the Label button, press Enter, or double-click to label the peak.

The dashed line changes to a solid line of the same color as the signal.
8 Repeat for two more peaks, entering 2 and 3 under Value to identify them.
9 Before labeling trill peaks for the second signal, remove the first signal from the plot by clearing

the check box next to its name in the Labeled Signal Set Browser.

The label viewer axes show the locations of the points of interest and the value assigned to each
point.

Plot the two signals to see a summary of their labels in the Label Viewer. Expand the labeled signal
set hierarchy in the Labeled Signal Set Browser to see details for all the labels. (To expand the
hierarchy, right-click any signal in the browser and select Expand All.) For each signal, plot the first
moan region and the third trill peak that you labeled.
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Edit Signal Label Values

At any point, you can edit any signal label using the Labeled Signal Set Browser, the time plot, or
the label viewer. For more information, see “Edit Labels” on page 22-18.

Export Labeled Signal Set

Export the labeled signals as a new labeledSignalSet object. Click the Export ▼ button on the
Labeler tab of the toolstrip. You can export the labeled signal set to the MATLAB Workspace or to a
MAT-file. For this example, choose a MAT-file. In the dialog box that appears, give the name
Whale_Songs.mat to the labeled signal set, add an optional short description, and click Export.
See “Export Labeled Signal Sets and Signal Label Definitions” on page 22-36 for more information on
how Signal Labeler exports labeled signal sets.

See Also
Apps
Signal Analyzer | Signal Labeler

Objects
labeledSignalSet | signalLabelDefinition | signalMask

Related Examples
• “Examine Labeled Signal Set” on page 22-46
• “Label QRS Complexes and R Peaks of ECG Signals Using Deep Learning Network” on page 22-

51
• “Label Spoken Words in Audio Signals Using External API” on page 22-60

More About
• “Using Signal Labeler App” on page 22-2
• “Import Data into Signal Labeler” on page 22-6
• “Create or Import Signal Label Definitions” on page 22-13
• “Label Signals Interactively or Automatically” on page 22-17
• “Custom Labeling Functions” on page 22-25
• “Customize Labeling View” on page 22-30
• “Export Labeled Signal Sets and Signal Label Definitions” on page 22-36
• “Signal Labeler Usage Tips” on page 22-38
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Examine Labeled Signal Set
Load into the MATLAB® Workspace the MAT-file you created in the “Label Signal Attributes, Regions
of Interest, and Points” on page 22-40 example. Verify that the labeled signal set contains the
definitions that you added using Signal Labeler.

load Whale_Songs

labelDefinitionsSummary(whalesongs)

ans=3×9 table
      LabelName        LabelType     LabelDataType     Categories     ValidationFunction    DefaultValue             Sublabels             Tag            Description         
    ______________    ___________    _____________    ____________    __________________    ____________    ___________________________    ___    ____________________________

    "WhaleType"       "attribute"    "categorical"    {3x1 string}       {["N/A"   ]}       {0x0 double}    {0x0 double               }    ""     "Whale type"                
    "MoanRegions"     "roi"          "logical"        {["N/A"   ]}       {0x0 double}       {0x0 double}    {0x0 double               }    ""     "Regions where moans occur" 
    "TrillRegions"    "roi"          "logical"        {["N/A"   ]}       {0x0 double}       {0x0 double}    {1x1 signalLabelDefinition}    ""     "Regions where trills occur"

Verify that TrillPeaks is a sublabel of TrillRegions.

labelDefinitionsHierarchy(whalesongs)

ans = 
    'WhaleType
       Sublabels: []
     MoanRegions
       Sublabels: []
     TrillRegions
       Sublabels: TrillPeaks
     '

Retrieve the second member of the set. Retrieve the names of the timetable variables.

song = getSignal(whalesongs,2);

summary(song)

RowTimes:

    Time: 76579x1 duration
        Values:
            Min           0 sec       
            Median        9.5722 sec  
            Max           19.144 sec  
            TimeStep      0.00025 sec 

Variables:

    whale2: 76579x1 double

        Values:

            Min       -0.37326
            Median           0
            Max        0.37914
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Plot the signal.

t = song.Time;
sng = song.whale2;

plot(t,sng)

Visualize Labeled Regions

Use a signalMask object to display and identify the regions of interest that you labeled. For better
display, change the label values from logical to categorical.

mvals = getLabelValues(whalesongs,2,'MoanRegions');
mvals.Value = categorical(repmat("moan",size(mvals,1),1));

tvals = getLabelValues(whalesongs,2,'TrillRegions');
tvals.Value = categorical(repmat("trill",size(tvals,1),1));

msk = signalMask([mvals;tvals],'SampleRate',1/seconds(t(2)-t(1)));

plotsigroi(msk,sng)
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Visualize Labeled Points

Display and identify the trill peaks that you labeled.

pk = getLabelValues(whalesongs,2,{'TrillRegions','TrillPeaks'});

locs  = zeros(size(pk,1),1);
for kj = 1:length(locs)
    locs(kj) = find(seconds(t) == pk.Location(kj));
end

hold on
plot(seconds(t(locs)),sng(locs)+0.01,'v')
text(seconds(t(locs))+0.2,sng(locs)+0.05,int2str(cell2mat(pk.Value)))
hold off
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See Also
Apps
Signal Analyzer | Signal Labeler

Objects
labeledSignalSet | signalLabelDefinition | signalMask

Related Examples
• “Label Signal Attributes, Regions of Interest, and Points” on page 22-40
• “Label QRS Complexes and R Peaks of ECG Signals Using Deep Learning Network” on page 22-

51
• “Label Spoken Words in Audio Signals Using External API” on page 22-60

More About
• “Using Signal Labeler App” on page 22-2
• “Import Data into Signal Labeler” on page 22-6
• “Create or Import Signal Label Definitions” on page 22-13
• “Label Signals Interactively or Automatically” on page 22-17
• “Custom Labeling Functions” on page 22-25
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• “Customize Labeling View” on page 22-30
• “Export Labeled Signal Sets and Signal Label Definitions” on page 22-36
• “Signal Labeler Usage Tips” on page 22-38
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Label QRS Complexes and R Peaks of ECG Signals Using Deep
Learning Network

This example shows how to use custom autolabeling functions in Signal Labeler to label QRS
complexes and R peaks of electrocardiogram (ECG) signals. One custom function uses a previously
trained recurrent deep learning network to identify and locate the QRS complexes. Another custom
function uses a simple peak finder to locate the R peaks. In this example, the network labels the QRS
complexes of two signals that are completely independent of the network training and testing
process.

The QRS complex, which consists of three deflections in the ECG waveform, reflects the
depolarization of the right and left ventricles of the heart. The QRS is also the highest-amplitude
segment of the human heartbeat. Study of the QRS complex can help assess the overall health of a
person's heart and the presence of abnormalities [1 on page 22-0 ]. In particular, by locating R
peaks within the QRS complexes and looking at the time intervals between consecutive peaks, a
diagnostician can compute the heart-rate variability of a patient and detect cardiac arrhythmia.

The deep learning network in this example was introduced in “Waveform Segmentation Using Deep
Learning” on page 24-330, where it was trained using ECG signals from the publicly available QT
Database [2 on page 22-0 ] [3 on page 22-0 ]. The data consists of roughly 15 minutes of ECG
recordings from a total of 105 patients, sampled at 250 Hz. To obtain each recording, the examiners
placed two electrodes on different locations on a patient's chest, which resulted in a two-channel
signal. The database provides signal region labels generated by an automated expert system [1 on
page 22-0 ]. The added labels make it possible to use the data to train a deep learning network.

Load, Resample, and Import Data into Signal Labeler

The signals labeled in this example are from the MIT-BIH Arrhythmia Database [4 on page 22-0 ].
Each signal in the database was irregularly sampled at a mean rate of 360 Hz and was annotated by
two cardiologists, allowing for verification of the results.

Load two MIT database signals, corresponding to records 200 and 203. Resample the signals to a
uniform grid with a sample time of 1/250 second, which corresponds to the nominal sample rate of
the QT Database data.

load mit200
y200 = resample(ecgsig,tm,250);

load mit203
y203 = resample(ecgsig,tm,250);

Open Signal Labeler. On the Labeler tab, click Import ▼ and select From workspace in the
Members list. In the dialog box, select the signals y200 and y203. Add time information: Select
Time from the drop-down list and specify a sample rate of 250 Hz. Click Import and close the dialog
box. The signals appear in the Labeled Signal Set Browser. Plot the signals by selecting the check
boxes next to their names.

Define Labels

Define labels to attach to the signals.

1 Define a categorical region-of-interest (ROI) label for the QRS complexes. Click Add Definition
▼ on the Labeler tab. Specify the Label Name as QRSregions, select a Label Type of ROI,

 Label QRS Complexes and R Peaks of ECG Signals Using Deep Learning Network

22-51



enter the Data Type as categorical, and add two Categories, QRS and n/a, each on its own
line.

2 Define a sublabel of QRSregions as a numerical point label for the R peaks. Click QRSregions
in the Label Definitions browser to select it. Click Add Definition ▼ and select Add sublabel
definition. Specify the Label Name as Rpeaks, select a LabelType of Point, and enter the
Data Type as numeric.

Create Custom Autolabeling Functions

Create two “Custom Labeling Functions” on page 22-25, one to locate and label the QRS complexes
and another to locate and label the R peak within each QRS complex. (Code for the findQRS on page
22-0  and findRpeaks on page 22-0  functions appears later in the example.) To create each
function, in the Labeler tab, click Automate Value ▼ and select Add Custom Function. Signal
Labeler shows a dialog box asking for the name, description, and label type of the function.

1 For the function that locates the QRS complexes, enter findQRS in the Name field and select
ROI as the Label Type. You can leave the Description field empty or you can enter your own
description.

2 For the function that locates the R peaks, enter findRpeaks in the Name field and select Point
as the Label Type. You can leave the Description field empty or you can enter your own
description.

If you already have written the functions, and the functions are in the current folder or in the
MATLAB® path, Signal Labeler adds the functions to the gallery. If you have not written the
functions, Signal Labeler opens blank templates in the Editor for you to type or paste the code. Save
the files. Once you save the files, the functions appear in the gallery.
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Label QRS Complexes and R Peaks

Find and label the QRS complexes of the input signals.

1 In the Labeled Signal Set Browser, select the check box next to y200.
2 Select QRSregions in the Label Definitions browser.
3 In the Automate Value ▼ gallery, select findQRS.
4 Click Auto-Label ▼ and select Auto-Label Signals. In the dialog box that appears, enter the

250 Hz sample rate in the Arguments field and click OK.

Signal Labeler locates and labels the QRS complexes for all signals, but displays labels only for the
signals whose check boxes are selected. The QRS complexes appear as shaded regions in the plot and
in the label viewer axes. Activate the panner by clicking Panner on the Display tab and zoom in on a
region of the labeled signal.
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Find and label the R peaks corresponding to the QRS complexes.

1 Select Rpeaks in the Label Definitions browser.
2 Go back to the Labeler tab. In the Automate Value ▼ gallery, select findRpeaks.
3 Click Auto-Label ▼ and select Auto-Label Signals. Click OK in the dialog box that appears.

The labels and their numeric values appear in the plot and in the label viewer axes.
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Export Labeled Signals and Compute Heart-Rate Variability

Export the labeled signals to compare the heart-rate variability for each patient. On the Labeler tab,
click Export ▼ and select Labeled Signal Set To File. In the dialog box that appears, give the
name HeartRates.mat to the labeled signal set and add an optional short description. Click Export.

Go back to the MATLAB® Command Window. Load the labeled signal set. For each signal in the set,
compute the heart-rate variability as the standard deviation of the time differences between
consecutive heartbeats. Plot a histogram of the differences and display the heart-rate variability.

load HeartRates

nms = getMemberNames(heartrates);

for k = 1:heartrates.NumMembers
    
    v = getLabelValues(heartrates,k,{'QRSregions','Rpeaks'});
    
    hr = diff(cellfun(@(x)x.Location,v));
    
    subplot(2,1,k)
    histogram(hr,0.5:0.025:1.5)
    legend(['hrv = ' num2str(std(hr))])
    ylabel(nms(k))
    ylim([0 6])

end

 Label QRS Complexes and R Peaks of ECG Signals Using Deep Learning Network

22-55



findQRS Function: Find QRS Complexes

The findQRS function finds and labels the QRS complexes of the input signals.

The function uses an auxiliary function, computeFSST on page 22-0 , to reshape the input data and
compute the Fourier synchrosqueezed transform (FSST). You can either store computeFSST in a
separate file in the same directory or nest it inside findQRS by inserting it before the final end
statement.

findQRS uses the classify (Deep Learning Toolbox) function and the trained deep learning
network net to identify the QRS regions. The deep learning network outputs a categorical array that
labels every point of the input signal as belonging to a P region, a QRS complex, a T region, or to
none of these. This function converts the point labels corresponding to a QRS complex to QRS region-
of-interest labels using signalMask and discards the rest. The df parameter selects as regions of
interest only those QRS complexes whose duration is greater than 20 samples. If you do not specify a
sample rate, the function uses a default value of 250 Hz.

function [labelVals,labelLocs] = findQRS(x,t,parentLabelVal,parentLabelLoc,varargin)
% This is a template for creating a custom function for automated labeling
%
%  x is a matrix where each column contains data corresponding to a
%  channel. If the channels have different lengths, then x is a cell array
%  of column vectors.
%
%  t is a matrix where each column contains time corresponding to a
%  channel. If the channels have different lengths, then t is a cell array
%  of column vectors.

22 Signal Labeler

22-56



%
%  parentLabelVal is the parent label value associated with the output
%  sublabel or empty when output is not a sublabel.
%  parentLabelLoc contains an empty vector when the parent label is an
%  attribute, a vector of ROI limits when parent label is an ROI or a point
%  location when parent label is a point.
%
%  labelVals must be a column vector with numeric, logical or string output
%  values.
%  labelLocs must be an empty vector when output labels are attributes, a
%  two column matrix of ROI limits when output labels are ROIs, or a column
%  vector of point locations when output labels are points.

labelVals = cell(2,1);
labelLocs = cell(2,1);

if nargin<5
    Fs = 250;
else
    Fs = varargin{1};
end

df = 20;

load('trainedQTSegmentationNetwork','net')

for kj = 1:size(x,2)

    sig = x(:,kj);
      
    % Reshape input and compute Fourier synchrosqueezed transforms

    mitFSST = computeFSST(sig,Fs);
    
    % Use trained network to predict which points belong to QRS regions
    
    netPreds = classify(net,mitFSST,'MiniBatchSize',50);

    % Create a signal mask for QRS regions and specify minimum sequence length
    
    QRS = categorical([netPreds{1} netPreds{2}]',"QRS");
    msk = signalMask(QRS,"MinLength",df,"SampleRate",Fs);
    r = roimask(msk);
    
    % Label QRS complexes as regions of interest
    
    labelVals{kj} = r.Value;
    labelLocs{kj} = r.ROILimits;

end

labelVals = vertcat(labelVals{:});
labelLocs = cell2mat(labelLocs);

% Insert computeFSST here if you want to nest it inside findQRS.

end
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computeFSST Function: Reshape Input and Compute Fourier Synchrosqueezed Transforms

This function uses the fsst function to compute the Fourier synchrosqueezed transform (FSST) of
the input. As discussed in “Waveform Segmentation Using Deep Learning” on page 24-330, the
network performs best when given as input a time-frequency map of each training or testing signal.
The FSST results in a set of features particularly useful for recurrent networks because the transform
has the same time resolution as the original input. The function:

• Pads the the input data with random numbers and reshapes it into the 2-by-5000 cell array stack
expected by net.

• Specifies a Kaiser window of length 128 to provide adequate frequency resolution.
• Extracts data over the frequency range from 0.5 Hz to 40 Hz.
• Treats the real and imaginary parts of the FSST as separate features.
• Normalizes the data by subtracting the mean and dividing by the standard deviation.

function signalsFsst = computeFSST(xd,Fs)

xd = reshape([xd;randn(10000-length(xd),1)/100],5000,2);
signalsFsst = cell(1,2);    
    
for k = 1:2
    [ss,ff] = fsst(xd(:,k),Fs,kaiser(128));
    sp = ss(ff>0.5 & ff<40,:);
    signalsFsst{k} = normalize([real(sp);imag(sp)],2);
end

end

findRpeaks Function: Find R Peaks

This function locates the most prominent peak of the QRS regions of interest found by findQRS. The
function applies the MATLAB® islocalmax function to the absolute value of the signal in the
intervals located by findQRS.

function [labelVals,labelLocs] = findRpeaks(x,t,parentLabelVal,parentLabelLoc,varargin)

labelVals = zeros(size(parentLabelLoc,1),1);
labelLocs = zeros(size(parentLabelLoc,1),1);

for kj = 1:size(parentLabelLoc,1)
    tvals = t>=parentLabelLoc(kj,1) & t<=parentLabelLoc(kj,2);
    ti = t(tvals);
    xi = x(tvals);
    lc = islocalmax(abs(xi),'MaxNumExtrema',1);
    labelVals(kj) = xi(lc);
    labelLocs(kj) = ti(lc);
end

end
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Label Spoken Words in Audio Signals Using External API
This example shows how to label spoken words in Signal Labeler. The example uses the IBM®
Watson Speech to Text API and Audio Toolbox™ software. See “Speech-to-Text Transcription” (Audio
Toolbox) for instructions about:

1 Downloading the Audio Toolbox speech2text extended functionality, available from MATLAB®
Central.

2 Setting up the IBM Watson Speech API, offered through IBM Cloud Services. You must create an
IBM Cloud account, a Speech to Text service instance, and go to the service dashboard and copy
your credentials – API Key and URL values. See the Getting Started Tutorial in the IBM
documentation for more details.

Load Speech Data

Load an audio data file containing the sentence "Oak is strong, and also gives shade" spoken by a
male voice. The signal is sampled at 44.1 kHz.

[y,fs] = audioread('oak.m4a');

% To hear, type soundsc(y,fs)

1 Open Signal Labeler. On the Labeler tab, click Import ▼ and select From workspace in the
Members list. In the dialog box, select the signal, y.

2 Add time information: Select Time from the drop-down list and specify fs as the sample rate,
which is measured in kHz.

3 Close the dialog box. The signal appears in the Labeled Signal Set Browser.

Define Label

Define a label to attach to the signal. Click Add Definition ▼ on the Labeler tab. Specify the Label
Name as Words, select a Label Type of ROI, and enter the Data Type as string.

Create Custom Autolabeling Function

Create a custom function to label the words spoken in the audio file. (Code for the stt on page 22-
0  function appears later in the example.) See “Custom Labeling Functions” on page 22-25 for more
information.

1 Go to the directory where you have stored the speech2text P-code files and the JSON file that
stores your IBM Cloud credentials.

2 To create the function, in the Labeler tab, click Automate Value ▼ and select Add Custom
Function. Signal Labeler shows a dialog box asking you to enter the name, description, and
label type of the function you are adding. Enter stt in the Name field and select ROI as the
Label Type. You can leave the Description field empty or you can enter your own description.

3 Copy the function code and paste it in the empty template that appears. Save the file. The
function appears in the gallery.
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Locate and Identify Spoken Words

Locate and identify the words spoken in the input signal.

1 In the Labeled Signal Set Browser, select the check box next to y.
2 Select Words in the Label Definitions browser.
3 On the Automated Value gallery, select stt.
4 Click Auto-Label ▼ and select Auto-Label Signals. Click OK in the dialog box that appears.

Signal Labeler locates and labels the spoken words.
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Export Labeled Signal

Export the labeled signal. On the Labeler tab, click Export ▼ and select Labeled Signal Set To
File. In the dialog box that appears, give the name Transcription.mat to the labeled signal set
and add an optional short description. Click Export.

Go back to the MATLAB® Command Window. Load the labeled signal set. The set has only one
member. Get the names of the labels, and use the name to obtain and display the transcribed words.

load Transcription

ln = getLabelNames(transcribedAudio);

v = getLabelValues(transcribedAudio,1,ln)

v=7×2 table
     ROILimits       Value  
    ____________    ________

    0.09    0.56    "oak"   
    0.59    0.97    "is"    
       1    1.78    "strong"
    1.94    2.19    "and"   
    2.22    2.67    "also"  
    2.67    3.22    "gives" 
    3.25    3.91    "shade" 
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Change the label values from strings to categories. Use a signalMask object to plot the signal using
a different color for each word.

v.Value = categorical(v.Value,v.Value);

msk = signalMask(v,'SampleRate',fs);

s = getSignal(transcribedAudio,1);

plotsigroi(msk,s.y)

stt Function: Locate and Identify Spoken Words

This function uses the IBM Watson Speech API and the Audio Toolbox speech2text extended
functionality to extract spoken words from an audio file.

function [labelVals,labelLocs] = stt(x,t,parentLabelVal,parentLabelLoc,varargin)

aspeechObjectIBM = speechClient('IBM','timestamps',true);

fs = 1/(t(2)-t(1));

tixt = speech2text(aspeechObjectIBM,x,fs);

numLabels = numel(tixt.TimeStamps{:});
labelVals = strings(numLabels,1);
labelLocs = zeros(numLabels,2);
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for idx = 1:numLabels
    labelVals(idx) = tixt.TimeStamps{:}{idx}{1};
    labelLocs(idx,1) = tixt.TimeStamps{:}{idx}{2};
    labelLocs(idx,2) = tixt.TimeStamps{:}{idx}{3};
end

end

See Also
Apps
Signal Analyzer | Signal Labeler

Objects
labeledSignalSet | signalLabelDefinition | signalMask

Related Examples
• “Label Signal Attributes, Regions of Interest, and Points” on page 22-40
• “Examine Labeled Signal Set” on page 22-46
• “Label QRS Complexes and R Peaks of ECG Signals Using Deep Learning Network” on page 22-

51

More About
• “Using Signal Labeler App” on page 22-2
• “Import Data into Signal Labeler” on page 22-6
• “Create or Import Signal Label Definitions” on page 22-13
• “Label Signals Interactively or Automatically” on page 22-17
• “Custom Labeling Functions” on page 22-25
• “Customize Labeling View” on page 22-30
• “Export Labeled Signal Sets and Signal Label Definitions” on page 22-36
• “Signal Labeler Usage Tips” on page 22-38
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Choose an App to Label Ground Truth Data
You can use Computer Vision Toolbox™, Automated Driving Toolbox™, Lidar Toolbox™, and Signal
Processing Toolbox apps to label ground truth data. Use this labeled data to validate or train
algorithms such as image classifiers, object detectors, semantic segmentation networks, and deep
learning applications. The choice of labeling app depends on several factors, including the supported
data sources, labels, and types of automation.

One key consideration is the type of data that you want to label.

• If your data is an image collection, use the Image Labeler app. An image collection is an
unordered set of images that can vary in size. For example, you can use the app to label images of
books for training a classifier.

• If your data is a single video or image sequence, use the Video Labeler app. An image sequence
is an ordered set of images that resembles a video. For example, you can use this app to label a
video or image sequence of cars driving on a highway for training an object detector.

• If your data includes multiple time-overlapped signals, such as videos, image sequences, or lidar
signals, use the Ground Truth Labeler app. For example, you can label data for a single scene
captured by multiple sensors mounted on a vehicle.

• If your data is only a lidar signal, use the Lidar Labeler. For example, you can use this app to
label data captured from a point cloud sensor.

• If your data consists of single-channel or multichannel one-dimensional signals, use the Signal
Labeler. For example, you can label biomedical, speech, communications, or vibration data. To
perform audio-specific tasks, such as speech detection, speech-to-text transcription, and recording
new audio, use the Audio Labeler app.

This table summarizes the key features of the labeling apps.

Labeling App Data Sources Label Support Automation Additional
Features

Image Labeler • Image
collections

• Rectangle
regions of
interest (ROIs)

• Projected
cuboid (ROIs)

• Line ROIs
• Pixel ROIs
• Sublabels
• Attributes
• Scenes

• Built-in
automation
algorithms

• Custom
automation
algorithms

• View visual
summary of
labeled data
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Labeling App Data Sources Label Support Automation Additional
Features

Video Labeler • Videos
• Image

sequences
• Custom image

data sources

• Rectangle ROIs
• Projected

cuboid (ROIs)
• Line ROIs
• Pixel ROIs
• Sublabels
• Attributes
• Scenes

• Built-in
automation
algorithms

• Custom
automation
algorithms

• Temporal
automation
algorithms

• View visual
summary of
labeled data

Ground Truth
Labeler

• Videos
• Image

sequences
• Custom image

data sources
• Point cloud

sequences (PCD
or PLY files)

• Velodyne® lidar
files

• Rosbags
(requires ROS
Toolbox)

• Rectangle ROIs
• Projected

cuboid (ROIs)
• Cuboid ROIs
• Line ROIs
• Pixel ROIs
• Sublabels
• Attributes
• Scenes

• Built-in
automation
algorithms,
including
vehicle and
lane detection
algorithms and
a point cloud
temporal
interpolation
algorithm

• Custom
automation
algorithms

• Temporal
automation
algorithms

• View visual
summary of
labeled data

• Connect
external tool to
app for
displaying time-
synchronized
signals, such as
lidar or CAN
bus data

• Customize
loading
interface to
support
additional data
sources

Lidar Labeler • Point cloud
sequences (PCD
or PLY files)

• Velodyne lidar
files

• LAS/LAZ file
sequences

• Rosbags
(requires ROS
Toolbox)

• Cuboid ROIs
• Attributes
• Scenes

• Built-in
automation
algorithms,
including a
lidar object
tracker and
point cloud
temporal
interpolator

• Custom
automation
algorithms

• Temporal
automation
algorithms

• View the cuboid
labels in top,
side, and front
views

• Save and reuse
custom camera
views

• Connect to
external tool to
display time-
synchronized
signals for ease
of labeling,
such as videos,
to use as a
reference while
labeling
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Labeling App Data Sources Label Support Automation Additional
Features

Signal Labeler • Numeric
arrays,
MATLAB
timetables, and
labeledSigna
lSet objects in
the MATLAB
workspace

• MAT-files and
CSV files

• Time-based
ROIs

• Time-based
points

• Attributes
• Sublabels

• Built-in peak
labeling

• Custom
automation
algorithms

• Expand,
collapse, and
browse details
of labeled data

• View signal
spectra and
spectrograms

• Label ROIs and
points using the
spectrogram

• Label signals in
bulk

• Use Label
Viewer to view
and compare
labels

Audio Labeler • Audio files
(WAVE, OGG,
FLAC, AU, AIFF,
AIFC, MP3,
MPEG-4 AAC)

• labeledSigna
lSet objects in
the MATLAB
workspace or in
MAT-files

• Time-based
ROIs

• File-level labels

• Speech
detection

• Speech-to-text
transcription
(requires Audio
Toolbox™
extended
functionality for
speech2text)

• Audio playback
• Audio recording
• Inspect audio
file information

See Also

More About
• “Get Started with the Image Labeler” (Computer Vision Toolbox)
• “Get Started with the Video Labeler” (Computer Vision Toolbox)
• “Get Started with the Ground Truth Labeler” (Automated Driving Toolbox)
• “Get Started with the Lidar Labeler” (Lidar Toolbox)
• “Using Signal Labeler App” on page 22-2
• “Label Audio Using Audio Labeler” (Audio Toolbox)
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Create Uniform and Nonuniform Time Vectors
You can create uniform and nonuniform time vectors for use in computations involving time series.

Use the colon operator if you know the sampling frequency. If your system samples time at a rate of
15 Hz during one second, you get 16 readings, including the one at zero.

Fs = 15;
Ts = 1/Fs;
ts = 0:Ts:1;

Use linspace if you know the beginning and end of the time interval and the number of samples.
Suppose you start a stopwatch and stop it one second later. If you know your instrument took 15
readings, you can generate the time vector.

tl = linspace(0,1,15);

You can compute the sample rate directly from the samples and use it to reconstruct the time vector.

sf = 1/(tl(2)-tl(1));

TL = (0:length(tl)-1)/sf;

ErrorTL = max(abs(tl-TL))

ErrorTL = 0

You can also reconstruct ts using linspace.

lts = length(ts);
TS = linspace(ts(1),ts(lts),lts);

ErrorTS = max(abs(ts-TS))

ErrorTS = 1.1102e-16

linspace and the colon operator create row vectors by default. Transpose them to obtain column
vectors.

tcol = tl';
ttrans = ts';

Combine linspace and the colon operator to generate nonuniform time vectors of arbitrary
characteristics.

Suppose you have a Gaussian-modulated sinusoidal pulse that you must sample. The pulse changes
rapidly during a one-second interval but slowly during the preceding and following seconds.

Sample the region of interest at 100 Hz and take only five samples before and after. Concatenate the
vectors using square brackets.

gpl = @(x) 2.1*gauspuls(x-1.5,5,0.4);

Ffast = 100;
Tf = 1/Ffast;
Nslow = 5;
tdisc = [linspace(0,1,Nslow) 1+Tf:Tf:2-Tf linspace(2,3,Nslow)];
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Generate 20001 samples of the function to simulate the continuous-time pulse. Overlay a plot of the
samples defined by tsf.

Tcont = linspace(0,3,20001)';

plot(Tcont,gpl(Tcont),tdisc,gpl(tdisc),'o','markersize',5)

See Also
gauspuls
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Remove Trends from Data
Measured signals can show overall patterns that are not intrinsic to the data. These trends can
sometimes hinder the data analysis and must be removed.

Consider two electrocardiogram (ECG) signals with different trends. ECG signals are sensitive to
disturbances such as power source interference. Load the signals and plot them.

load('ecgSignals.mat') 

t = (1:length(ecgl))';

subplot(2,1,1)
plot(t,ecgl), grid
title 'ECG Signals with Trends', ylabel 'Voltage (mV)'

subplot(2,1,2)
plot(t,ecgnl), grid
xlabel Sample, ylabel 'Voltage (mV)'

The signal on the first plot shows a linear trend. The trend on the second signal is nonlinear. To
eliminate the linear trend, use the MATLAB® function detrend.

dt_ecgl = detrend(ecgl);

To eliminate the nonlinear trend, fit a low-order polynomial to the signal and subtract it. In this case,
the polynomial is of order 6. Plot the two new signals.
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opol = 6;
[p,s,mu] = polyfit(t,ecgnl,opol);
f_y = polyval(p,t,[],mu);

dt_ecgnl = ecgnl - f_y;

subplot(2,1,1)
plot(t,dt_ecgl), grid
title 'Detrended ECG Signals', ylabel 'Voltage (mV)'

subplot(2,1,2)
plot(t,dt_ecgnl), grid
xlabel Sample, ylabel 'Voltage (mV)'

The trends have been effectively removed. Observe how the signals do not show a baseline shift
anymore. They are ready for further processing.

See Also
detrend | polyfit | polyval

Related Examples
• “Peak Analysis” on page 24-60
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Remove the 60 Hz Hum from a Signal
Alternating current in the United States and several other countries oscillates at a frequency of 60
Hz. Those oscillations often corrupt measurements and have to be subtracted.

Study the open-loop voltage across the input of an analog instrument in the presence of 60 Hz power-
line noise. The voltage is sampled at 1 kHz.

load openloop60hertz, openLoop = openLoopVoltage;

Fs = 1000;
t = (0:length(openLoop)-1)/Fs;

plot(t,openLoop)
ylabel('Voltage (V)')
xlabel('Time (s)')
title('Open-Loop Voltage with 60 Hz Noise')
grid

Eliminate the 60 Hz noise with a Butterworth notch filter. Use designfilt to design it. The width of
the notch is defined by the 59 to 61 Hz frequency interval. The filter removes at least half the power
of the frequency components lying in that range.

d = designfilt('bandstopiir','FilterOrder',2, ...
               'HalfPowerFrequency1',59,'HalfPowerFrequency2',61, ...
               'DesignMethod','butter','SampleRate',Fs);
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Plot the frequency response of the filter. Note that this notch filter provides up to 45 dB of
attenuation.

fvtool(d,'Fs',Fs)

Filter the signal with filtfilt to compensate for filter delay. Note how the oscillations decrease
significantly.

buttLoop = filtfilt(d,openLoop);

plot(t,openLoop,t,buttLoop)
ylabel('Voltage (V)')
xlabel('Time (s)')
title('Open-Loop Voltage')
legend('Unfiltered','Filtered')
grid

 Remove the 60 Hz Hum from a Signal

23-7



Use the periodogram to see that the "spike" at 60 Hz has been eliminated.

[popen,fopen] = periodogram(openLoop,[],[],Fs);
[pbutt,fbutt] = periodogram(buttLoop,[],[],Fs);

plot(fopen,20*log10(abs(popen)),fbutt,20*log10(abs(pbutt)),'--')
ylabel('Power/frequency (dB/Hz)')
xlabel('Frequency (Hz)')
title('Power Spectrum')
legend('Unfiltered','Filtered')
grid
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See Also
FVTool | designfilt | filtfilt | periodogram

Related Examples
• “Signal Smoothing” on page 24-10
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Remove Spikes from a Signal
Sometimes data exhibit unwanted transients, or spikes. Median filtering is a natural way to eliminate
them.

Consider the open-loop voltage across the input of an analog instrument in the presence of 60 Hz
power-line noise. The sample rate is 1 kHz.

load openloop60hertz

fs = 1000;
t = (0:numel(openLoopVoltage) - 1)/fs;

Corrupt the signal by adding transients with random signs at random points. Reset the random
number generator for reproducibility.

rng default

spikeSignal = zeros(size(openLoopVoltage));
spks = 10:100:1990;
spikeSignal(spks+round(2*randn(size(spks)))) = sign(randn(size(spks)));

noisyLoopVoltage = openLoopVoltage + spikeSignal;

plot(t,noisyLoopVoltage)

xlabel('Time (s)')
ylabel('Voltage (V)')
title('Open-Loop Voltage with Added Spikes')
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yax = ylim;

The function medfilt1 replaces every point of a signal by the median of that point and a specified
number of neighboring points. Accordingly, median filtering discards points that differ considerably
from their surroundings. Filter the signal, using sets of three neighboring points to compute the
medians. Note how the spikes vanish.

medfiltLoopVoltage = medfilt1(noisyLoopVoltage,3);

plot(t,medfiltLoopVoltage)

xlabel('Time (s)')
ylabel('Voltage (V)')
title('Open-Loop Voltage After Median Filtering')
ylim(yax)
grid
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See Also
medfilt1

Related Examples
• “Signal Smoothing” on page 24-10
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Process a Signal with Missing Samples
Consider the weight of a person as recorded (in pounds) during the leap year 2012. The person did
not record their weight every day. You would like to study the periodicity of the signal, but before you
can do so you must take care of the missing data.

Load the data and convert the measurements to kilograms. Missed readings are set to NaN.
Determine how many points are missing.

load('weight2012.dat')

wgt = weight2012(:,2)/2.20462;
daynum = 1:length(wgt);
missing = isnan(wgt);

fprintf('Missing %d samples of %d\n',sum(missing),max(daynum))

Missing 27 samples of 366

Assign values to the missing points using resample. By default, resample makes estimates using
linear interpolation. Plot the original and interpolated readings. Zoom in on days 200 through 250,
which contain about half of the missing points.

wgt_orig = wgt;
wgt = resample(wgt,daynum);

plot(daynum,wgt_orig,'.-',daynum,wgt,'o')
xlabel('Day')
ylabel('Weight (kg)')
axis([200 250 73 77])
legend('Original','Interpolated')
grid
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Determine if the signal is periodic by analyzing it in the frequency domain. Find the cycle duration,
measuring time in weeks. Subtract the mean to concentrate on fluctuations.

Fs = 7;

[p,f] = pwelch(wgt-mean(wgt),[],[],[],Fs);

plot(f,p)
xlabel('Frequency (week^{-1})')
grid
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Notice how the person's weight oscillates weekly. Is there a noticeable pattern from week to week?
Eliminate the last two days of the year to get 52 weeks. Reorder the measurements according to the
day of the week.

wgd = reshape(wgt(1:7*52),[7 52]);

plot(wgd')
xlabel('Week')
ylabel('Weight (kg)')

q = legend(datestr(datenum(2012,1,1:7),'dddd'));
q.Location = 'NorthWest';
grid
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Smooth out the fluctuations using a filter that fits low-order polynomials to subsets of the data.
Specifically, set it to fit cubic polynomials to sets of seven days.

wgs = sgolayfilt(wgd',3,7);

plot(wgs)
xlabel('Week')
ylabel('Weight (kg)')
title('Smoothed Weight Fluctuations')

q = legend(datestr(datenum(2012,1,1:7),'dddd'));
q.Location = 'SouthEast';
grid
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This person tends to eat more, and thus weigh more, during the weekend. Verify by computing the
daily means.

for jk = 1:7
    fprintf('%3s mean: %5.1f kg\n', ...
        datestr(datenum(2012,1,jk),'ddd')',mean(wgd(jk,:)))
end

Sun mean:  76.2 kg
Mon mean:  75.7 kg
Tue mean:  75.2 kg
Wed mean:  74.9 kg
Thu mean:  75.1 kg
Fri mean:  75.3 kg
Sat mean:  75.8 kg

See Also
pwelch | sgolayfilt

Related Examples
• “Signal Smoothing” on page 24-10
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Reconstruct a Signal from Irregularly Sampled Data
People predisposed to blood clotting are treated with warfarin, a blood thinner. The international
normalized ratio (INR) measures the effect of the drug. Larger doses increase the INR and smaller
doses decrease it. Patients are monitored regularly by a nurse, and when their INRs fall out of the
target range, their doses and the frequencies of their tests change.

The file INR.mat contains the INR measurements performed on a patient over a five-year period. The
file includes a datetime array with the date and time of each measurement, and a vector with the
corresponding INR readings. Load the data. Plot the INR as a function of time and overlay the target
INR range.

load('INR.mat')

plot(Date,INR,'o','DatetimeTickFormat','MM/dd/yy')

xlim([Date(1) Date(end)])
hold on
plot([xlim;xlim]',[2 3;2 3],'k:')

Resample the data to make the INR readings uniformly spaced. The first reading was taken at 11:28
a.m. on a Friday. Use resample to estimate the patient's INR at that time on every subsequent
Friday. Specify a sample rate of one reading per week, or equivalently, 1/(7 × 86400) readings per
second. Use spline interpolation for the resampling.

Date.Format = 'eeee, MM/dd/yy, HH:mm';
First = Date(1)
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First = datetime
   Friday, 05/15/09, 11:28

perweek = 1/7/86400;

[rum,tee] = resample(INR,Date,perweek,1,1,'spline');

plot(tee,rum,'.-','DatetimeTickFormat','MM/dd/yy')

title('INR')
xlim([Date(1) Date(end)])
hold off

Each INR reading determines when the patient must be tested next. Use diff to construct a vector
of time intervals between measurements. Express the intervals in weeks and plot them using the
same x-axis as before. For the last point, use the next date prescribed by the anticoagulation nurse.
The measurements are carried out in the United States.

nxt = datetime('10/30/2014 07:00 PM','Locale','en_US');

plot(Date,diff(datenum([Date;nxt]))/7,'o-', ...
    'DatetimeTickFormat','MM/dd/yy')

title('Time Until Next Reading')
xlim([Date(1) Date(end)])
ylabel('Weeks')
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When the INR is out of range, the times between INR readings remain short. When the INR is too low,
patients get their readings more often because the risk of thrombosis is elevated. When the patient's
INR is in range, the times between readings increase steadily until the ratio becomes too small or too
large.

The large fluctuations in the resampling could be a sign of overshooting. However, warfarin has an
enormous effect on the body. Small changes in warfarin dose can change the INR drastically, as can
changes in diet, time spent in airplanes, or other factors. Moreover, when the ratio goes very low (as
in late 2010, where the fluctuations are largest), the warfarin is supplemented by emergency
injections of enoxaparin, whose effects are even greater.

See Also
datenum | datestr | resample

External Websites
• National Institutes of Health. Blood Thinners. https://www.nlm.nih.gov/medlineplus/

bloodthinners.html
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Align Signals with Different Start Times
Many measurements involve data collected asynchronously by multiple sensors. If you want to
integrate the signals, you have to synchronize them. The Signal Processing Toolbox™ has functions
that let you do just that.

For example, consider a car crossing a bridge. The vibrations it produces are measured by three
identical sensors located at different spots. The signals have different arrival times.

Load the signals into the MATLAB® workspace and plot them.

load relatedsig

ax(1) = subplot(3,1,1);
plot(s1)
ylabel('s_1')

ax(2) = subplot(3,1,2);
plot(s2)
ylabel('s_2')

ax(3) = subplot(3,1,3);
plot(s3)
ylabel('s_3')
xlabel('Samples')

linkaxes(ax,'x')
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Signal s1 lags s2 and in turn leads s3. The delays can be computed exactly using finddelay. You
see that s2 leads s1 by 350 samples, s3 lags s1 by 150 samples, and s2 leads s3 by 500 samples.

t21 = finddelay(s2,s1)
t31 = finddelay(s3,s1)
t32 = finddelay(s2,s3)

t21 =

   350

t31 =

  -150

t32 =

   500

Line up the signals by leaving the earlier signal untouched and clipping the delays out of the other
vectors. Add 1 to the lag differences to account for the one-based indexing used by MATLAB®. This
method aligns the signals using as reference the earliest arrival time, that of s2.

axes(ax(1))
plot(s1(t21+1:end))

axes(ax(2))
plot(s2)

axes(ax(3))
plot(s3(t32+1:end))
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Use alignsignals to align the signals. The function works by delaying earlier signals, so use as
reference the latest arrival time, that of s3.

[x1,x3] = alignsignals(s1,s3);
x2 = alignsignals(s2,s3);

axes(ax(1))
plot(x1)

axes(ax(2))
plot(x2)

axes(ax(3))
plot(x3)
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The signals are now synchronized and ready for further processing.

See Also
alignsignals | finddelay | xcorr

Related Examples
• “Measuring Signal Similarities” on page 24-71

23 Common Applications

23-24



Align Signals Using Cross-Correlation
Many measurements involve data collected asynchronously by multiple sensors. If you want to
integrate the signals and study them in tandem, you have to synchronize them. Use xcorr for that
purpose.

For example, consider a car crossing a bridge. The vibrations it produces are measured by three
identical sensors located at different spots. The signals have different arrival times.

Load the signals into the MATLAB® workspace and plot them.

load relatedsig

ax(1) = subplot(3,1,1);
plot(s1)
ylabel('s_1')
axis tight

ax(2) = subplot(3,1,2);
plot(s2)
ylabel('s_2')
axis tight

ax(3) = subplot(3,1,3);
plot(s3)
ylabel('s_3')
axis tight
xlabel('Samples')

linkaxes(ax,'x')
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Compute the cross-correlations between the three pairs of signals. Normalize them so their maximum
value is one.

[C21,lag21] = xcorr(s2,s1);
C21 = C21/max(C21);

[C31,lag31] = xcorr(s3,s1);
C31 = C31/max(C31);

[C32,lag32] = xcorr(s3,s2);
C32 = C32/max(C32);

The locations of the maximum values of the cross-correlations indicate time leads or lags.

[M21,I21] = max(C21);
t21 = lag21(I21);

[M31,I31] = max(C31);
t31 = lag31(I31);

[M32,I32] = max(C32);
t32 = lag31(I32);

Plot the cross-correlations. In each plot display the location of the maximum.

subplot(3,1,1)
plot(lag21,C21,[t21 t21],[-0.5 1],'r:')
text(t21+100,0.5,['Lag: ' int2str(t21)])
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ylabel('C_{21}')
axis tight
title('Cross-Correlations')

subplot(3,1,2)
plot(lag31,C31,[t31 t31],[-0.5 1],'r:')
text(t31+100,0.5,['Lag: ' int2str(t31)])
ylabel('C_{31}')
axis tight

subplot(3,1,3)
plot(lag32,C32,[t32 t32],[-0.5 1],'r:')
text(t32+100,0.5,['Lag: ' int2str(t32)])
ylabel('C_{32}')
axis tight
xlabel('Samples')

s2 leads s1 by 350 samples; s3 lags s1 by 150 samples. Thus s2 leads s3 by 500 samples. Line up
the signals by clipping the vectors with longer delays.

s1 = s1(-t21:end);
s3 = s3(t32:end);

ax(1) = subplot(3,1,1);
plot(s1)
ylabel('s_1')
axis tight

 Align Signals Using Cross-Correlation

23-27



ax(2) = subplot(3,1,2);
plot(s2)
ylabel('s_2')
axis tight

ax(3) = subplot(3,1,3);
plot(s3)
ylabel('s_3')
axis tight
xlabel('Samples')

linkaxes(ax,'x')

The signals are now synchronized and ready for further processing.

See Also
alignsignals | finddelay | xcorr

Related Examples
• “Measuring Signal Similarities” on page 24-71
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Align Two Simple Signals
This example shows how to use cross-correlation to align signals. In the most general case, the
signals have different lengths, and to synchronize them properly, you must take into account the
lengths and the order in which you input the arguments to xcorr.

Consider two signals, identical except for the number of surrounding zeros and for the fact that one
of them lags the other.

sz = 30;
sg = randn(1,randi(8)+3);
s1 = [zeros(1,randi(sz)-1) sg zeros(1,randi(sz)-1)];
s2 = [zeros(1,randi(sz)-1) sg zeros(1,randi(sz)-1)];

mx = max(numel(s1),numel(s2));

subplot(2,1,1)
stem(s1)
xlim([0 mx+1])

subplot(2,1,2)
stem(s2,'*')
xlim([0 mx+1])

Determine which of the two signals is longer than the other in the sense of having more elements, be
they zeros or not.
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if numel(s1) > numel(s2)
    slong = s1;
    sshort = s2;
else
    slong = s2;
    sshort = s1;
end

Compute the cross-correlation of the two signals. Run xcorr with the longer signal as first argument
and the shorter signal as second argument. Plot the result.

[acor,lag] = xcorr(slong,sshort);

[acormax,I] = max(abs(acor));
lagDiff = lag(I)

lagDiff = 15

figure
stem(lag,acor)
hold on
plot(lagDiff,acormax,'*')
hold off

Align the signals. Think of the lagging signal as being "longer" than the other, in the sense that you
have to "wait longer" to detect it.
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• If lagDiff is positive, "shorten" the long signal by considering its elements from lagDiff+1 to
the end.

• If lagDiff is negative, "lengthen" the short signal by considering its elements from -lagDiff+1
to the end.

You must add 1 to the lag difference because MATLAB® uses one-based indexing.

if lagDiff > 0
    sorig = sshort;
    salign = slong(lagDiff+1:end);
else
    sorig = slong;
    salign = sshort(-lagDiff+1:end);
end

Plot the aligned signals.

subplot(2,1,1)
stem(sorig)
xlim([0 mx+1])

subplot(2,1,2)
stem(salign,'*')
xlim([0 mx+1])

The method works because the cross-correlation operation is antisymmetric and because xcorr deals
with signals of different lengths by adding zeros at the end of the shorter signal. This interpretation
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lets you align the signals easily using the MATLAB® end operator without having to pad them by
hand.

You can also align the signals at one stroke by invoking the alignsignals function.

[x1,x2] = alignsignals(s1,s2);

subplot(2,1,1)
stem(x1)
xlim([0 mx+1])

subplot(2,1,2)
stem(x2,'*')
xlim([0 mx+1])

See Also
alignsignals | xcorr
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Find Peaks in Data
Use findpeaks to find values and locations of local maxima in a set of data.

The file spots_num.mat contains the average number of sunspots observed every year from 1749 to
2012. The data are available from NASA.

Find the maxima and their years of occurrence. Plot them along with the data.

load('spots_num.mat')

[pks,locs] = findpeaks(avSpots);

plot(year,avSpots,year(locs),pks,'or')
xlabel('Year')
ylabel('Number')
axis tight

Some peaks are very close to each other. The ones that are not recur at regular intervals. There are
roughly five such peaks per 50-year period.

To make a better estimate of the cycle duration, use findpeaks again, but this time restrict the
peak-to-peak separation to at least six years. Compute the mean interval between maxima.

[pks,locs] = findpeaks(avSpots,'MinPeakDistance',6);

plot(year,avSpots,year(locs),pks,'or')
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xlabel('Year')
ylabel('Number')
title('Sunspots')
axis tight

legend('Data','peaks','Location','NorthWest')

cycles = diff(locs);
meanCycle = mean(cycles)

meanCycle = 10.8696

It is well known that solar activity cycles roughly every 11 years. Check by using the Fourier
transform. Remove the mean of the signal to concentrate on its fluctuations. Recall that the sample
rate is measured in years. Use frequencies up to the Nyquist frequency.

Fs = 1;
Nf = 512;

df = Fs/Nf;
f = 0:df:Fs/2-df;

trSpots = fftshift(fft(avSpots-mean(avSpots),Nf));

dBspots = 20*log10(abs(trSpots(Nf/2+1:Nf)));

yaxis = [20 85];
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plot(f,dBspots,1./[meanCycle meanCycle],yaxis)
xlabel('Frequency (year^{-1})')
ylabel('| FFT | (dB)')
axis([0 1/2 yaxis])
text(1/meanCycle + .02,25,['<== 1/' num2str(meanCycle)])

The Fourier transform indeed peaks at the expected frequency, confirming the 11-year conjecture.
You also can find the period by locating the highest peak of the Fourier transform.

[pk,MaxFreq] = findpeaks(dBspots,'NPeaks',1,'SortStr','descend');

Period = 1/f(MaxFreq)

Period = 10.8936

hold on
plot(f(MaxFreq),pk,'or')
hold off
legend('Fourier transform','1/meanCycle','1/Period')
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The two estimates coincide quite well.

See Also
dlmread | findpeaks

Related Examples
• “Peak Analysis” on page 24-60
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Find a Signal in a Measurement
You receive some data and would like to know if it matches a longer stream you have measured.
Cross-correlation allows you to make that determination, even when the data are corrupted by noise.

Load into the workspace a recording of a ring spinning on a tabletop. Crop a one-second fragment
and listen to it.

load('Ring.mat')

Time = 0:1/Fs:(length(y)-1)/Fs; 

m = min(y);
M = max(y);

Full_sig = double(y);

timeA = 7;
timeB = 8;
snip = timeA*Fs:timeB*Fs;

Fragment = Full_sig(snip);

% To hear, type soundsc(Fragment,Fs)

Plot the signal and the fragment. Highlight the fragment endpoints for reference.

plot(Time,Full_sig,[timeA timeB;timeA timeB],[m m;M M],'r--')
xlabel('Time (s)')
ylabel('Clean')
axis tight
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plot(snip/Fs,Fragment)
xlabel('Time (s)')
ylabel('Clean')
title('Fragment')
axis tight
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Compute and plot the cross-correlation of the full signal and the fragment.

[xCorr,lags] = xcorr(Full_sig,Fragment);

plot(lags/Fs,xCorr)
grid
xlabel('Lags (s)')
ylabel('Clean')
axis tight
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The lag at which the cross-correlation is greatest is the time delay between the signals' starting
points. Replot the signal and overlay the fragment.

[~,I] = max(abs(xCorr));
maxt = lags(I);

Trial = NaN(size(Full_sig));
Trial(maxt+1:maxt+length(Fragment)) = Fragment;

plot(Time,Full_sig,Time,Trial)
xlabel('Time (s)')
ylabel('Clean')
axis tight

23 Common Applications

23-40



Repeat the procedure, but add noise separately to signal and fragment. The sound cannot be picked
out from the noise.

NoiseAmp = 0.2*max(abs(Fragment));

Fragment = Fragment+NoiseAmp*randn(size(Fragment));

Full_sig = Full_sig+NoiseAmp*randn(size(Full_sig));

% To hear, type soundsc(Fragment,Fs)

plot(Time,Full_sig,[timeA timeB;timeA timeB],[m m;M M],'r--')
xlabel('Time (s)')
ylabel('Noisy')
axis tight
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The procedure finds the missing fragment despite the high noise level.

[xCorr,lags] = xcorr(Full_sig,Fragment);

plot(lags/Fs,xCorr)
grid
xlabel('Lags (s)')
ylabel('Noisy')
axis tight
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[~,I] = max(abs(xCorr));
maxt = lags(I);

Trial = NaN(size(Full_sig));
Trial(maxt+1:maxt+length(Fragment)) = Fragment;

figure
plot(Time,Full_sig,Time,Trial)
xlabel('Time (s)')
ylabel('Noisy')
axis tight
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See Also
xcorr

Related Examples
• “Measuring Signal Similarities” on page 24-71
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Find Periodicity Using Autocorrelation
Measurement uncertainty and noise sometimes make it difficult to spot oscillatory behavior in a
signal, even if such behavior is expected.

The autocorrelation sequence of a periodic signal has the same cyclic characteristics as the signal
itself. Thus, autocorrelation can help verify the presence of cycles and determine their durations.

Consider a set of temperature data collected by a thermometer inside an office building. The device
takes a reading every half hour for four months. Load the data and plot it. Subtract the mean to
concentrate on temperature fluctuations. Convert the temperature to degrees Celsius. Measure time
in days. The sample rate is thus 2 measurements/hour × 24 hours/day = 48 measurements/day.

load officetemp

tempC = (temp-32)*5/9;

tempnorm = tempC-mean(tempC);

fs = 2*24;
t = (0:length(tempnorm) - 1)/fs;

plot(t,tempnorm)
xlabel('Time (days)')
ylabel('Temperature ( {}^\circC )')
axis tight
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The temperature does seem to oscillate, but the lengths of the cycles cannot be read out easily.

Compute the autocorrelation of the temperature such that it is unity at zero lag. Restrict the positive
and negative lags to three weeks. Note the double periodicity of the signal.

[autocor,lags] = xcorr(tempnorm,3*7*fs,'coeff');

plot(lags/fs,autocor)
xlabel('Lag (days)')
ylabel('Autocorrelation')
axis([-21 21 -0.4 1.1])

Determine the short and long periods by finding the peak locations and determining the average time
differences between them.

To find the long period, restrict findpeaks to look for peaks separated by more than the short period
and with a minimum height of 0.3.

[pksh,lcsh] = findpeaks(autocor);
short = mean(diff(lcsh))/fs

short = 1.0021

[pklg,lclg] = findpeaks(autocor, ...
    'MinPeakDistance',ceil(short)*fs,'MinPeakheight',0.3);
long = mean(diff(lclg))/fs
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long = 6.9896

hold on
pks = plot(lags(lcsh)/fs,pksh,'or', ...
    lags(lclg)/fs,pklg+0.05,'vk');
hold off
legend(pks,[repmat('Period: ',[2 1]) num2str([short;long],0)])
axis([-21 21 -0.4 1.1])

To a very good approximation, the autocorrelation oscillates both daily and weekly. This is to be
expected, since the temperature in the building is higher when people are at work and lower at
nights and on weekends.

See Also
findpeaks | xcorr

Related Examples
• “Find Periodicity Using Frequency Analysis” on page 23-73
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Extract Features of a Clock Signal
How sharply does an on/off signal turn on and off? How often and for how long is it activated?
Determine all those characteristics for the output of a clock.

Load the signal and plot it. The time is measured in seconds and the level in volts.

load('clock.mat')

plot(tclock,clocksig)
xlabel('Time (s)')
ylabel('Level (V)')

Use statelevels to find the lower and upper levels of the signal by means of a histogram. If you do
not specify an output, the function plots the signal, marks the levels, and displays the histogram.

levels = statelevels(clocksig)

levels = 1×2

    0.0138    5.1848

statelevels(clocksig);
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Determine how fast the signal rises at each transition. risetime uses the lower and upper levels
found by statelevels. It defines the rise time as the time it takes the signal to rise from 10% to
90% of the difference between the levels.

[Rise,LoTime,HiTime,LoLev,HiLev] = risetime(clocksig,tclock);

Levels = [LoLev HiLev; (levels(2)-levels(1))*[0.1 0.9]+levels(1)]

Levels = 2×2

    0.5309    4.6677
    0.5309    4.6677

If you call risetime without outputs, the function draws an annotated plot of the signal. The rise
times are shaded, the crossing points are marked, and the levels are displayed. You can use the time
vector or the sample rate as input.

risetime(clocksig,Fs);
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overshoot and undershoot show how far the signal deviates from the state levels at each
transition. The results are expressed as percentages of the difference between the levels. Further
outputs give the actual times and signal values.

overshoot(clocksig,Fs);

[pctgs,values,times] = undershoot(clocksig,Fs);

hold on
text(1.1e-3,2,'     Undershoot','Background','w','Edge','k')
plot([times;1.17e-3],[values;2],'^m','HandleVisibility','off')
hold off
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Determine how fast the signal falls using falltime. You can set the state levels and the percentage
reference levels manually. You can do the same with risetime.

falltime(clocksig,tclock, ...
    'PercentReferenceLevels',[30 80],'StateLevels',[0 5]);
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Find the period of the signal. By default, the period is defined as the time elapsed between
consecutive rising crossings of the reference level halfway between the state levels. You can change
the polarity of the crossings, specify the state levels, or adjust the reference level.

per = pulseperiod(clocksig,tclock)

per = 4×1
10-3 ×

    0.4143
    0.4200
    0.4188
    0.4111

pulseperiod(clocksig,Fs,'Polarity','negative','MidPct',25);

23 Common Applications

23-52



The duty cycle is the ratio of pulse width to pulse period. Determine it directly or using a dedicated
function.

dut = dutycycle(clocksig,Fs);

wdt = pulsewidth(clocksig,Fs);

compare = [wdt./per dut]

compare = 4×2

    0.4862    0.4862
    0.4756    0.4756
    0.4871    0.4871
    0.4886    0.4886

See Also
dutycycle | falltime | overshoot | pulseperiod | pulsewidth | risetime | slewrate |
statelevels | undershoot

Related Examples
• “Measurement of Pulse and Transition Characteristics” on page 24-82
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Find Periodicity in a Categorical Time Series
This example shows how to perform spectral analysis of categorical-valued time-series data. The
spectral analysis of categorical-valued time series is useful when you are interested in cyclic behavior
of data whose values are not inherently numerical. This example reproduces in part the analysis
reported in Stoffer et al. (1988). The data are taken from Stoffer, Tyler, and Wendt (2000).

The data are from a study of sleep states in newborn children. A pediatric neurologist scored an
infant's electroencephalographic (EEG) recording every minute for approximately two hours. The
neurologist categorized the infant's sleep state into one of the following:

• qt - Quiet sleep, trace alternant
• qh - Quiet sleep, high voltage
• tr - Transitional sleep
• al - Active sleep, low voltage
• ah - Active sleep, high voltage
• aw - Awake

Enter the data. The infant was never awake during the EEG recording.

data = {'ah','ah','ah','ah','ah','ah','ah','ah','tr','ah','tr','ah', ...
   'ah','qh','qt','qt','qt','qt','qt','tr','qt','qt','qt','qt','qt', ...
   'qt','qt','qt','qt','qt','tr','al','al','al','al','al','tr','ah', ...
   'al','al','al','al','al','ah','ah','ah','ah','ah','ah','ah','tr', ...
   'tr','ah','ah','ah','ah','tr','tr','tr','qh','qh','qt','qt','qt', ...
   'qt','qt','qt','qt','qt','qt','qt','qt','qt','qt','qt','qt','qt', ...
   'qt','qt','tr','al','al','al','al','al','al','al','al','al','al', ...
   'al','al','al','al','al','al','al','ah','ah','ah','ah','ah','ah', ...
   'ah','ah','ah','tr'};

lend = length(data);
t = 1:lend;

The easiest way to analyze categorical-valued time series data for cyclic patterns involves assigning
numerical values to the categories. There are at least two meaningful ways of assigning values to the
infant's sleep states. First, note that you can order the six states from 1 to 6. This assignment makes
sense along the scale of least active to most active.

Replace the six sleep states with their numerical equivalents and plot the data.

states = ['qt';'qh';'tr';'al';'ah';'aw'];
levelssix = [1 2 3 4 5 6];

for nn = 1:6
    datasix(strcmp(data,states(nn,:))) = levelssix(nn);
end

plot(t,datasix)
axis([0 lend 0 6])
ax = gca;
ax.YTick = [1 2 4 5];
grid
xlabel('Minutes')
ylabel('Sleep State')
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The data exhibit cyclic behavior when you focus on the transitions between the quietest states (1 and
2) and the most active ones (4 and 5). To determine the cycle of that behavior, use spectral analysis.
Recall that the sleep states are assigned in one-minute intervals. Sampling the data in one-minute
intervals is equivalent to sampling the data 60 times per hour.

Fs = 60;
[Pxx,F] = periodogram(detrend(datasix,0),[],240,Fs);

plot(F,Pxx)
grid
xlabel('Cycles/Hour')
title('Periodogram of Sleep States')
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The spectral analysis shows a clear peak indicating a dominant oscillation, or cycle in the data.
Determine the frequency of the peak.

[~,maxidx] = max(Pxx);
Fsix = F(maxidx)

Fsix = 1.2500

The infant's sleep states exhibit cyclic behavior with a frequency of approximately 1.25 cycles/hour.

Instead of assigning the sleep states the values 1 to 6, repeat the analysis focusing only on the
distinction between quiet and active sleep. Assign the quiet states, qt and qh, the value 1. Assign the
transitional state, tr, the value 2. Finally, assign the two active sleep states, al and ah, the value 3.
For completeness, assign the awake state, aw, the value 4, even though the state does not occur in
the data.

states = ['qt';'qh';'tr';'al';'ah';'aw'];
levelsfou = [1 1 2 3 3 4];

for nn = 1:6
    datafou(strcmp(data,states(nn,:))) = levelsfou(nn);
end

plot(t,datafou)
axis([0 lend 0 4])
ax = gca;
ax.YTick = [1 2 3];
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grid
xlabel('Minutes')
ylabel('Sleep State')

With this rule of assignment between the sleep states and the values 1 to 3, the cyclic behavior of the
data is clearer. Repeat the spectral analysis with the new assignment.

[Pxx,F] = periodogram(detrend(datafou,0),[],240,Fs);

plot(F,Pxx)
grid
xlabel('Cycles/Hour')
title('Periodogram of Sleep States')
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[maxval,maxidx] = max(Pxx);
F(maxidx)

ans = 1.2500

The new assignment has not changed the conclusion. The data show a dominant oscillation at 1.25
cycles/hour. Because the mapping between the sleep states and the integers representing those
states was consistent, the analysis and conclusions were not affected. Based on a spectral analysis of
this categorical data, you conclude that the infant's sleep state cycles between quiet and active sleep
approximately once every hour.

References

Stoffer, David S., Mark S. Scher, Gale A. Richardson, Nancy L. Day, and Patricia A. Coble. "A Walsh-
Fourier Analysis of the Effects of Moderate Maternal Alcohol Consumption on Neonatal Sleep-State
Cycling." Journal of the American Statistical Association. Vol. 83, 1988, pp. 954-963.

Stoffer, David S., D. E. Tyler, and D. A. Wendt. "The Spectral Envelope and Its Applications."
Statistical Science. Vol. 15, 2000, pp. 224-253.

See Also
detrend | periodogram
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Compensate for the Delay Introduced by an FIR Filter
Filtering a signal introduces a delay. This means that the output signal is shifted in time with respect
to the input. This example shows you how to counteract this effect.

Finite impulse response filters often delay all frequency components by the same amount. This makes
it easy to correct for the delay by shifting the signal in time.

Take an electrocardiogram reading sampled at 500 Hz for 1 s. Add random noise. Reset the random
number generator for reproducibility.

Fs = 500;
N = 500;
rng default

xn = ecg(N)+0.25*randn([1 N]);
tn = (0:N-1)/Fs;

Remove some of the noise with a filter that stops frequencies above 75 Hz. Use designfilt to
design a filter of order 70.

nfilt = 70;
Fst = 75;

d = designfilt('lowpassfir','FilterOrder',nfilt, ...
               'CutoffFrequency',Fst,'SampleRate',Fs);

Filter the signal and plot it. The result is smoother than the original, but lags behind it.

xf = filter(d,xn);

plot(tn,xn)
hold on, plot(tn,xf,'-r','linewidth',1.5), hold off
title 'Electrocardiogram'
xlabel 'Time (s)', legend('Original Signal','Filtered Signal')
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Use grpdelay to check that the delay caused by the filter equals half the filter order.

grpdelay(d,N,Fs)
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delay = mean(grpdelay(d))

delay = 35

Shift the filtered signal to line up the data. Remove its first delay samples. Remove the last delay
samples of the original and of the time vector.

tt = tn(1:end-delay);
sn = xn(1:end-delay);

sf = xf;
sf(1:delay) = [];

Plot the signals and verify that they are aligned.

plot(tt,sn)
hold on, plot(tt,sf,'-r','linewidth',1.5), hold off
title 'Electrocardiogram'
xlabel('Time (s)'), legend('Original Signal','Filtered Shifted Signal')
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See Also
designfilt | filter | filtfilt | grpdelay

Related Examples
• “Compensate for the Delay Introduced by an IIR Filter” on page 23-63
• “Practical Introduction to Digital Filtering” on page 24-174
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Compensate for the Delay Introduced by an IIR Filter
Filtering a signal introduces a delay. This means that the output signal is shifted in time with respect
to the input.

Infinite impulse response filters delay some frequency components more than others. They effectively
distort the input signal. The function filtfilt compensates for the delays introduced by such
filters, and thus corrects for filter distortion. This "zero-phase filtering" results from filtering the
signal in the forward and backward directions.

Take an electrocardiogram reading sampled at 500 Hz for 1 s. Add random noise.

Fs = 500;
N = 500;

rng default
xn = ecg(N) + 0.2*randn([1 N]);
tn = (0:N-1)/Fs;

Remove some of the noise with a filter that stops frequencies above 75 Hz. Specify a 7th-order IIR
filter with 1 dB of passband ripple and 60 dB of stopband attenuation.

Nf = 7;
Fp = 75;
Ap = 1;
As = 60;

d = designfilt('lowpassiir','FilterOrder',Nf,'PassbandFrequency',Fp, ...
    'PassbandRipple',Ap,'StopbandAttenuation',As,'SampleRate',Fs);

Filter the signal. The filtered signal is cleaner than the original, but lags in time with respect to it. It
is also distorted due to the nonlinear phase of the filter. Zoom in close to the peak.

xfilter = filter(d,xn);

plot(tn,xn,tn,xfilter)

title 'Electrocardiogram'
xlabel 'Time (s)', legend('Original Signal','Filtered Signal')
axis([0.25 0.55 -1 1.5])
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A look at the group delay introduced by the filter shows that the delay is frequency-dependent.

grpdelay(d,N,Fs)
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Filter the signal using filtfilt. The delay and distortion have been effectively removed. Use
filtfilt when it is critical to keep the phase information of a signal intact.

xfiltfilt = filtfilt(d,xn);

plot(tn,xn,tn,xfilter)
hold on
plot(tn,xfiltfilt,'r','linewidth',2)
hold off

title 'Electrocardiogram'
xlabel 'Time (s)'
legend('Original Signal','Filtered Signal', ...
       'Zero-phase filtered with ''filtfilt''')
axis([0.25 0.55 -1 1.5])
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See Also
designfilt | filter | filtfilt | grpdelay

Related Examples
• “Compensate for the Delay Introduced by an FIR Filter” on page 23-59
• “Practical Introduction to Digital Filtering” on page 24-174
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Take Derivatives of a Signal
You want to differentiate a signal without increasing the noise power. MATLAB®'s function diff
amplifies the noise, and the resulting inaccuracy worsens for higher derivatives. To fix this problem,
use a differentiator filter instead.

Analyze the displacement of a building floor during an earthquake. Find the speed and acceleration
as functions of time.

Load the file earthquake. The file contains the following variables:

• drift: Floor displacement, measured in centimeters
• t: Time, measured in seconds
• Fs: Sample rate, equal to 1 kHz

load('earthquake.mat')

Use pwelch to display an estimate of the power spectrum of the signal. Note how most of the signal
energy is contained in frequencies below 100 Hz.

pwelch(drift,[],[],[],Fs)

Use designfilt to design an FIR differentiator of order 50. To include most of the signal energy,
specify a passband frequency of 100 Hz and a stopband frequency of 120 Hz. Inspect the filter with
fvtool.
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Nf = 50; 
Fpass = 100; 
Fstop = 120;

d = designfilt('differentiatorfir','FilterOrder',Nf, ...
    'PassbandFrequency',Fpass,'StopbandFrequency',Fstop, ...
    'SampleRate',Fs);

fvtool(d,'MagnitudeDisplay','zero-phase','Fs',Fs)

Differentiate the drift to find the speed. Divide the derivative by dt, the time interval between
consecutive samples, to set the correct units.

dt = t(2)-t(1);

vdrift = filter(d,drift)/dt;

The filtered signal is delayed. Use grpdelay to determine that the delay is half the filter order.
Compensate for it by discarding samples.

delay = mean(grpdelay(d))

delay = 25

tt = t(1:end-delay);
vd = vdrift;
vd(1:delay) = [];
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The output also includes a transient whose length equals the filter order, or twice the group delay.
delay samples were discarded above. Discard delay more to eliminate the transient.

tt(1:delay) = [];
vd(1:delay) = [];

Plot the drift and the drift speed. Use findpeaks to verify that the maxima and minima of the drift
correspond to the zero crossings of its derivative.

[pkp,lcp] = findpeaks(drift);
zcp = zeros(size(lcp));

[pkm,lcm] = findpeaks(-drift);
zcm = zeros(size(lcm));

subplot(2,1,1)
plot(t,drift,t([lcp lcm]),[pkp -pkm],'or')
xlabel('Time (s)')
ylabel('Displacement (cm)')
grid

subplot(2,1,2)
plot(tt,vd,t([lcp lcm]),[zcp zcm],'or')
xlabel('Time (s)')
ylabel('Speed (cm/s)')
grid
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Differentiate the drift speed to find the acceleration. The lag is twice as long. Discard twice as many
samples to compensate for the delay, and the same number to eliminate the transient. Plot the speed
and acceleration.

adrift = filter(d,vdrift)/dt;

at = t(1:end-2*delay);
ad = adrift;
ad(1:2*delay) = [];

at(1:2*delay) = [];
ad(1:2*delay) = [];

subplot(2,1,1)
plot(tt,vd)
xlabel('Time (s)')
ylabel('Speed (cm/s)')
grid

subplot(2,1,2)
plot(at,ad)
ax = gca;
ax.YLim = 2000*[-1 1];
xlabel('Time (s)')
ylabel('Acceleration (cm/s^2)')
grid
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Compute the acceleration using diff. Add zeros to compensate for the change in array size.
Compare the result to that obtained with the filter. Notice the amount of high-frequency noise.

vdiff = diff([drift;0])/dt;
adiff = diff([vdiff;0])/dt;

subplot(2,1,1)
plot(at,ad)
ax = gca;
ax.YLim = 2000*[-1 1];
xlabel('Time (s)')
ylabel('Acceleration (cm/s^2)')
grid
legend('Filter')
title('Acceleration with Differentiation Filter')

subplot(2,1,2)
plot(t,adiff)
ax = gca;
ax.YLim = 2000*[-1 1];
xlabel('Time (s)')
ylabel('Acceleration (cm/s^2)')
grid
legend('diff')
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See Also
FVTool | designfilt | findpeaks | grpdelay | periodogram

Related Examples
• “Practical Introduction to Digital Filtering” on page 24-174
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Find Periodicity Using Frequency Analysis
It is often difficult to characterize oscillatory behavior in data by looking at time measurements.
Spectral analysis can help determine if a signal is periodic and measure the different cycles.

A thermometer in an office building measures the inside temperature every half hour for four months.
Load the data and plot it. Convert the temperature to degrees Celsius. Measure time in weeks. The
sample rate is thus 2 measurements/hour × 24 hours/day × 7 days/week = 336 measurements/week.

load officetemp

tempC = (temp - 32)*5/9;

fs = 2*24*7;
t = (0:length(tempC) - 1)/fs;

plot(t,tempC)
xlabel('Time (weeks)')
ylabel('Temperature ( {}^\circC )')
axis tight

The temperature does seem to oscillate, but the lengths of the cycles cannot be determined easily.
Look at the signal's frequency content instead.

Subtract the mean to concentrate on temperature fluctuations. Compute and plot the periodogram.
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tempnorm = tempC - mean(tempC);

[pxx,f] = periodogram(tempnorm,[],[],fs);

plot(f,pxx)
ax = gca;
ax.XLim = [0 10];
xlabel('Frequency (cycles/week)')
ylabel('Magnitude')

The temperature clearly has a daily cycle and a weekly cycle. The result is not surprising: the
temperature is higher when people are at work and lower at nights and on weekends.

See Also
findpeaks | periodogram | xcorr

Related Examples
• “Find Periodicity Using Autocorrelation” on page 23-45
• “Practical Introduction to Frequency-Domain Analysis” on page 24-254
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Detect a Distorted Signal in Noise
The presence of noise often makes it difficult to determine the spectral content of a signal. Frequency
analysis can help in such cases.

Consider for example the simulated output of a nonlinear amplifier that introduces third-order
distortion.

The input signal is a 180 Hz unit-amplitude sinusoid sampled at 3.6 kHz. Generate 10000 samples.

N = 1e4;
n = 0:N-1;
fs = 3600;
f0 = 180;
t = n/fs;
y = sin(2*pi*f0*t);

Add unit-variance white noise to the input. Model the amplifier using a third-order polynomial. Pass
the input signal through the amplifier using polyval. Plot a section of the output. For comparison
plot the output of a pure sinusoid.

rng default
noise = randn(size(y));

dispol = [0.5 0.75 1 0];
out = polyval(dispol,y+noise);

ns = 300:500; 

plot(t(ns),[out(ns);polyval(dispol,y(ns))])
xlabel('Time (s)')
ylabel('Signals')
axis tight
legend('With white noise','No white noise')
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Use pwelch to compute and plot the power spectral density of the output.

[pxx,f] = pwelch(out,[],[],[],fs);

pwelch(out,[],[],[],fs)
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Because the amplifier introduces third-order distortion, the output signal is expected to have:

• A DC (zero-frequency) component;
• A fundamental component with the same frequency as the input, 180 Hz;
• Two harmonics -- frequency components at twice and three times the frequency of the input, 360

and 540 Hz.

Verify that the output is as expected for a cubic nonlinearity.

[pks,lox] = findpeaks(pxx,'NPeaks',4,'SortStr','descend');

hold on
plot(f(lox)/1000,10*log10(pks),'or')
hold off

legend('PSD','Frequency Components')
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components = sort([f(lox) f0*(0:3)'])'

components = 2×4

    0.8789  180.1758  360.3516  540.5273
         0  180.0000  360.0000  540.0000

pwelch works by dividing the signal into overlapping segments, computing the periodogram of each
segment, and averaging. By default, the function uses eight segments with 50% overlap. For 10000
samples, this corresponds to 2222 samples per segment.

Dividing the signal into shorter segments results in more averaging. The periodogram is smoother,
but has lower resolution. The higher harmonic cannot be distinguished.

pwelch(out,222,[],[],fs)
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Dividing the signal into longer segments increases the resolution, but also the randomness. The
signal and the harmonics are precisely at the expected locations. However, there is at least one
spurious high-frequency peak with more power than the higher harmonic.

pwelch(out,4444,[],[],fs)
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See Also
findpeaks | pwelch

Related Examples
• “Practical Introduction to Frequency-Domain Analysis” on page 24-254
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Measure the Power of a Signal
The power of a signal is the sum of the absolute squares of its time-domain samples divided by the
signal length, or, equivalently, the square of its RMS level. The function bandpower allows you to
estimate signal power in one step.

Consider a unit chirp embedded in white Gaussian noise and sampled at 1 kHz for 1.2 seconds. The
chirp's frequency increases in one second from an initial value of 100 Hz to 300 Hz. The noise has
variance 0 . 012. Reset the random number generator for reproducible results.

N = 1200;
Fs = 1000;
t = (0:N-1)/Fs;

sigma = 0.01;
rng('default')

s = chirp(t,100,1,300)+sigma*randn(size(t));

Verify that the power estimate given by bandpower is equivalent to the definition.

pRMS = rms(s)^2

pRMS = 0.5003

powbp = bandpower(s,Fs,[0 Fs/2])

powbp = 0.5005

Use the obw function to estimate the width of the frequency band that contains 99% of the power of
the signal, the lower and upper bounds of the band, and the power in the band. The function also
plots the spectrum estimate and annotates the occupied bandwidth.

obw(s,Fs);
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[wd,lo,hi,power] = obw(s,Fs);
powtot = power/0.99

powtot = 0.5003

A nonlinear power amplifier is given a 60 Hz sinusoid as input and outputs a noisy signal with third-
order distortion. The signal is sampled at 3.6 kHz for 2 seconds.

Fs = 3600;
t = 0:1/Fs:2-1/Fs;
x = sin(2*pi*60*t);
y = polyval(ones(1,4),x) + randn(size(x));

Because the amplifier introduces third-order distortion, the output signal is expected to have:

• A fundamental component with the same frequency as the input, 60 Hz.
• Two harmonics — frequency components at twice and three times the frequency of the input, 120

and 180 Hz.

Use the thd function to visualize the spectrum of the signal. Annotate the fundamental and the
harmonics.

thd(y,Fs);
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Use bandpower to determine the power stored in the fundamental and the harmonics. Express each
value as a percentage of the total power and in decibels. Display the values as a table.

pwrTot = bandpower(y,Fs,[0 Fs/2]);

Harmonic = {'Fundamental';'First';'Second'};

Freqs = [60 120 180]';

Power = zeros([3 1]);
for k = 1:3
    Power(k) = bandpower(y,Fs,Freqs(k)+[-10 10]);
end

Percent = Power/pwrTot*100;

inDB = pow2db(Power);

T = table(Freqs,Power,Percent,inDB,'RowNames',Harmonic)

T=3×4 table
                   Freqs     Power     Percent     inDB  
                   _____    _______    _______    _______

    Fundamental      60      1.5777    31.788      1.9804
    First           120     0.13141    2.6476     -8.8137
    Second          180     0.04672    0.9413     -13.305
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See Also
bandpower | pow2db | pwelch | snr

Related Examples
• “Practical Introduction to Frequency-Domain Analysis” on page 24-254
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Compare the Frequency Content of Two Signals
Spectral coherence helps identify similarity between signals in the frequency domain. Large values
indicate frequency components common to the signals.

Load two sound signals into the workspace. They are sampled at 1 kHz. Compute their power spectra
using periodogram and plot them next to each other.

load relatedsig

Fs = FsSig;

[P1,f1] = periodogram(sig1,[],[],Fs,'power');
[P2,f2] = periodogram(sig2,[],[],Fs,'power');

subplot(2,1,1)
plot(f1,P1,'k')
grid
ylabel('P_1')
title('Power Spectrum')

subplot(2,1,2)
plot(f2,P2,'r')
grid
ylabel('P_2')
xlabel('Frequency (Hz)')
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Each signal has three frequency components with significant energy. Two of those components
appear to be shared. Find the corresponding frequencies using findpeaks.

[pk1,lc1] = findpeaks(P1,'SortStr','descend','NPeaks',3);
P1peakFreqs = f1(lc1)

P1peakFreqs = 3×1

  165.0391
   35.1563
   94.7266

[pk2,lc2] = findpeaks(P2,'SortStr','descend','NPeaks',3);
P2peakFreqs = f2(lc2)

P2peakFreqs = 3×1

  165.0391
   35.1563
  134.7656

The common components are located around 165 and 35 Hz. You can use mscohere to find the
matching frequencies directly. Plot the coherence estimate. Find the peaks above a threshold of 0.75.

[Cxy,f] = mscohere(sig1,sig2,[],[],[],Fs);

thresh = 0.75;
[pks,locs] = findpeaks(Cxy,'MinPeakHeight',thresh);
MatchingFreqs = f(locs)

MatchingFreqs = 2×1

   35.1563
  164.0625

figure
plot(f,Cxy)
ax = gca;
grid
xlabel('Frequency (Hz)')
title('Coherence Estimate')
ax.XTick = MatchingFreqs;
ax.YTick = thresh;
axis([0 200 0 1])
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You get the same values as before. You can find the frequency content common to two signals without
studying the two signals separately.

See Also
findpeaks | mscohere | periodogram

Related Examples
• “Practical Introduction to Frequency-Domain Analysis” on page 24-254
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Detect Periodicity in a Signal with Missing Samples
Consider the weight of a person as recorded (in pounds) during the leap year 2012. The person did
not record their weight every day. You would like to study the periodicity of the signal, even though
some data points are missing.

Load the data and convert the measurements to kilograms. Missed readings are set to NaN.
Determine how many points are missing.

load('weight2012.dat')

wgt = weight2012(:,2)/2.20462;

fprintf('Missing %d samples of %d\n',sum(isnan(wgt)),length(wgt))

Missing 27 samples of 366

Determine if the signal is periodic by analyzing it in the frequency domain. The Lomb-Scargle
algorithm is designed to handle data with missing samples or data that have been sampled
irregularly.

Find the cycle durations, measuring time in weeks.

[p,f] = plomb(wgt,7,'normalized');

plot(f,p)
xlabel('Frequency (week^{-1})')
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Notice how the person's weight oscillates weekly. Is there a noticeable pattern from week to week?
Eliminate the last two days of the year to get 52 weeks. Reorder the measurements according to the
day of the week.

wgd = reshape(wgt(1:7*52),[7 52])';

plot(wgd)
xlabel('Week')
ylabel('Weight (kg)')

q = legend(datestr(datenum(2012,1,1:7),'dddd'));
q.Location = 'NorthWest';

Smooth out the fluctuations using a filter that fits low-order polynomials to subsets of the data.
Specifically, set it to fit cubic polynomials to sets of seven days.

wgs = sgolayfilt(wgd,3,7);

plot(wgs)
xlabel('Week')
ylabel('Smoothed weight (kg)')

q = legend(datestr(datenum(2012,1,1:7),'dddd'));
q.Location = 'SouthEast';
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This person tends to eat more, and thus weigh more, during the weekend. Verify by computing the
daily means. Exclude the missing values from the calculation.

for jk = 1:7
    wgm = find(~isnan(wgd(:,jk)));
    fprintf('%3s mean: %5.1f kg\n', ...
        datestr(datenum(2012,1,jk),'ddd')',mean(wgd(wgm,jk)))
end

Sun mean:  76.3 kg
Mon mean:  75.7 kg
Tue mean:  75.2 kg
Wed mean:  74.9 kg
Thu mean:  75.1 kg
Fri mean:  75.3 kg
Sat mean:  75.8 kg

See Also
datestr | plomb | sgolayfilt

Related Examples
• “Signal Smoothing” on page 24-10
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Echo Cancelation
A speech recording includes an echo caused by reflection off a wall. Use autocorrelation to filter it
out.

In the recording, a person says the word MATLAB®. Load the data and the sample rate,
Fs = 7418 Hz.

load mtlb

% To hear, type soundsc(mtlb,Fs)

Model the echo by adding to the recording a copy of the signal delayed by Δ samples and attenuated
by a known factor α: y(n) = x(n) + αx(n− Δ). Specify a time lag of 0.23 s and an attenuation factor of
0.5.

timelag = 0.23;
delta = round(Fs*timelag);
alpha = 0.5;

orig = [mtlb;zeros(delta,1)];
echo = [zeros(delta,1);mtlb]*alpha;

mtEcho = orig + echo;

Plot the original, the echo, and the resulting signal.

t = (0:length(mtEcho)-1)/Fs;

subplot(2,1,1)
plot(t,[orig echo])
legend('Original','Echo')

subplot(2,1,2)
plot(t,mtEcho)
legend('Total')
xlabel('Time (s)')
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% To hear, type soundsc(mtEcho,Fs)

Compute an unbiased estimate of the signal autocorrelation. Select and plot the section that
corresponds to lags greater than zero.

[Rmm,lags] = xcorr(mtEcho,'unbiased');

Rmm = Rmm(lags>0);
lags = lags(lags>0);

figure
plot(lags/Fs,Rmm)
xlabel('Lag (s)')
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The autocorrelation has a sharp peak at the lag at which the echo arrives. Cancel the echo by filtering
the signal through an IIR system whose output, w, obeys w(n) + αw(n− Δ) = y(n).

[~,dl] = findpeaks(Rmm,lags,'MinPeakHeight',0.22);

mtNew = filter(1,[1 zeros(1,dl-1) alpha],mtEcho);

Plot the filtered signal and compare to the original.

subplot(2,1,1)
plot(t,orig)
legend('Original')

subplot(2,1,2)
plot(t,mtNew)
legend('Filtered')
xlabel('Time (s)')
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% To hear, type soundsc(mtNew,Fs)

See Also
Functions
findpeaks | xcorr
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Cross-Correlation with Multichannel Input
Generate three 11-sample exponential sequences given by 0 . 4n, 0 . 7n, and 0 . 999n, with n ≥ 0. Use
stem3 to plot the sequences side by side.

N = 11;
n = (0:N-1)';

a = 0.4;
b = 0.7;
c = 0.999;

xabc = [a.^n b.^n c.^n];

stem3(n,1:3,xabc','filled')
ax = gca;
ax.YTick = 1:3;
view(37.5,30)

Compute the autocorrelations and mutual cross-correlations of the sequences. Output the lags so you
do not have to keep track of them. Normalize the result so the autocorrelations have unit value at
zero lag.

[cr,lgs] = xcorr(xabc,'coeff');

for row = 1:3
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    for col = 1:3
        nm = 3*(row-1)+col;
        subplot(3,3,nm)
        stem(lgs,cr(:,nm),'.')
        title(sprintf('c_{%d%d}',row,col))
        ylim([0 1])
    end
end

Restrict the calculation to lags between −5 and 5.

[cr,lgs] = xcorr(xabc,5,'coeff');

for row = 1:3
    for col = 1:3
        nm = 3*(row-1)+col;
        subplot(3,3,nm)
        stem(lgs,cr(:,nm),'.')
        title(sprintf('c_{%d%d}',row,col))
        ylim([0 1])
    end
end
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Compute unbiased estimates of the autocorrelations and mutual cross-correlations. By default, the
lags run between −(N − 1) and N − 1.

cu = xcorr(xabc,'unbiased');

for row = 1:3
    for col = 1:3
        nm = 3*(row-1)+col;
        subplot(3,3,nm)
        stem(-(N-1):(N-1),cu(:,nm),'.')
        title(sprintf('c_{%d%d}',row,col))
    end
end
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See Also
Functions
xcorr
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Autocorrelation Function of Exponential Sequence
Compute the autocorrelation function of a 28-sample exponential sequence, x = 0 . 95n for n ≥ 0.

a = 0.95;

N = 28;
n = 0:N-1;
lags = -(N-1):(N-1);

x = a.^n;
c = xcorr(x);

Determine c analytically to check the correctness of the result. Use a larger sample rate to simulate a
continuous situation. The autocorrelation function of the sequence x(n) = an for n ≥ 0, with a < 1, is

c(n) = 1 − a2(N − n )

1 − a2 × a n .

fs = 10;
nn = -(N-1):1/fs:(N-1);

dd = (1-a.^(2*(N-abs(nn))))/(1-a^2).*a.^abs(nn);

Plot the sequences on the same figure.

stem(lags,c);
hold on
plot(nn,dd)
xlabel('Lag')
legend('xcorr','Analytic')
hold off
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Repeat the calculation, but now find an unbiased estimate of the autocorrelation. Verify that the
unbiased estimate is given by cu(n) = c(n)/(N − n ).

cu = xcorr(x,'unbiased');

du = dd./(N-abs(nn));

stem(lags,cu);
hold on
plot(nn,du)
xlabel('Lag')
legend('xcorr','Analytic')
hold off
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Repeat the calculation, but now find a biased estimate of the autocorrelation. Verify that the biased
estimate is given by cb(n) = c(n)/N.

cb = xcorr(x,'biased');

db = dd/N;

stem(lags,cb);
hold on
plot(nn,db)
xlabel('Lag')
legend('xcorr','Analytic')
hold off
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Find an estimate of the autocorrelation whose value at zero lag is unity.

cz = xcorr(x,'coeff');

dz = dd/max(dd);

stem(lags,cz);
hold on
plot(nn,dz)
xlabel('Lag')
legend('xcorr','Analytic')
hold off
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See Also
Functions
xcorr
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Cross-Correlation of Two Exponential Sequences
Compute and plot the cross-correlation of two 16-sample exponential sequences, xa = 0 . 84n and
xb = 0 . 92n, with n ≥ 0.

N = 16;
n = 0:N-1;

a = 0.84;
b = 0.92;

xa = a.^n;
xb = b.^n;

r = xcorr(xa,xb);

stem(-(N-1):(N-1),r)

Determine c analytically to check the correctness of the result. Use a larger sample rate to simulate a
continuous situation. The cross-correlation function of the sequences xa(n) = an and xb(n) = bn for
n ≥ 0, with 0 < a, b < 1, is
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cab(n) = 1 − (ab)N − n

1 − ab ×
an, n > 0,
1, n = 0, 

b−n, n < 0.

fs = 10;
nn = -(N-1):1/fs:(N-1);

cn = (1 - (a*b).^(N-abs(nn)))/(1 - a*b) .* ...
     (a.^nn.*(nn>0) + (nn==0) + b.^-(nn).*(nn<0));

Plot the sequences on the same figure.

hold on
plot(nn,cn)

xlabel('Lag')
legend('xcorr','Analytic')

Verify that switching the order of the operands reverses the sequence.

figure

stem(-(N-1):(N-1),xcorr(xb,xa))

hold on
stem(-(N-1):(N-1),fliplr(r),'--*')
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xlabel('Lag')
legend('xcorr(x_b,x_a)','fliplr(xcorr(x_a,x_b))')

Generate the 20-sample exponential sequence xc = 0 . 77n. Compute and plot its cross-correlations
with xa and xb. Output the lags to make the plotting easier. xcorr appends zeros at the end of the
shorter sequence to match the length of the longer one.

xc = 0.77.^(0:20-1);

[xca,la] = xcorr(xa,xc);
[xcb,lb] = xcorr(xb,xc);

figure

subplot(2,1,1)
stem(la,xca)
subplot(2,1,2)
stem(lb,xcb)
xlabel('Lag')
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See Also
Functions
xcorr
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Signal Generation and Visualization
This example shows how to generate widely used periodic and aperiodic waveforms, swept-frequency
sinusoids, and pulse trains using functions available in Signal Processing Toolbox™.

Periodic Waveforms

In addition to the sin and cos functions in MATLAB®, Signal Processing Toolbox™ offers other
functions, such as sawtooth and square, that produce periodic signals.

The sawtooth function generates a sawtooth wave with peaks at ±1 and a period of 2π. An optional
width parameter specifies a fractional multiple of 2π at which the signal's maximum occurs.

The square function generates a square wave with a period of 2π. An optional parameter specifies
duty cycle, the percent of the period for which the signal is positive.

Generate 1.5 seconds of a 50 Hz sawtooth wave with a sample rate of 10 kHz. Repeat the
computation for a square wave.

fs = 10000;
t = 0:1/fs:1.5;
x1 = sawtooth(2*pi*50*t);
x2 = square(2*pi*50*t);

subplot(2,1,1)
plot(t,x1)
axis([0 0.2 -1.2 1.2])
xlabel('Time (sec)')
ylabel('Amplitude') 
title('Sawtooth Periodic Wave')

subplot(2,1,2)
plot(t,x2)
axis([0 0.2 -1.2 1.2])
xlabel('Time (sec)')
ylabel('Amplitude')
title('Square Periodic Wave')
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Aperiodic Waveforms

To generate triangular, rectangular and Gaussian pulses, the toolbox offers the tripuls, rectpuls,
and gauspuls functions.

The tripuls function generates a sampled aperiodic, unit-height triangular pulse centered about t =
0 and with a default width of 1.

The rectpuls function generates a sampled aperiodic, unit-height rectangular pulse centered about
t = 0 and with a default width of 1. The interval of nonzero amplitude is defined to be open on the
right: rectpuls(-0.5) = 1 while rectpuls(0.5) = 0.

Generate 2 seconds of a triangular pulse with a sample rate of 10 kHz and a width of 20 ms. Repeat
the computation for a rectangular pulse.

fs = 10000;
t = -1:1/fs:1;
x1 = tripuls(t,20e-3);
x2 = rectpuls(t,20e-3);

figure
subplot(2,1,1)
plot(t,x1)
axis([-0.1 0.1 -0.2 1.2])
xlabel('Time (sec)')
ylabel('Amplitude')
title('Triangular Aperiodic Pulse')
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subplot(2,1,2)
plot(t,x2)
axis([-0.1 0.1 -0.2 1.2])
xlabel('Time (sec)')
ylabel('Amplitude')
title('Rectangular Aperiodic Pulse')

The gauspuls function generates a Gaussian-modulated sinusoidal pulse with a specified time,
center frequency, and fractional bandwidth.

The sinc function computes the mathematical sinc function for an input vector or matrix. The sinc
function is the continuous inverse Fourier transform of a rectangular pulse of width 2π and unit
height.

Generate a 50 kHz Gaussian RF pulse with 60% bandwidth, sampled at a rate of 1 MHz. Truncate the
pulse where the envelope falls 40 dB below the peak.

tc = gauspuls('cutoff',50e3,0.6,[],-40); 
t1 = -tc : 1e-6 : tc; 
y1 = gauspuls(t1,50e3,0.6);

Generate the sinc function for a linearly spaced vector:

t2 = linspace(-5,5);
y2 = sinc(t2);
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figure
subplot(2,1,1)
plot(t1*1e3,y1)
xlabel('Time (ms)')
ylabel('Amplitude')
title('Gaussian Pulse')

subplot(2,1,2)
plot(t2,y2)
xlabel('Time (sec)')
ylabel('Amplitude')
title('Sinc Function')

Swept-Frequency Waveforms

The toolbox also provides functions to generate swept-frequency waveforms such as the chirp
function. Two optional parameters specify alternative sweep methods and initial phase in degrees.
Below are several examples of using the chirp function to generate linear or quadratic, convex, and
concave quadratic chirps.

Generate a linear chirp.

t = 0:0.001:2;                 % 2 secs @ 1kHz sample rate
ylin = chirp(t,0,1,150);       % Start @ DC, cross 150Hz at t=1sec

Generate a quadratic chirp.
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t = -2:0.001:2;                % +/-2 secs @ 1kHz sample rate
yq = chirp(t,100,1,200,'q');   % Start @ 100Hz, cross 200Hz at t=1sec

Compute and display the spectrograms of the chirps.

figure
subplot(2,1,1)
spectrogram(ylin,256,250,256,1E3,'yaxis')
title('Linear Chirp')

subplot(2,1,2)
spectrogram(yq,128,120,128,1E3,'yaxis')
title('Quadratic Chirp')

Generate a convex quadratic chirp.

t = -1:0.001:1;          % +/-1 second @ 1kHz sample rate
fo = 100;
f1 = 400;                % Start at 100Hz, go up to 400Hz
ycx = chirp(t,fo,1,f1,'q',[],'convex');

Generate a concave quadratic chirp.

t = -1:0.001:1;          % +/-1 second @ 1kHz sample rate
fo = 400;
f1 = 100;                % Start at 400Hz, go down to 100Hz
ycv = chirp(t,fo,1,f1,'q',[],'concave');

Compute and display the spectrograms of the chirps.
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figure
subplot(2,1,1)
spectrogram(ycx,256,255,128,1000,'yaxis')
title('Convex Chirp')

subplot(2,1,2)
spectrogram(ycv,256,255,128,1000,'yaxis')
title('Concave Chirp')

Another function generator is the vco (voltage-controlled oscillator), which generates a signal
oscillating at a frequency determined by the input vector. The input vector can be a triangle, a
rectangle, or a sinusoid, among other possibilities.

Generate 2 seconds of a signal sampled at 10 kHz whose instantaneous frequency is a triangle.
Repeat the computation for a rectangle.

fs = 10000;
t = 0:1/fs:2;
x1 = vco(sawtooth(2*pi*t,0.75),[0.1 0.4]*fs,fs);
x2 = vco(square(2*pi*t),[0.1 0.4]*fs,fs);

Plot the spectrograms of the generated signals.

figure
subplot(2,1,1)
spectrogram(x1,kaiser(256,5),220,512,fs,'yaxis')
title('VCO Triangle')
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subplot(2,1,2)
spectrogram(x2,256,255,256,fs,'yaxis')
title('VCO Rectangle')

Pulse Trains

To generate pulse trains, you can use the pulstran function.

Construct a train of 2 GHz rectangular pulses sampled at a rate of 100 GHz at a spacing of 7.5 ns.

fs = 100E9;                    % sample freq
D = [2.5 10 17.5]' * 1e-9;     % pulse delay times
t = 0 : 1/fs : 2500/fs;        % signal evaluation time
w = 1e-9;                      % width of each pulse
yp = pulstran(t,D,@rectpuls,w);

Generate a periodic Gaussian pulse signal at 10 kHz with 50% bandwidth. The pulse repetition
frequency is 1 kHz, the sample rate is 50 kHz, and the pulse train length is 10 milliseconds. The
repetition amplitude should attenuate by 0.8 each time. Uses a function handle to specify the
generator function.

T = 0 : 1/50e3 : 10e-3;
D = [0 : 1/1e3 : 10e-3 ; 0.8.^(0:10)]';
Y = pulstran(T,D,@gauspuls,10E3,.5);

figure
subplot(2,1,1)

24 Featured Examples

24-8



plot(t*1e9,yp);
axis([0 25 -0.2 1.2])
xlabel('Time (ns)')
ylabel('Amplitude')
title('Rectangular Train')

subplot(2,1,2)
plot(T*1e3,Y)
xlabel('Time (ms)')
ylabel('Amplitude')
title('Gaussian Pulse Train')

See Also
chirp | gauspuls | pulstran | rectpuls | sawtooth | sin | sinc | square | tripuls | vco
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Signal Smoothing
This example shows how to use moving average filters and resampling to isolate the effect of periodic
components of the time of day on hourly temperature readings, as well as remove unwanted line
noise from an open-loop voltage measurement. The example also shows how to smooth the levels of a
clock signal while preserving the edges by using a median filter. The example also shows how to use a
Hampel filter to remove large outliers.

Motivation

Smoothing is how we discover important patterns in our data while leaving out things that are
unimportant (i.e. noise). We use filtering to perform this smoothing. The goal of smoothing is to
produce slow changes in value so that it's easier to see trends in our data.

Sometimes when you examine input data you may wish to smooth the data in order to see a trend in
the signal. In our example we have a set of temperature readings in Celsius taken every hour at
Logan Airport for the entire month of January, 2011.

load bostemp
days = (1:31*24)/24;
plot(days, tempC)
axis tight
ylabel('Temp (\circC)')
xlabel('Time elapsed from Jan 1, 2011 (days)')
title('Logan Airport Dry Bulb Temperature (source: NOAA)')
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Note that we can visually see the effect that the time of day has upon the temperature readings. If
you are only interested in the daily temperature variation over the month, the hourly fluctuations only
contribute noise, which can make the daily variations difficult to discern. To remove the effect of the
time of day, we would now like to smooth our data by using a moving average filter.

A Moving Average Filter

In its simplest form, a moving average filter of length N takes the average of every N consecutive
samples of the waveform.

To apply a moving average filter to each data point, we construct our coefficients of our filter so that
each point is equally weighted and contributes 1/24 to the total average. This gives us the average
temperature over each 24 hour period.

hoursPerDay = 24;
coeff24hMA = ones(1, hoursPerDay)/hoursPerDay;

avg24hTempC = filter(coeff24hMA, 1, tempC);
plot(days,[tempC avg24hTempC])
legend('Hourly Temp','24 Hour Average (delayed)','location','best')
ylabel('Temp (\circC)')
xlabel('Time elapsed from Jan 1, 2011 (days)')
title('Logan Airport Dry Bulb Temperature (source: NOAA)')
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Filter Delay

Note that the filtered output is delayed by about twelve hours. This is due to the fact that our moving
average filter has a delay.

Any symmetric filter of length N will have a delay of (N-1)/2 samples. We can account for this delay
manually.

fDelay = (length(coeff24hMA)-1)/2;
plot(days,tempC, ...
     days-fDelay/24,avg24hTempC)
axis tight
legend('Hourly Temp','24 Hour Average','location','best')
ylabel('Temp (\circC)')
xlabel('Time elapsed from Jan 1, 2011 (days)')
title('Logan Airport Dry Bulb Temperature (source: NOAA)')

Extracting Average Differences

Alternatively, we can also use the moving average filter to obtain a better estimate of how the time of
day affects the overall temperature. To do this, first, subtract the smoothed data from the hourly
temperature measurements. Then, segment the differenced data into days and take the average over
all 31 days in the month.

figure
deltaTempC = tempC - avg24hTempC;
deltaTempC = reshape(deltaTempC, 24, 31).';
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plot(1:24, mean(deltaTempC))
axis tight
title('Mean temperature differential from 24 hour average')
xlabel('Hour of day (since midnight)')
ylabel('Temperature difference (\circC)')

Extracting Peak Envelope

Sometimes we would also like to have a smoothly varying estimate of how the highs and lows of our
temperature signal change daily. To do this we can use the envelope function to connect extreme
highs and lows detected over a subset of the 24 hour period. In this example, we ensure there are at
least 16 hours between each extreme high and extreme low. We can also get a sense of how the highs
and lows are trending by taking the average between the two extremes.

[envHigh, envLow] = envelope(tempC,16,'peak');
envMean = (envHigh+envLow)/2;

plot(days,tempC, ...
     days,envHigh, ...
     days,envMean, ...
     days,envLow)
   
axis tight
legend('Hourly Temp','High','Mean','Low','location','best')
ylabel('Temp (\circC)')
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xlabel('Time elapsed from Jan 1, 2011 (days)')
title('Logan Airport Dry Bulb Temperature (source: NOAA)')

Weighted Moving Average Filters

Other kinds of moving average filters do not weight each sample equally.

Another common filter follows the binomial expansion of 1/2, 1/2 n. This type of filter approximates a
normal curve for large values of n. It is useful for filtering out high frequency noise for small n. To
find the coefficients for the binomial filter, convolve 1/2, 1/2  with itself and then iteratively convolve
the output with 1/2, 1/2  a prescribed number of times. In this example, use five total iterations.

h = [1/2 1/2];
binomialCoeff = conv(h,h);
for n = 1:4
    binomialCoeff = conv(binomialCoeff,h);
end

figure
fDelay = (length(binomialCoeff)-1)/2;
binomialMA = filter(binomialCoeff, 1, tempC);
plot(days,tempC, ...
     days-fDelay/24,binomialMA)
axis tight
legend('Hourly Temp','Binomial Weighted Average','location','best')
ylabel('Temp (\circC)')
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xlabel('Time elapsed from Jan 1, 2011 (days)')
title('Logan Airport Dry Bulb Temperature (source: NOAA)')

Another filter somewhat similar to the Gaussian expansion filter is the exponential moving average
filter. This type of weighted moving average filter is easy to construct and does not require a large
window size.

You adjust an exponentially weighted moving average filter by an alpha parameter between zero and
one. A higher value of alpha will have less smoothing.

alpha = 0.45;
exponentialMA = filter(alpha, [1 alpha-1], tempC);
plot(days,tempC, ...
     days-fDelay/24,binomialMA, ...
     days-1/24,exponentialMA)

axis tight
legend('Hourly Temp', ...
       'Binomial Weighted Average', ...
       'Exponential Weighted Average','location','best')
ylabel('Temp (\circC)')
xlabel('Time elapsed from Jan 1, 2011 (days)')
title('Logan Airport Dry Bulb Temperature (source: NOAA)')
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Zoom in on the readings for one day.

axis([3 4 -5 2])
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Savitzky-Golay Filters

You'll note that by smoothing the data, the extreme values were somewhat clipped.

To track the signal a little more closely, you can use a weighted moving average filter that attempts to
fit a polynomial of a specified order over a specified number of samples in a least-squares sense.

As a convenience, you can use the function sgolayfilt to implement a Savitzky-Golay smoothing
filter. To use sgolayfilt, you specify an odd-length segment of the data and a polynomial order
strictly less than the segment length. The sgolayfilt function internally computes the smoothing
polynomial coefficients, performs delay alignment, and takes care of transient effects at the start and
end of the data record.

cubicMA   = sgolayfilt(tempC, 3, 7);
quarticMA = sgolayfilt(tempC, 4, 7);
quinticMA = sgolayfilt(tempC, 5, 9);
plot(days,[tempC cubicMA quarticMA quinticMA])
legend('Hourly Temp','Cubic-Weighted MA', 'Quartic-Weighted MA', ...
       'Quintic-Weighted MA','location','southeast')
ylabel('Temp (\circC)')
xlabel('Time elapsed from Jan 1, 2011 (days)')
title('Logan Airport Dry Bulb Temperature (source: NOAA)')
axis([3 5 -5 2])
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Resampling

Sometimes it is beneficial to resample a signal in order to properly apply a moving average.

In our next example, we sampled the open-loop voltage across the input of an analog instrument in
the presence of interference from 60 Hz AC power line noise. We sampled the voltage with a 1 kHz
sampling rate.

load openloop60hertz
fs = 1000;
t = (0:numel(openLoopVoltage)-1) / fs;
plot(t,openLoopVoltage)
ylabel('Voltage (V)')
xlabel('Time (s)')
title('Open-loop Voltage Measurement')
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Let's attempt to remove the effect of the line noise by using a moving average filter.

If you construct a uniformly weighted moving average filter, it will remove any component that is
periodic with respect to the duration of the filter.

There are roughly 1000 / 60 = 16.667 samples in a complete cycle of 60 Hz when sampled at 1000
Hz. Let's attempt to "round up" and use a 17-point filter. This will give us maximal filtering at a
fundamental frequency of 1000 Hz / 17 = 58.82 Hz.

plot(t,sgolayfilt(openLoopVoltage,1,17))
ylabel('Voltage (V)')
xlabel('Time (s)')
title('Open-loop Voltage Measurement')
legend('Moving average filter operating at 58.82 Hz', ...
       'Location','southeast')
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Note that while the voltage is significantly smoothed, it still contains a small 60 Hz ripple.

We can significantly reduce the ripple if we resample the signal so that we capture a complete full
cycle of the 60 Hz signal by our moving average filter.

If we resample the signal at 17 * 60 Hz = 1020 Hz, we can use our 17 point moving average filter to
remove the 60 Hz line noise.

fsResamp = 1020;
vResamp = resample(openLoopVoltage, fsResamp, fs);
tResamp = (0:numel(vResamp)-1) / fsResamp;
vAvgResamp = sgolayfilt(vResamp,1,17);
plot(tResamp,vAvgResamp)
ylabel('Voltage (V)')
xlabel('Time (s)')
title('Open-loop Voltage Measurement')
legend('Moving average filter operating at 60 Hz', ...
    'Location','southeast')
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Median Filter

Moving average, weighted moving average, and Savitzky-Golay filters smooth all of the data they
filter. This, however, may not always be what is wanted. For example, what if our data is taken from a
clock signal and has sharp edges that we do not wish to smooth? The filters discussed so far do not
work so well:

load clockex

yMovingAverage = conv(x,ones(5,1)/5,'same');
ySavitzkyGolay = sgolayfilt(x,3,5);
plot(t,x, ...
     t,yMovingAverage, ...
     t,ySavitzkyGolay)

legend('original signal','moving average','Savitzky-Golay')
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The moving average and Savitzky-Golay filters respectively under-correct and over-correct near the
edges of the clock signal.

A simple way to preserve the edges, but still smooth the levels is to use a median filter:

yMedFilt = medfilt1(x,5,'truncate');
plot(t,x, ...
     t,yMedFilt)
legend('original signal','median filter')
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Outlier Removal via Hampel Filter

Many filters are sensitive to outliers. A filter which is closely related to the median filter is the
Hampel filter. This filter helps to remove outliers from a signal without overly smoothing the data.

To see this, load an audio recording of a train whistle and add some artificial noise spikes:

load train
y(1:400:end) = 2.1;
plot(y)
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Since each spike we introduced has a duration of just one sample, we can use a median filter of just
three elements to remove the spikes.

hold on
plot(medfilt1(y,3))
hold off
legend('original signal','filtered signal')
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The filter removed the spikes, but it also removed a large number of data points of the original signal.
A Hampel filter works similar to a median filter, however it replaces just the values which are
equivalent to a few standard deviations away from the local median value.

hampel(y,13)
legend('location','best')
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Only the outliers are removed from the original signal.

Further Reading

For more information on filtering and resampling see the Signal Processing Toolbox.

Reference: Kendall, Maurice G., Alan Stuart, and J. Keith Ord. The Advanced Theory of Statistics, Vol.
3: Design and Analysis, and Time-Series. 4th Ed. London: Macmillan, 1983.

See Also
envelope | hampel | medfilt1 | resample | sgolayfilt
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Reconstructing Missing Data
This example shows how to reconstruct missing data via interpolation, anti-aliasing filtering, and
autoregressive modeling.

Introduction

With the advent of cheap data acquisition hardware, you often have access to signals that are rapidly
sampled at regular intervals. This allows you to gain a fine approximation to the underlying signal.
But what happens when the data you are measuring are coarsely sampled or otherwise missing
significant portions? How do you infer the values of the signals at points in between the samples that
you know?

Linear Interpolation

Linear interpolation is by far the most common method of inferring values between sampled points.
By default, when you plot a vector in MATLAB, you see the points connected by straight lines. You
need to sample a signal at very fine detail in order to approximate the true signal.

In this example, a sinusoid is sampled with both fine and coarse resolution. When plotted on a graph,
the finely sampled sinusoid very closely resembles what the true continuous sinusoid would look like.
Thus, you can use it as a model of the "true signal." In the plot below, the samples of a coarsely
sampled signal are shown as circles connected by straight lines.

tTrueSignal = 0:0.01:20;
xTrueSignal = sin(2*pi*2*tTrueSignal/7);

tSampled = 0:20;
xSampled = sin(2*pi*2*tSampled/7);

plot(tTrueSignal,xTrueSignal,'-', ...
    tSampled,xSampled,'o-')
legend('true signal','samples')
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It is straightforward to recover intermediate samples in the same way that plot performs
interpolation. This can be accomplished with the linear method of the interp1 function.

tResampled = 0:0.1:20;
xLinear = interp1(tSampled,xSampled,tResampled,'linear');
plot(tTrueSignal,xTrueSignal,'-', ...
     tSampled, xSampled, 'o-', ...
     tResampled,xLinear,'.-')
legend('true signal','samples','interp1 (linear)')
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The problem with linear interpolation is that the result is not very smooth. Other interpolation
methods can produce smoother approximations.

Spline Interpolation

Many physical signals are like sinusoids in that they are continuous and have continuous derivatives.
You can reconstruct such signals by using cubic spline interpolation, which ensures that the first and
second derivatives of the interpolated signal are continuous at every data point:

xSpline = interp1(tSampled,xSampled,tResampled,'spline');
plot(tTrueSignal,xTrueSignal,'-', ...
     tSampled, xSampled,'o', ...
     tResampled,xLinear,'.-', ...
     tResampled,xSpline,'.-')
legend('true signal','samples','interp1 (linear)','interp1 (spline)')
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Cubic splines are particularly effective when interpolating signals that consist of sinusoids. However,
there are other techniques that can be used to gain greater fidelity to physical signals which have
continuous derivatives up to a very high order.

Resampling with Antialiasing Filters

The resample function in the Signal Processing Toolbox provides another technique to fill in missing
data. resample can reconstruct sinusoidal components of low frequency with very low distortion.

xResample = resample(xSampled, 10, 1);
tResample = 0.1*((1:numel(xResample))-1);

plot(tTrueSignal,xTrueSignal,'-', ...
     tResampled,xSpline, '.', ...
     tResample, xResample,'.')
legend('true signal','interp1 (spline)','resample')
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Like the other methods, resample has some difficulty reconstructing the endpoints. On the other
hand, the central portion of the reconstructed signal agrees very well with the true signal.

xlim([6 10])
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Resampling with Missing Samples

resample can accommodate nonuniformly sampled signals. The technique works best when the
signal is sampled at a high rate.

In the following example, we create a slowly moving sinusoid, remove a sample, and zoom into the
vicinity of the missing sample.

tTrueSignal = 0:.1:20;
xTrueSignal = sin(2*pi*2*tTrueSignal/15);

Tx = 0:20;

Tmissing = Tx(10);
Tx(10) = [];

x = sin(2*pi*2*Tx/15);
Xmissing = sin(2*pi*2*Tmissing/15);

[y, Ty] = resample(x,Tx,10,'spline');

plot(tTrueSignal, xTrueSignal, '-', ...
     Tmissing,Xmissing,'x ', ...
     Tx,x,'o ', ...
     Ty,y,'. ')
legend('true signal','missing sample','remaining samples','resample with ''spline''')
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ylim([-1.2 1.2])
xlim([6 14])

The reconstructed sinusoid tracks the shape of the true signal reasonably well, with only a slight
error in the vicinity of the missing sample.

However, resample does not work well when there is a large gap in the signal. For example,
consider a dampened sinusoid whose middle portion is missing:

tTrueSignal = (0:199)/199;
xTrueSignal = exp(-0.5*tTrueSignal).*sin(2*pi*5*tTrueSignal);

tMissing = tTrueSignal;
xMissing = xTrueSignal;
tMissing(50:140) = [];
xMissing(50:140) = [];

[y,Ty] = resample(xMissing, tMissing, 200, 'spline');

plot(tTrueSignal,xTrueSignal,'-', ...
     tMissing,xMissing,'o',...
     Ty,y,'.')
legend('true signal','samples','resample with ''spline''')
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Here resample ensures that the reconstructed signal is continuous and has continuous derivatives in
the vicinity of the missing points. However, it cannot adequately reconstruct the missing portion.

Reconstructing Large Gaps

As can be seen above, filtering and cubic interpolation alone might not be sufficient to deal with large
gaps. However, with certain kinds of sampled signals, such as those that arise when observing
oscillating phenomena, you can often infer the values of missing samples based upon the data
immediately preceding or following the gap.

The fillgaps function can replace missing samples (specified by NaN) in an otherwise uniformly
sampled signal by fitting an autoregressive model to the samples surrounding a gap and
extrapolating into the gap from both directions.

tTrueSignal = (0:199)/199;
xTrueSignal = exp(-.5*tTrueSignal).*sin(2*pi*5*tTrueSignal);
gapSignal = xTrueSignal;
gapSignal(50:140) = NaN;
y = fillgaps(gapSignal);

plot(tTrueSignal,xTrueSignal,'-', ...
     tTrueSignal,gapSignal,'o', ...
     tTrueSignal,y,'.')

legend('true signal','samples','reconstructed signal')
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The technique works because autoregressive signals have information that is spread out over many
samples. Only a few samples within any segment are needed to completely reconstruct the full signal.

This type of reconstruction can be adapted to estimate missing samples of more complicated signals.
Consider a sampled audio signal of a plucked guitar string after removing six hundred samples
immediately after the pluck:

[y,fs] = audioread('guitartune.wav');
x = y(1:3500);
x(2000:2600) = NaN;
y2 = fillgaps(x);
plot(1:3500, y(1:3500), '-', ...
     1:3500, x, '.', ...
     1:3500, y2, '-')
legend('original signal','samples','reconstructed signal',...
       'Location','best')
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Reconstructing Gaps with Localized Estimation

It is fairly straightforward to fill data within a gap when it is known that the signal in the vicinity of
the gap can be modeled with a single autoregressive process. You can mitigate problems when a
signal consists of a non-constant autoregressive process by restricting the area over which the model
parameters are computed. This is useful when you are trying to fill a gap within the "ringing" period
of one resonance that comes immediately before or after another, stronger, resonance.

x = y(350001:370000);
x(6000:6950) = NaN;
y2 = fillgaps(x);
y3 = fillgaps(x,1500);
plot(1:20000, y(350001:370000), '-', ...
     1:20000, x, '.', ...
     1:20000, y2, '-', ...
     1:20000, y3, '-')
xlim([2200 10200])
legend('original signal','samples','fillgaps (all)','fillgaps (localized)',...
       'Location','best')
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In the plot above, the waveform is missing a section just before a large resonance. As before,
fillgaps is used to extrapolate into the gap region using all available data. A second call to
fillgaps uses only 1500 samples on either side of the gap to perform the modeling. This mitigates
the effect of the subsequent guitar pluck after sample 7500.

Summary

You have seen several ways to reconstruct missing data from its neighboring sample values using
interpolation, resampling and autoregressive modeling.

Interpolation and resampling work for slowly varying signals. Resampling with antialiasing filters
often does a better job at reconstructing signals that consist of low-frequency components. For
reconstructing large gaps in oscillating signals, autoregressive modeling in the vicinity of the gap can
be particularly effective.

Further reading

For more information on uniform and nonuniform resampling, see

• “Resampling Uniformly Sampled Signals” on page 24-38
• “Resampling Nonuniformly Sampled Signals” on page 24-46

See Also
fillgaps | interp1 | resample
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Resampling Uniformly Sampled Signals
This example shows how to resample a uniformly sampled signal to a new uniform rate. It shows how
to reduce the impact of large transients as well as how to remove unwanted high frequency content.

Rate Conversion by a Rational Factor

The resample function performs rate conversion from one sample rate to another. resample allows
you to upsample by an integral factor, p, and subsequently decimate by another integral factor, q. In
this way you can resample to a rational multiple (p / q) of the original sample rate.

To use the resample function on uniform samples, you must provide both the numerator and
denominator of this rational factor. To determine the integers you need, you can use the rat function.

Here is an example of how to call rat when converting from 48 kHz to 44.1 kHz:

originalFs = 48000;
desiredFs = 44100;

[p,q] = rat(desiredFs / originalFs)

p = 147

q = 160

rat indicates that you can upsample by 147 and decimate by 160. To verify that this produces the
desired rate, multiply p / q by the original sample rate:

originalFs * p / q

ans = 44100

Once you have the ratio between the new and original sample rates, you can call resample.

For example, create a 10 millisecond long 500 Hz sinusoid using the original sample rate of 48 kHz
and convert it to 44.1 kHz:

tEnd = 0.01;
Tx = 0:1/originalFs:tEnd;
f = 500;
x = sin(2*pi*f*Tx);

y = resample(x,p,q);
Ty = (0:numel(y)-1)/desiredFs;

plot(Tx,x,'. ')
hold on
plot(Ty,y,'o ')
hold off
legend('Original','Resampled')
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For well-behaved signals such as the sinusoid above, simply using resample with a carefully chosen
p and q should be enough to reconstruct it properly.

For signals with transients or significant noise, you may wish to have greater control over the poly-
phase anti-aliasing filter in resample.

Filtering Transients

The resample function uses a filter when it performs rate conversion. This filtering is sensitive to
large transients in the signal.

To illustrate this, resample a rectangular pulse:

x = [zeros(1,120) ones(1,241) zeros(1,120)];
y = resample(x,p,q);

plot(Tx,x,'-', Ty,y,'-')
legend('Original','Resampled')
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The function does a good job of reconstructing the flat regions of the pulse. However, there are spikes
at the edges of the pulse.

Zoom in on the edge of the first pulse:

xlim([2e-3 3e-3])
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There is a damped oscillation in the transition region. You can diminish this oscillation by adjusting
the settings of the internal filter.

resample allows you to have control over a Kaiser window applied to the anti-aliasing filter that can
mitigate some of the edge effects.

Two parameters, n and beta, control the relative length of the filter and the amount of smoothing it
attempts to perform. A larger value of n will have a larger filter length. A beta of 0 will have no
additional smoothing. Larger beta values will have larger smoothing. By default, n is 10 and beta is
5.

A practical way to proceed is to start with the default values and adjust as needed. Here, set n to 5
and beta to 20.

n = 5;
beta = 20;

y = resample(x,p,q,n,beta);

plot(Tx,x,'.-')
hold on
plot(Ty,y,'o-')
hold off
legend('Original','Resampled')
xlim([2e-3 3e-3])
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The oscillation is significantly reduced.

Filtering Aliases

The resample function is designed to convert sample rates to either higher or lower rates. As a
consequence, the frequency cutoff of the anti-aliasing filter is set to the Nyquist frequency of the
input or output sample rate (whichever is lower). This default setting allows the resample function
to cover a wide range of applications.

There are times when direct control of the filter may be beneficial.

To illustrate this, construct and view the spectrogram of a chirp signal sampled at 96 kHz. The chirp
signal consists of a sinusoid whose frequency varies quadratically over the entire Nyquist range from
0 Hz to 48 kHz over a duration of eight seconds:

fs1 = 96000;
t1 = 0:1/fs1:8;
x = chirp(t1, 0, 8, fs1/2, 'quadratic');
spectrogram(x,kaiser(256,15),220,412,fs1,'yaxis')
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Next, convert the chirp to 44.1 kHz using the default settings of resample and view the
spectrogram:

fs2 = 44100;

[p,q] = rat(fs2/fs1);
y = resample(x,p,q);

spectrogram(y,kaiser(256,15),220,412,fs2,'yaxis')
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Here you can see the original signal as well as unwanted frequency content. Ideally the sinusoid
should start at 0 Hz and continue until it reaches the Nyquist frequency of 22.05 kHz at 5.422 s.
Instead, there are artifacts introduced due to small discontinuities introduced at the edges of the
default filter used for resampling. To prevent these artifacts, you can provide a longer filter with a
slightly lower cutoff frequency and greater stop-band rejection than the default filter.

To have proper temporal alignment, the filter should have odd length. The length should be a few
times larger than p or q (whichever is larger). Similarly, divide the desired normalized cutoff
frequency by the larger of p or q. In either case, multiply the resulting coefficients by p.

Here is an example of a filter with a cutoff at 98% (0.98) of the output Nyquist frequency with an
order of 256 times the decimation factor, windowed with a Kaiser window with a beta of 12.

normFc = .98 / max(p,q);
order = 256 * max(p,q);
beta = 12;

lpFilt = firls(order, [0 normFc normFc 1],[1 1 0 0]);
lpFilt = lpFilt .* kaiser(order+1,beta)';
lpFilt = lpFilt / sum(lpFilt);

% multiply by p
lpFilt = p * lpFilt;

% resample and plot the response
y = resample(x,p,q,lpFilt);
spectrogram(y,kaiser(256,15),220,412,fs2,'yaxis')
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Note that the aliases are removed.

Further Reading

For more information on resampling see the Signal Processing Toolbox.

Reference: fredric j harris, "Multirate Signal Processing for Communications Systems", Prentice Hall,
2004.

See Also
chirp | firls | resample
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Resampling Nonuniformly Sampled Signals
This example shows how to resample nonuniformly sampled signals to a new uniform rate. It shows
how to apply a custom filter on irregularly sampled data to reduce aliasing. It also shows how to use
detrending to remove transients at the start and at the end of the signal.

Resampling Nonuniformly Sampled Signals to a Desired Rate

The resample function allows you to convert a nonuniformly sampled signal to a new uniform rate.

Create a 500 Hz sinusoid sampled irregularly at about 48 kHz. We simulate the irregularity by adding
random values to the uniform vector.

rng default
nominalFs = 48000;
f = 500;
Tx = 0:1/nominalFs:0.01;
irregTx = sort(Tx + 1e-4*rand(size(Tx)));
x = sin(2*pi*f*irregTx);
plot(irregTx,x,'.')

To resample a nonuniformly sampled signal, you can call resample with a time vector input.

The next example converts our original signal to a uniform 44.1 kHz rate.

desiredFs = 44100;
[y, Ty] = resample(x,irregTx,desiredFs);
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plot(irregTx,x,'.-', Ty,y,'o-')
legend('Original','Resampled')
ylim([-1.2 1.2])

You can see that our resampled signal has the same shape and size as the original signal.

Choosing an Interpolation Method

The conversion algorithm in resample works best when the input samples are as close to regularly
spaced as possible, so it is instructive to observe what may happen when a section of the input
samples is missing from the sampled data.

The next example notches out the second crest of the input sinusoid and apply resampling.

irregTx(105:130) = [];
x = sin(2*pi*f*irregTx);
[y, Ty] = resample(x,irregTx,desiredFs);

plot(irregTx,x,'. ')
hold on
plot(Ty,y,'.-')
hold off
legend('Original','Resampled')
ylim([-1.2 1.2])
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The missing segment is connected by linear interpolation. Linear interpolation is the default method
used by the resample function to resample nonuniformly sampled data.

In some cases where you have missing data or large gaps in your input, you can recover some of the
missing data by choosing a different interpolation method.

For low-noise, low-bandwidth signals, splines can be very effective when used to reconstruct the
original signal. To use a cubic spline during resampling, supply the 'spline' interpolation method:

[y, Ty] = resample(x,irregTx,desiredFs,'spline');

plot(irregTx,x,'. ')
hold on
plot(Ty,y,'.-')
hold off
legend('Original','Resampled using ''spline''')
ylim([-1.2 1.2])
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Controlling the Interpolation Grid

By default, resample constructs an intermediate grid that is a close rational approximation of the
ratio between the desired sample rate and the average sample rate of the signal.

If a section of your input samples contain high-frequency components, you can control the spacing of
the intermediate grid by choosing integer coefficients, p and q, to select this rational ratio.

Examine the step response of an underdampened second order filter that oscillates at a rate of about
3 Hz:

w = 2*pi*3;
d = .1002;
z = sin(d);
a = cos(d); 

t = [0:0.05:2 3:8];

x = 1 - exp(-z*w*t).*cos(w*a*t-d)/a;
plot(t,x,'.-')
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The step response is sampled at a high rate where it is oscillating and at a low rate where it is not.

Now resample the signal at 100 Hz just using the default settings:

Fs = 100;
[y, Ty] = resample(x,t,Fs);
plot(t,x,'. ')
hold on
plot(Ty,y)
hold off
legend('Original','Resampled (default settings)')
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The envelope of the oscillation at the start of the waveform is attenuated and oscillates more slowly
than the original signal.

resample, by default, interpolates to a grid of regularly spaced intervals that correspond to the
average sample rate of the input signal.

avgFs = (numel(t)-1) /(t(end)-t(1))

avgFs = 5.7500

The sample rate of the grid should be higher than twice the largest frequency that you wish to
measure. The sample rate of the grid, 5.75 samples per second, is below the Nyquist sample rate, 6
Hz, of the ringing frequency.

To make the grid have a higher sample rate, you can supply the integer parameters, p and q.
resample adjusts the sample rate of the grid to Q*Fs/P, interpolates the signal, and then applies its
internal sample rate converter (upsampling by P and downsampling by Q) to recover the desired
sample rate, Fs. Use rat to select p and q.

Since the ringing of the oscillation is 3 Hz, specify the grid with a sample rate of 7 Hz, which is a little
higher than the Nyquist rate. The headroom of 1 Hz accounts for additional frequency content due to
the decaying exponential envelope.

Fgrid = 7;
[p,q] = rat(Fs/Fgrid)

p = 100
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q = 7

[y, Ty] = resample(x,t,Fs,p,q);
plot(t,x,'.')
hold on
plot(Ty,y)
hold off
legend('Original','Resampled (custom P and Q)')

Specifying the Anti-Aliasing Filter

In the next example, you can view the output of a digitizer that measures the throttle setting on an
airplane engine. The throttle setting is nonuniformly sampled about a nominal rate of 100 Hz. We will
try to resample this signal at a uniform 10 Hz rate.

Here are the samples of our original signal.

load engineRPM
plot(t,x,'.')
xlabel('Time (s)')
ylabel('RPM')
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Our signal is quantized. Now zoom into the ascending region in the time interval from 20 seconds to
23 seconds:

plot(t,x,'.')
xlim([20 23])
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The signal is slowly varying within this region. This allows you to remove some of the quantization
noise by using the anti-aliasing filter in the resampler.

desiredFs = 10;
[y,ty] = resample(x,t,desiredFs);

plot(t,x,'.')
hold on
plot(ty,y,'.-')
hold off
xlabel('Time')
ylabel('RPM')
legend('Original','Resampled')
xlim([20 23])
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This works reasonably well. However, the resampled signal can be smoothed further by providing
resample a filter with a low cutoff frequency.

First, set the grid spacing to be about our nominal 100 Hz sample rate.

nominalFs = 100;

Next, determine a reasonable p and q to obtain the desired rate. Since the nominal rate is 100 Hz and
our desired rate is 10 Hz, you need to decimate by 10. This is equivalent to setting p to 1 and setting
q to 10.

p = 1;
q = 10;

You can supply resample with your own filter. To have proper temporal alignment, the filter should
be of odd length. The filter length should be a few times larger than p or q (whichever is larger). Set
the cutoff frequency to be 1 / q desired cutoff and then multiply the resulting coefficients by p.

% ensure an odd length filter
n = 10*q+1;

% use .25 of Nyquist range of desired sample rate
cutoffRatio = .25;

% construct lowpass filter 
lpFilt = p * fir1(n, cutoffRatio * 1/q);
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% resample and plot the response
[y,ty] = resample(x,t,desiredFs,p,q,lpFilt);

plot(t,x,'.')
hold on
plot(ty,y)
hold off
xlabel('time')
ylabel('RPM')
legend('Original','Resampled (custom filter)','Location','best')
xlim([20 23])

Removing Endpoint Effects

Now zoom out to view our original signal. Note that there is significant offset at the endpoints.

plot(t,x,'.',ty,y)
xlabel('time')
ylabel('RPM')
legend('original','resampled (custom filter)','Location','best')
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These artifacts arise because resample assumes that the signal is zero outside the borders of the
signal. To reduce the effect of these discontinuities, subtract off a line between the endpoints of the
signal, perform resampling, and then add back the line to the original function. You can do this by
computing the slope and the offset of the line between the first and last sample, and using polyval
to construct the line to subtract.

% compute slope and offset (y = a1 x + a2)
a(1) = (x(end)-x(1)) / (t(end)-t(1));
a(2) = x(1);

% detrend the signal
xdetrend = x - polyval(a,t);
plot(t,xdetrend)
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The detrended signal now has both of its endpoints near zero, which reduces the transients
introduced . Call resample and then add back the trend.

[ydetrend,ty] = resample(xdetrend,t,desiredFs,p,q,lpFilt);

y = ydetrend + polyval(a,ty);

plot(t,x,'.',ty,y)
xlabel('Time')
ylabel('RPM')
legend('Original','Resampled (detrended, custom filter)','Location','best')
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Summary

This example shows how to use resample to convert uniformly and nonuniformly sampled signals to
a fixed rate.

Further Reading

For more information on reconstructing nonuniformly spaced samples with custom splines, you can
consult the Curve Fitting Toolbox™ documentation.

See Also
resample
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Peak Analysis
This example shows how to perform basic peak analysis. It will help you answer questions such as:
How do I find peaks in my signal? How do I measure distance between peaks? How do I measure the
amplitude of peaks of a signal which is affected by a trend? How do I find peaks in a noisy signal?
How do I find local minima?

Finding Maxima or Peaks

The Zurich sunspot relative number measures both the number and size of sunspots. Use the
findpeaks function to find the locations and the value of the peaks.

load sunspot.dat
year = sunspot(:,1); 
relNums = sunspot(:,2);
findpeaks(relNums,year)
xlabel('Year')
ylabel('Sunspot Number')
title('Find All Peaks')

The above plot shows sunspot numbers tabulated over 300 years and labels the detected peaks. The
next section shows how to measure distance between these peaks.

Measuring Distance Between Peaks

Peaks in the signal seem to appear at regular intervals. However, some of the peaks are very close to
each other. The MinPeakProminence property can be used filter out these peaks. Consider peaks
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that drop off on both sides by at least 40 relative sunspot numbers before encountering a larger
value.

findpeaks(relNums,year,'MinPeakProminence',40)
xlabel('Year')
ylabel('Sunspot Number')
title('Find Prominent Peaks')

The following histogram shows the distribution of peak intervals in years:

figure
[pks, locs] = findpeaks(relNums,year,'MinPeakProminence',40);
peakInterval = diff(locs);
hist(peakInterval)
grid on
xlabel('Year Intervals')
ylabel('Frequency of Occurrence')
title('Histogram of Peak Intervals (years)')
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AverageDistance_Peaks = mean(diff(locs))

AverageDistance_Peaks = 10.9600

The distribution shows that majority of peak intervals lie between 10 and 12 years indicating the
signal has a cyclic nature. Also, the average interval of 10.96 years between the peaks matches the
known cyclic sunspot activity of 11 years.

Finding Peaks in Clipped or Saturated Signals

You may want to consider flat peaks as peaks or exclude them. In the latter case, a minimum
excursion which is defined as the amplitude difference between a peak and its immediate neighbors is
specified using the threshold property.

load clippedpeaks.mat

figure

% Show all peaks in the first plot
ax(1) = subplot(2,1,1);
findpeaks(saturatedData)
xlabel('Samples')
ylabel('Amplitude')
title('Detecting Saturated Peaks')

% Specify a minimum excursion in the second plot
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ax(2) = subplot(2,1,2);
findpeaks(saturatedData,'threshold',5)
xlabel('Samples')
ylabel('Amplitude')
title('Filtering Out Saturated Peaks')

% link and zoom in to show the changes
linkaxes(ax(1:2),'xy')
axis(ax,[50 70 0 250])

The first subplot shows, that in case of a flat peak, the rising edge is detected as the peak. The second
subplot shows that specifying a threshold can help to reject flat peaks.

Measuring Amplitudes of Peaks

This example shows peak analysis in an ECG (Electro-cardiogram) signal. ECG is a measure of
electrical activity of the heart over time. The signal is measured by electrodes attached to the skin
and is sensitive to disturbances such as power source interference and noises due to movement
artifacts.

load noisyecg.mat
t = 1:length(noisyECG_withTrend);

figure
plot(t,noisyECG_withTrend)
title('Signal with a Trend')
xlabel('Samples');
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ylabel('Voltage(mV)')
legend('Noisy ECG Signal')
grid on

Detrending Data

The above signal shows a baseline shift and therefore does not represent the true amplitude. In order
to remove the trend, fit a low order polynomial to the signal and use the polynomial to detrend it.

[p,s,mu] = polyfit((1:numel(noisyECG_withTrend))',noisyECG_withTrend,6);
f_y = polyval(p,(1:numel(noisyECG_withTrend))',[],mu);

ECG_data = noisyECG_withTrend - f_y;        % Detrend data

figure
plot(t,ECG_data)
grid on
ax = axis;
axis([ax(1:2) -1.2 1.2])
title('Detrended ECG Signal')
xlabel('Samples')
ylabel('Voltage(mV)')
legend('Detrended ECG Signal')
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After detrending, find the QRS complex, which is the most prominent repeating peak in the ECG
signal. The QRS complex corresponds to the depolarization of the right and left ventricles of the
human heart. It can be used to determine a patient's cardiac rate or predict abnormalities in heart
function. The following figure shows the shape of the QRS complex in an ECG signal.
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Thresholding to Find Peaks of Interest

The QRS complex consists of three major components: Q wave, R wave, S wave. The R waves can be
detected by thresholding peaks above 0.5 mV. Notice that the R waves are separated by more than
200 samples. Use this information to remove unwanted peaks by specifying a 'MinPeakDistance'.

[~,locs_Rwave] = findpeaks(ECG_data,'MinPeakHeight',0.5,...
                                    'MinPeakDistance',200);

For detection of the S-waves, find the local minima in the signal and apply thresholds appropriately.

Finding Local Minima in Signal

Local minima can be detected by finding peaks on an inverted version of the original signal.

ECG_inverted = -ECG_data;
[~,locs_Swave] = findpeaks(ECG_inverted,'MinPeakHeight',0.5,...
                                        'MinPeakDistance',200);

The following plot shows the R waves and S waves detected in the signal.

figure
hold on 
plot(t,ECG_data)
plot(locs_Rwave,ECG_data(locs_Rwave),'rv','MarkerFaceColor','r')
plot(locs_Swave,ECG_data(locs_Swave),'rs','MarkerFaceColor','b')
axis([0 1850 -1.1 1.1])
grid on
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legend('ECG Signal','R waves','S waves')
xlabel('Samples')
ylabel('Voltage(mV)')
title('R wave and S wave in Noisy ECG Signal')

Next, we try and determine the locations of the Q waves. Thresholding the peaks to locate the Q
waves results in detection of unwanted peaks as the Q waves are buried in noise. We filter the signal
first and then find the peaks. Savitzky-Golay filtering is used to remove noise in the signal.

smoothECG = sgolayfilt(ECG_data,7,21);

figure
plot(t,ECG_data,'b',t,smoothECG,'r')
grid on
axis tight
xlabel('Samples')
ylabel('Voltage(mV)')
legend('Noisy ECG Signal','Filtered Signal')
title('Filtering Noisy ECG Signal')
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We perform peak detection on the smooth signal and use logical indexing to find the locations of the
Q waves.

[~,min_locs] = findpeaks(-smoothECG,'MinPeakDistance',40);

% Peaks between -0.2mV and -0.5mV
locs_Qwave = min_locs(smoothECG(min_locs)>-0.5 & smoothECG(min_locs)<-0.2);

figure
hold on
plot(t,smoothECG); 
plot(locs_Qwave,smoothECG(locs_Qwave),'rs','MarkerFaceColor','g')
plot(locs_Rwave,smoothECG(locs_Rwave),'rv','MarkerFaceColor','r')
plot(locs_Swave,smoothECG(locs_Swave),'rs','MarkerFaceColor','b')
grid on
title('Thresholding Peaks in Signal')
xlabel('Samples')
ylabel('Voltage(mV)')
ax = axis;
axis([0 1850 -1.1 1.1])
legend('Smooth ECG signal','Q wave','R wave','S wave')
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The above figure shows that the QRS complex successfully detected in the noisy ECG signal.

Error Between Noisy and Smooth Signal

Notice the average difference between the QRS complex in the raw and the detrended filtered signal.

% Values of the Extrema
[val_Qwave, val_Rwave, val_Swave] = deal(smoothECG(locs_Qwave), smoothECG(locs_Rwave), smoothECG(locs_Swave));

meanError_Qwave = mean((noisyECG_withTrend(locs_Qwave) - val_Qwave))

meanError_Qwave = 0.2771

meanError_Rwave = mean((noisyECG_withTrend(locs_Rwave) - val_Rwave))

meanError_Rwave = 0.3476

meanError_Swave = mean((noisyECG_withTrend(locs_Swave) - val_Swave))

meanError_Swave = 0.1844

This demonstrates that it is essential to detrend a noisy signal for efficient peak analysis.

Peak Properties

Some important peak properties involve rise time, fall time, rise level, and fall level. These properties
are computed for each of the QRS complexes in the ECG signal. The average values for these
properties are displayed on the figure below.
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avg_riseTime = mean(locs_Rwave-locs_Qwave); % Average Rise time
avg_fallTime = mean(locs_Swave-locs_Rwave); % Average Fall time
avg_riseLevel = mean(val_Rwave-val_Qwave);  % Average Rise Level
avg_fallLevel = mean(val_Rwave-val_Swave);  % Average Fall Level

helperPeakAnalysisPlot(t,smoothECG,...
                    locs_Qwave,locs_Rwave,locs_Swave,...
                    val_Qwave,val_Rwave,val_Swave,...
                    avg_riseTime,avg_fallTime,...
                    avg_riseLevel,avg_fallLevel)

See Also
findpeaks
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Measuring Signal Similarities
This example shows how to measure signal similarities. It will help you answer questions such as:
How do I compare signals with different lengths or different sampling rates? How do I find if there is
a signal or just noise in a measurement? Are two signals related? How to measure a delay between
two signals (and how do I align them)? How do I compare the frequency content of two signals?
Similarities can also be found in different sections of a signal to determine if a signal is periodic.

Comparing Signals with Different Sampling Rates

Consider a database of audio signals and a pattern matching application where you need to identify a
song as it is playing. Data is commonly stored at a low sampling rate to occupy less memory.

% Load data
load relatedsig.mat

figure
ax(1) = subplot(3,1,1);
plot((0:numel(T1)-1)/Fs1,T1,'k')
ylabel('Template 1')
grid on
ax(2) = subplot(3,1,2); 
plot((0:numel(T2)-1)/Fs2,T2,'r')
ylabel('Template 2')
grid on
ax(3) = subplot(3,1,3); 
plot((0:numel(S)-1)/Fs,S)
ylabel('Signal')
grid on
xlabel('Time (secs)')
linkaxes(ax(1:3),'x')
axis([0 1.61 -4 4])
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The first and the second subplot show the template signals from the database. The third subplot
shows the signal which we want to search for in our database. Just by looking at the time series, the
signal does not seem to match to any of the two templates. A closer inspection reveals that the
signals actually have different lengths and sampling rates.

[Fs1 Fs2 Fs]

ans = 1×3

        4096        4096        8192

Different lengths prevent you from calculating the difference between two signals but this can easily
be remedied by extracting the common part of signals. Furthermore, it is not always necessary to
equalize lengths. Cross-correlation can be performed between signals with different lengths, but it is
essential to ensure that they have identical sampling rates. The safest way to do this is to resample
the signal with a lower sampling rate. The resample function applies an anti-aliasing(low-pass) FIR
filter to the signal during the resampling process.

[P1,Q1] = rat(Fs/Fs1);          % Rational fraction approximation
[P2,Q2] = rat(Fs/Fs2);          % Rational fraction approximation
T1 = resample(T1,P1,Q1);        % Change sampling rate by rational factor
T2 = resample(T2,P2,Q2);        % Change sampling rate by rational factor
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Finding a Signal in a Measurement

We can now cross-correlate signal S to templates T1 and T2 with the xcorr function to determine if
there is a match.

[C1,lag1] = xcorr(T1,S);        
[C2,lag2] = xcorr(T2,S);        

figure
ax(1) = subplot(2,1,1); 
plot(lag1/Fs,C1,'k')
ylabel('Amplitude')
grid on
title('Cross-correlation between Template 1 and Signal')
ax(2) = subplot(2,1,2); 
plot(lag2/Fs,C2,'r')
ylabel('Amplitude') 
grid on
title('Cross-correlation between Template 2 and Signal')
xlabel('Time(secs)') 
axis(ax(1:2),[-1.5 1.5 -700 700 ])

The first subplot indicates that the signal and template 1 are less correlated while the high peak in
the second subplot indicates that signal is present in the second template.

[~,I] = max(abs(C2));
SampleDiff = lag2(I)
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SampleDiff = 499

timeDiff = SampleDiff/Fs

timeDiff = 0.0609

The peak of the cross correlation implies that the signal is present in template T2 starting after 61
ms. In other words, signal T2 leads signal S by 499 samples as indicated by SampleDiff. This
information can be used to align the signals.

Measuring Delay Between Signals and Aligning Them

Consider a situation where you are collecting data from different sensors, recording vibrations
caused by cars on both sides of a bridge. When you analyze the signals, you may need to align them.
Assume you have 3 sensors working at same sampling rates and they are measuring signals caused
by the same event.

figure,
ax(1) = subplot(3,1,1);
plot(s1)
ylabel('s1')
grid on
ax(2) = subplot(3,1,2); 
plot(s2,'k')
ylabel('s2')
grid on
ax(3) = subplot(3,1,3); 
plot(s3,'r')
ylabel('s3')
grid on
xlabel('Samples')
linkaxes(ax,'xy')
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We can also use the finddelay function to find the delay between two signals.

t21 = finddelay(s1,s2)

t21 = -350

t31 = finddelay(s1,s3)

t31 = 150

t21 indicates that s2 lags s1 by 350 samples, and t31 indicates that s3 leads s1 by 150 samples. This
information can now used to align the 3 signals by time shifting the signals. We can also use the
alignsignals function directly to align the signals which aligns two signals by delaying the earliest
signal.

s1 = alignsignals(s1,s3);
s2 = alignsignals(s2,s3);

figure
ax(1) = subplot(3,1,1);
plot(s1)
grid on 
title('s1')
axis tight
ax(2) = subplot(3,1,2);
plot(s2)
grid on 
title('s2')
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axis tight
ax(3) = subplot(3,1,3); 
plot(s3)
grid on 
title('s3')
axis tight
linkaxes(ax,'xy')

Comparing the Frequency Content of Signals

A power spectrum displays the power present in each frequency. Spectral coherence identifies
frequency-domain correlation between signals. Coherence values tending towards 0 indicate that the
corresponding frequency components are uncorrelated while values tending towards 1 indicate that
the corresponding frequency components are correlated. Consider two signals and their respective
power spectra.

Fs = FsSig;         % Sampling Rate

[P1,f1] = periodogram(sig1,[],[],Fs,'power');
[P2,f2] = periodogram(sig2,[],[],Fs,'power');

figure
t = (0:numel(sig1)-1)/Fs;
subplot(2,2,1)
plot(t,sig1,'k')
ylabel('s1')
grid on
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title('Time Series')
subplot(2,2,3)
plot(t,sig2)
ylabel('s2')
grid on
xlabel('Time (secs)')
subplot(2,2,2)
plot(f1,P1,'k')
ylabel('P1')
grid on
axis tight
title('Power Spectrum')
subplot(2,2,4)
plot(f2,P2)
ylabel('P2')
grid on
axis tight
xlabel('Frequency (Hz)')

The mscohere function calculates the spectral coherence between the two signals. It confirms that
sig1 and sig2 have two correlated components around 35 Hz and 165 Hz. In frequencies where
spectral coherence is high, the relative phase between the correlated components can be estimated
with the cross-spectrum phase.

[Cxy,f] = mscohere(sig1,sig2,[],[],[],Fs);
Pxy     = cpsd(sig1,sig2,[],[],[],Fs);
phase   = -angle(Pxy)/pi*180;
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[pks,locs] = findpeaks(Cxy,'MinPeakHeight',0.75);

figure
subplot(2,1,1)
plot(f,Cxy)
title('Coherence Estimate')
grid on
hgca = gca;
hgca.XTick = f(locs);
hgca.YTick = 0.75;
axis([0 200 0 1])
subplot(2,1,2)
plot(f,phase)
title('Cross-spectrum Phase (deg)')
grid on
hgca = gca;
hgca.XTick = f(locs); 
hgca.YTick = round(phase(locs));
xlabel('Frequency (Hz)')
axis([0 200 -180 180])

The phase lag between the 35 Hz components is close to -90 degrees, and the phase lag between the
165 Hz components is close to -60 degrees.
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Finding Periodicities in a Signal

Consider a set of temperature measurements in an office building during the winter season.
Measurements were taken every 30 minutes for about 16.5 weeks.

% Load Temperature Data
load officetemp.mat  
Fs = 1/(60*30);                 % Sample rate is 1 sample every 30 minutes
days = (0:length(temp)-1)/(Fs*60*60*24); 

figure
plot(days,temp)
title('Temperature Data')
xlabel('Time (days)')
ylabel('Temperature (Fahrenheit)')
grid on

With the temperatures in the low 70s, you need to remove the mean to analyze small fluctuations in
the signal. The xcov function removes the mean of the signal before computing the cross-correlation.
It returns the cross-covariance. Limit the maximum lag to 50% of the signal to get a good estimate of
the cross-covariance.

maxlags = numel(temp)*0.5;
[xc,lag] = xcov(temp,maxlags);         

[~,df] = findpeaks(xc,'MinPeakDistance',5*2*24);
[~,mf] = findpeaks(xc);
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figure
plot(lag/(2*24),xc,'k',...
     lag(df)/(2*24),xc(df),'kv','MarkerFaceColor','r')
grid on
xlim([-15 15])
xlabel('Time (days)')
title('Auto-covariance')

Observe dominant and minor fluctuations in the auto-covariance. Dominant and minor peaks appear
equidistant. To verify if they are, compute and plot the difference between the locations of
subsequent peaks.

cycle1 = diff(df)/(2*24);
cycle2 = diff(mf)/(2*24);

subplot(2,1,1)
plot(cycle1)
ylabel('Days')
grid on
title('Dominant peak distance')
subplot(2,1,2)
plot(cycle2,'r')
ylabel('Days')
grid on
title('Minor peak distance')
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mean(cycle1)

ans = 7

mean(cycle2)

ans = 1

The minor peaks indicate 7 cycles/week and the dominant peaks indicate 1 cycle per week. This
makes sense given that the data comes from a temperature-controlled building on a 7 day calendar.
The first 7-day cycle indicates that there is a weekly cyclic behavior of the building temperature
where temperatures lower during the weekends and go back to normal during the week days. The 1-
day cycle behavior indicates that there is also a daily cyclic behavior - temperatures lower during the
night and increase during the day.

See Also
alignsignals | cpsd | finddelay | findpeaks | mscohere | xcorr | xcov
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Measurement of Pulse and Transition Characteristics
This example shows how to analyze pulses and transitions and compute metrics including rise time,
fall time, slew rate, overshoot, undershoot, pulse width, and duty cycle.

Clock Signal with Noise

First let's view the samples from a noisy clock signal.

load clocksig clock1 time1 Fs
plot(time1, clock1)
xlabel('Time (secs)')
ylabel('Voltage')

Estimate State Levels

Use statelevels with no output argument to visualize the state levels. State levels are estimated
via histogram.

statelevels(clock1)
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ans = 1×2

    0.0138    5.1848

The computed histogram is divided into two equal sized regions between the first and last bin. The
mode of each region of the histogram is returned as an estimated state level value in the command
window.

Use optional input arguments to specify the number of histogram bins, histogram bounds, and the
state level estimation method.

Measure Rise Time, Fall Time and Slew Rate

Use risetime with no output argument to visualize the rise time of positive-going edges.

risetime(clock1,time1)
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ans = 5×1
10-4 ×

    0.5919
    0.8344
    0.7185
    0.8970
    0.6366

The default reference levels for computing rise time and fall time are set at 10% and 90% of the
waveform amplitude.

Specify custom reference and state levels via optional input arguments as shown below for a fall time
measurement.

falltime(clock1,time1,'PercentReferenceLevels',[20 80],'StateLevels',[0 5])
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ans = 4×1
10-4 ×

    0.4294
    0.5727
    0.5032
    0.4762

Obtain measurements programmatically by calling functions with one or more output arguments. For
uniformly sampled data, you can provide a sample rate in place of the time vector. Use slewrate to
measure the slope of each positive-going or negative-going edge.

sr = slewrate(clock1(1:100),Fs)

sr = 7.0840e+04

Analyze Overshoot and Undershoot

Now let's view data from a clock with significant overshoot and undershoot.

load clocksig clock2 time2 Fs
plot(time2, clock2)
xlabel('Time (secs)')
ylabel('Voltage')
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Underdamped clock signals have overshoots. Overshoots are expressed as a percentage of the
difference between state levels. Overshoots can occur just after an edge, at the start of the post-
transition aberration region. These are called postshoot overshoots. You can measure them by using
the overshoot function.

overshoot(clock2(95:270),Fs)

ans = 2×1

    4.9451
    2.5399

legend('Location','NorthEast')
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Overshoots may also occur just before an edge, at the end of the pre-transition aberration region.
These are called preshoot overshoots. Similarly, you can measure undershoots in the pre and post-
aberration regions. Undershoots are also expressed as a percentage of the difference between the
state levels. Use optional input arguments to specify the regions in which to measure aberrations.

undershoot(clock2(95:270),Fs,'Region','Postshoot')

ans = 2×1

    3.8499
    4.9451

legend('Location','NorthEast')
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Measure Pulse Width and Duty Cycle

Use pulsewidth with no output argument to plot highlighted pulse widths.

pulsewidth(clock2, time2, 'Polarity', 'Positive');
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This displays pulses of positive polarity. Select negative polarity to see the widths of negative polarity
pulses.

Use dutycycle to compute the ratio of the pulse width to the pulse period for each positive-polarity
or negative-polarity pulse.

d = dutycycle(clock2,time2,'Polarity','negative')

d = 3×1

    0.4979
    0.5000
    0.5000

Use pulseperiod to obtain the periods of each cycle of the waveform. Use this information to
compute other metrics like the average frequency of the waveform or the total observed jitter.

pp = pulseperiod(clock2, time2);

avgFreq = 1./mean(pp)

avgFreq = 1.2500e+03

totalJitter = std(pp)
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totalJitter = 1.9866e-06

See Also
dutycycle | falltime | overshoot | pulseperiod | pulsewidth | risetime | slewrate |
statelevels | undershoot
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Analyzing Harmonic Distortion
This example shows how to analyze the harmonic distortion of a weakly non-linear system in the
presence of noise.

Introduction

In this example we will explore the output of a simplified model of an amplifier that has noise coupled
to the input signal and exhibits non-linearity. We will explore how attenuation at the input can reduce
harmonic distortion. We will also give an example of how to mathematically correct for the distortion
at the output of the amplifier.

Viewing the Effects of Non-Linearity

A convenient way to view the effect of the non-linearity of the amplifier is to view the periodogram of
its output when stimulated with a sinusoid. The amplitude of the sinusoid is set to the maximum
allowable voltage of the amplifier. (2 Vpk)

In this example we will source a 2 kHz sinusoid for a duration of 50ms.

VmaxPk = 2;       % Maximum operating voltage
Fi = 2000;        % Sinusoidal frequency of 2 kHz
Fs = 44.1e3;      % Sample rate of 44.1kHz
Tstop = 50e-3;    % Duration of sinusoid
t = 0:1/Fs:Tstop; % Input time vector

% Use the maximum allowable voltage of the amplifier
inputVmax = VmaxPk*sin(2*pi*Fi*t);
outputVmax = helperHarmonicDistortionAmplifier(inputVmax);

View a zoomed-in region of the output sinusoid. Note that the imperfections of our amplifier are
difficult to see visually when plotted with respect to time.

plot(t, outputVmax)
xlabel('Time')
ylabel('Output Voltage')
axis([0 5e-3 -2.5 2.5])
title('Amplifier output')
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Now let's view the periodogram of our amplifier output.

helperPlotPeriodogram(outputVmax, Fs, 'power','annotate');
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Note that instead of seeing just the 2 kHz sinusoid that we placed at the input, we see other sinusoids
at 4 kHz, 6 kHz, 8 kHz, and 10 kHz. These sinusoids are multiples of the fundamental 2 kHz
frequency and are due to the non-linearity of the amplifier.

We also see a relatively flat band of noise power.

Quantifying Non-Linear Distortion

Let's examine some common distortion metrics for comparison purposes

Our periodogram shows some very well defined harmonics of the fundamental signal. This suggests
we measure the total harmonic distortion of the input signal which returns the ratio of power of all
harmonic content to the fundamental signal.

thd(outputVmax, Fs)
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ans = -60.3888

Notice that the third and largest harmonic is about 60 dB down from the fundamental. This is where
most of the distortion is occurring.

We can also obtain an estimate of the total noise present in our input. To do this, we call SNR which
returns the ratio of the power of the fundamental to the power of all non-harmonic content.

snr(outputVmax, Fs)
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ans = 130.9300

Another useful metric to compute is SINAD. This computes the ratio of the power to all other
harmonic and noise content in the signal.

sinad(outputVmax, Fs)
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ans = 60.3888

The THD, SNR, and SINAD were -60 dB, 131 dB and 60 dB, respectively. Since the magnitude of THD
is roughly equal to SINAD, we can attribute that most of the distortion is due to harmonic distortion.

If we inspect the periodogram, we can notice that the third harmonic dominates the distortion of the
output.

Input Attenuation to Reduce Harmonic Distortion

Most analog circuitry performing amplification has an inherent trade-off between harmonic distortion
and noise power. In our example, our amplifier has relatively low noise power compared to the
harmonic distortion. This makes it suitable for detecting low power signals. If our input can be
attenuated to enter this low-power region, we can recover some of the harmonic distortion.

Let's repeat the measurements by lowering the input voltage by a factor of two.

inputVhalf = (VmaxPk/2) * sin(2*pi*Fi*t);
outputVhalf = helperHarmonicDistortionAmplifier(inputVhalf);
helperPlotPeriodogram(outputVhalf, Fs, 'power','annotate');
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Let's redo our metrics again, this time measuring the effect of lowering the input voltage.

thdVhalf = thd(outputVhalf, Fs)

thdVhalf = -72.0676

snrVhalf = snr(outputVhalf, Fs)

snrVhalf = 124.8767

sinadVhalf = sinad(outputVhalf, Fs)

sinadVhalf = 72.0676

Notice that simply attenuating the input power level by 6 dB reduces the harmonic content. The
SINAD and THD improved from ~60 dB to ~72 dB. This came at the expense of lowering the SNR
from 131 dB to 125 dB.

SNR THD and SINAD as a Function of Input Attenuation

Can further attenuation improve our overall distortion performance? Let's plot THD, SNR and SINAD
as a function of input attenuation, sweeping the input attenuator from 1 to 30 dB.

% Allocate a table with 30 entries
nReadings = 30;
distortionTable = zeros(nReadings, 3);

% Compute the THD, SNR and SINAD for each of the attenuation settings
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for i = 1:nReadings
  inputVbestAtten = db2mag(-i) * VmaxPk * sin(2*pi*Fi*t);
  outputVbestAtten = helperHarmonicDistortionAmplifier(inputVbestAtten);
  distortionTable(i,:) = [abs(thd(outputVbestAtten, Fs))
                          snr(outputVbestAtten, Fs)
                          sinad(outputVbestAtten, Fs)];
end

% Plot results
plot(distortionTable)
xlabel('Input Attenuation (dB)')
ylabel('Dynamic Range (dB)')
legend('|THD|','SNR','SINAD','Location','best')
title('Distortion Metrics vs. Input Attenuation')

The graph shows the usable dynamic range corresponding to each metric. The magnitude of THD
corresponds to the range that is free of harmonics. Similarly, SNR corresponds to the dynamic range
of that is unaffected by noise; SINAD corresponds to the total dynamic range that is free of distortion.

As can be seen from the graph, SNR degrades as input power attenuation increases. This is because
when you attenuate the signal, only the signal is attenuated, but the noise floor of the amplifier stays
the same.

Also note that the magnitude of the total harmonic distortion improves steadily until it intersects the
SNR curve, after which the measurement becomes unstable. This happens when the harmonics have
"disappeared" beneath the noise of the amplifier.
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A practical choice of amplifier attenuation for the amplifier would be 26 dB (yielding a SINAD of 103
dB). This would be a reasonable tradeoff between harmonic and noise distortion.

% Search the table for the largest SINAD reading
[maxSINAD, iAtten] = max(distortionTable(:,3));
fprintf('Max SINAD (%.1f dB) occurs at %.f dB attenuation\n', ...
  maxSINAD, iAtten)

Max SINAD (103.7 dB) occurs at 26 dB attenuation

Let's plot the periodogram when the attenuator is set to 26 dB.

inputVbestAtten = db2mag(-iAtten) * VmaxPk * sin(2*pi*Fi*t);
outputVbestAtten = helperHarmonicDistortionAmplifier(inputVbestAtten);
helperPlotPeriodogram(outputVbestAtten, Fs, 'power','annotate','shownoise');

Here we have additionally plotted the level of total noise power that is spread across the spectrum.
Note that at this attenuation setting, the second and third harmonic are still visible in the spectrum
but also considerably less than the total noise power. If we were to have an application that uses a
smaller bandwidth of the available spectrum we would benefit from further increasing the
attenuation to reduce the harmonic content.

Post-processing to Remove Distortion

Occasionally we can correct for some of the non-linearity of the amplifier. If the output of the
amplifier is digitized, we can recover more useful dynamic range by digitally post-processing the
captured output and correcting for the non-linearity mathematically.
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In our case, we stimulate the input with a linear ramp and fit a third-order polynomial that best fits
the input.

inputRamp = -2:0.00001:2;
outputRamp = helperHarmonicDistortionAmplifier(inputRamp);
polyCoeff = polyfit(outputRamp,inputRamp,3)

polyCoeff = 1×4

    0.0010   -0.0002    1.0000   -0.0250

Now that we have the coefficients we can then perform post-correction at the output and compare
side-by-side with our original uncorrected output

correctedOutputVmax = polyval(polyCoeff, outputVmax);

helperPlotPeriodogram([outputVmax; correctedOutputVmax],Fs,'power');
subplot(2,1,1)
title('Uncorrected')
subplot(2,1,2)
title('Polynomial Corrected')

Note that the second and third harmonics are significantly reduced when using polynomial
correction.

Let's repeat the measurements again with the corrected output.
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thdCorrectedVmax = thd(correctedOutputVmax, Fs)

thdCorrectedVmax = -99.6194

snrCorrectedVmax = snr(correctedOutputVmax, Fs)

snrCorrectedVmax = 130.7491

sinadCorrectedVmax = sinad(correctedOutputVmax, Fs)

sinadCorrectedVmax = 99.6162

Notice that our SINAD (and THD) dropped from 60 dB down to 99 dB, while preserving our original
SNR of 131 dB.

Combining Techniques

We can combine attenuation with polynomial evaluation to find the ideal operating voltage that
minimizes the overall SINAD of our system.

subplot(1,1,1)
% Add three more columns to our distortion table
distortionTable = [distortionTable zeros(nReadings,3)];
for i = 1:nReadings
  inputVreduced = db2mag(-i) * VmaxPk * sin(2*pi*Fi*t);
  outputVreduced = helperHarmonicDistortionAmplifier(inputVreduced);
  correctedOutput = polyval(polyCoeff, outputVreduced);
  distortionTable(i,4:6) = [abs(thd(correctedOutput, Fs))
                            snr(correctedOutput, Fs)
                            sinad(correctedOutput, Fs)];
end

h = plot(distortionTable)

h = 
  6x1 Line array:

  Line
  Line
  Line
  Line
  Line
  Line

xlabel('Input attenuation (dB)')
ylabel('Dynamic Range (dB)')
for i = 1:3
  h(i+3).Color = h(i).Color;
  h(i+3).LineStyle = '--' ;
end
legend('|THD| (uncorrected)','SNR (uncorrected)','SINAD (uncorrected)', ...
 '|THD| (corrected)','SNR (corrected)','SINAD (corrected)','Location','best')
title('Distortion Metrics vs. Input Attenuation and Polynomial Correction');
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Here, we've plotted all three metrics alongside for both the uncorrected and polynomial corrected
amplifier.

As can be seen from the graph, THD has improved considerably, whereas SNR was not affected by
polynomial correction. This is to be expected since the polynomial correction only affects the
harmonic distortion and not the noise distortion.

Let's show the maximum SINAD possible when corrected by the polynomial

[maxSINADcorrected, iAttenCorr] = max(distortionTable(:,6));
fprintf('Corrected:    Max SINAD (%.1f dB) at %.f dB attenuation\n', ...
  maxSINADcorrected, iAttenCorr)

Corrected:    Max SINAD (109.7 dB) at 17 dB attenuation

A good choice of amplifier attenuation for the polynomial corrected amplifier would be 20dB (yielding
a SINAD of 109.8 dB).

% Recompute amplifier at maximum SINAD attenuation setting with polynomial
inputVreduced = db2mag(-iAttenCorr) * VmaxPk * sin(2*pi*Fi*t);
outputVreduced = helperHarmonicDistortionAmplifier(inputVreduced);
correctedOutputVbestAtten = polyval(polyCoeff, outputVreduced);

helperPlotPeriodogram(correctedOutputVbestAtten, Fs, 'power','annotate','shownoise');
title('Periodogram of attenuated and polynomial corrected amplifier')
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Note that all but the second harmonic disappeared entirely with polynomial correction under the
ideal attenuation setting. As noted before the second harmonic appears just underneath the power
level of the total noisefloor. This provides a reasonable tradeoff in applications which use the full
bandwidth of the amplifier.

Summary

We have shown how polynomial correction can be applied to the output of an amplifier experiencing
distortion and how to pick a reasonable attenuation value to reduce the effects of harmonic
distortion.

See Also
sinad | snr | thd
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Spurious-Free Dynamic Range (SFDR) Measurement
This example shows how to analyze a numerically controlled oscillator (NCO) of a digital down-
converter (DDC) implemented in fixed-point arithmetic. The example measures the spurious free
dynamic range (SFDR) of the NCO, and explore the effects of adding phase dither. The number of
dither bits affects hardware implementation choices. The example shows trade-offs among noise floor
level, spurious effects, and number of dither bits. The DDC in the example, designed to meet the GSM
specification, models the Graychip 4016.

Introduction

Numerically controlled oscillators (NCOs) are an efficient means of generating sinusoidal signals, and
are useful when you require a continuous-phase sinusoidal signal with variable frequency.

A DDC is a key component of digital radios. It translates the high-input sample rates of a digital radio
down to lower sample rates (baseband) for further and easier processing. Our DDC has an input rate
of 69.333 MHz and is tasked with converting the rate down to 270.833 kHz in accordance with GSM
specifications.

The DDC consists of an NCO and a mixer to quadrature down convert the input signal to baseband. A
Cascaded Integrator-Comb (CIC) then low-pass filters the baseband signal, and along with two FIR
decimating filters downsample the signal to achieve the desired low sample rate, which is then ready
for further processing. The final stage, depending on the application, often includes a resampler that
interpolates or decimates the signal to achieve the desired sample rate. Further filtering can be
achieved with the resampler. See the block diagram of a typical DDC, below. Note that Simulink®
handles complex signals, so we don't have to treat the I and Q channels separately.

While this example focuses on the analysis of the NCO, an example titled "Implementing the Filter
Chain of a Digital Down-Converter", focusing on designing the three-stage, multirate, fixed-point filter
chain and HDL code generation is available in the DSP System Toolbox™.
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The Numerically Controlled Oscillator

The digital mixer section of the DDC includes a multiplier and an NCO, which provide channel
selection or tuning for the radio. The mixer is basically a sine-cosine generator, creating complex
values for each sine-cosine pair. The typical NCO has four components: the phase accumulator, the
phase adder, the dither generator, and sine-cosine lookup table.

Here is a typical NCO circuit modeled in Simulink, similar to what you might see in the Graychip data
sheet.

open_system('ddcncomodel')

Based on the input frequency, the NCO's phase accumulator produces values that address a sine-
cosine lookup table. The phase adder specifies a phase offset that modulates the output of the phase
accumulator. The Dither Generator provides phase dithering to reduce amplitude quantization noise,
and improving the SFDR of the NCO. The Sine/Cosine Lookup block produces the actual complex
sinusoidal signal, and the output is stored in the variable nco_nodither.

In the Graychip, the tuning frequency is specified as a normalized value relative to the chip's clock
rate. So for a tuning frequency of F, the normalized frequency is F/Fclk, where Fclk is the chip's clock
rate. The phase offset is specified in radians, ranging from 0 to 2pi. In this example the normalized
tuning frequency is set to 5/24 while the phase offset is set to 0. The tuning frequency is specified as
a 32-bit word and the phase offset is specified as a 16-bit word.

Since the NCO is implemented using fixed-point arithmetic, it experiences undesirable amplitude
quantization effects. These numerical distortions are due to the effects of finite word length. Basically,
sinusoids are quantized creating cumulative, deterministic, and periodic errors in the time domain.
These errors, appear as line spectra or spurs in the frequency domain. The amount of attenuation
from the peak of the signal of interest to the highest spur is the SFDR.

The SFDR of the Graychip is 106 dB, but the GSM specification requires that the SFDR be greater
than 110 dB. There are several ways to improve the SFDR, and you will explore adding phase dither
to the NCO.

The Graychip's NCO contains a phase dither generator which is basically a random integer generator
used to improve the oscillator's output purity. Dithering causes the unintended periodicities of the
quantization noise (which causes "spikes" in spectra and thus poor SFDR) to be spread across a broad
spectrum, effectively reducing these undesired spectral peaks. Conservation of energy applies,
however, so the spreading effectively raises the overall noise floor. That is, the dithering is good for
SFDR, but only up to a point.
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Let's run the NCO model and analyze its output in the MATLAB workspace. This model does not use
dithering.

sim('ddcncomodel')
whos nco*

  Name              Size                  Bytes  Class     Attributes

  nco_nodither      1x1x20545            328720  double    complex   

The plot below displays the real part of the first 128 samples of the NCO's output, stored in the
variable, nco_nodither.

plot(real(squeeze(nco_nodither(1:128))))
grid
title('Real Part of NCO Output - No Dithering')
ylabel('Amplitude')
xlabel('Samples')

SFDR of NCO Output

Let's take a look at the SFDR of the output of the NCO.

Calculate and plot the SFDR of the NCO output

Fs = 69.333e6;
sfdr(real(nco_nodither),Fs);
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As expected, the power spectrum plot shows a peak at 14.44 MHz, which is the NCO's tuning
frequency, 5/24*Fs = 14.444 MHz.

The SFDR, however, is about 106.17 dB, which is too high to meet the GSM specification, which
requires 110 dB or more. We can improve this dynamic range by use of phase dithering.

Exploring the Effects of Dithering

To explore adding dither to the NCO, the NCO circuit shown above has been encapsulated in a
subsystem and duplicated three times. A different amount of dither was selected for each NCO.
Although the NCO allows a range of 1 to 19 bits of dither to be specified, you will try just few values.
Running this model will produce three different NCO outputs based on the amount of dither added.

open_system('ddcncowithdithermodel')
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Running the simulation will produce three signals in the MATLAB workspace that you can then
analyze using the spectral analysis algorithm defined above. You can run the simulation from the
model or from the command line using the sim command.

sim('ddcncowithdithermodel')

After the simulation completes you are left with the signals that are the NCOs' output. Each signal
shows a different amount of dithering.

whos nco*

  Name              Size                  Bytes  Class     Attributes

  nco_dither3       1x1x20501            328016  double    complex   
  nco_dither5       1x1x20501            328016  double    complex   
  nco_dither7       1x1x20501            328016  double    complex   
  nco_nodither      1x1x20545            328720  double    complex   

Compute and plot the SFDR after adding 3 bits of dithering.

figure
sfdr(real(nco_dither3),Fs)

ans =

  107.6285
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With three bits of dither added, the highest spur is now about -112 dB. The SFDR is 107.63 dB. It still
fails to meet the GSM specification.

Now add 5 bits of dithering.

figure
sfdr(real(nco_dither5),Fs)

ans =

  123.4065
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With five bits of dither added, the highest spur is now about -127 dB.

The SFDR is 123.41 dB, exceeding the GSM specification.

It appears that more dither gives better results, so add 7 bits of dithering.

figure
sfdr(real(nco_dither7),Fs)

ans =

  113.7189
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Note that our computed SFDR degraded to 113.72 dB. This is due to the broadband noise generated
by dithering starting to overtake the power of the spurious content.

Using 7 bits of dithering meets the GSM specification, but is not as effective as using 5 bits of
dithering.

Comparing Results

Tabulate the SFDR for each NCO output against the amounts of dithering for each NCO output.

Number of     Spur Free Dynamic
Dither bits   Range(dB)

   0            106.17

   3            107.63

   5            123.41

   7            113.72

Summary

This example analyzed the output of an NCO used in a digital down converter for a GSM application.
Spectral analysis was used to measure the SFDR, the difference between the highest spur and the
peak of the signal of interest. Spurs are deterministic, periodic errors that result from quantization
effects. The example also explored the effects of adding dither in the NCO, which adds random data
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to the NCO to improve its purity. We found that using five bits of dithering achieved the highest
SFDR.

See Also
sfdr
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Extracting Classification Features from Physiological Signals
This example shows how to use the functions midcross and dtw to extract features from gait signal
data. Gait signals are used to study the walking patterns of patients with neurodegenerative disease.
The time between strides has been reported to differ between healthy and sick individuals. midcross
offers a convenient way to calculate these times. People also change their walking speed over time.
dtw provides a convenient way to quantitatively compare the shape of gait signals by warping to
align them in time. This example uses midcross to locate each step in a gait signal and dtw to
compute distances between gait signal segments. These results are examined as potential features
for signal classification. While this example is specific to gait signals, other physiological signals, such
as electrocardiogram (ECG) or photoplethysmogram (PPG), can also be analyzed using these
functions.

Measure Inter-Stride Time Intervals

The dataset being analyzed contains force data collected during walking for patients with
Amyotrophic Lateral Sclerosis (ALS) and a control group. ALS is a disease made famous by Lou
Gehrig, Stephen Hawking, and the 2014 'Ice Bucket Challenge'.

Load and plot the first 30 seconds of gait signal data for one patient.

helperGaitPlot('als1m');
xlim([0 30])

This dataset represents the force exerted by a foot on a force sensitive resistor. The force is measured
in millivolts. Each record is one minute in length and contains separate channels for the left and right
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foot of a subject. Each step in the dataset is characterized by a sharp change in force as the foot
impacts and leaves the ground. Use midcross to find these sharp changes for an ALS patient.

Use midcross to find and plot the location of each crossing for the left foot of an ALS patient. Chose
a tolerance of 25% to ensure that every crossing is detected.

Fs = 300;
gaitSignal = helperGaitImport('als1m');
midcross(gaitSignal(1,:),Fs,'tolerance',25);
xlim([0 30])
xlabel('Sample Number')
ylabel('mV')

midcross correctly identifies the crossings. Now use it to calculate the inter-stride times for a group
of ten patients. Five patients are control subjects, and five patients have ALS. Use the left foot record
for each patient and exclude the first eight crossings to remove transients.

pnames = helperGaitImport();
for i = 1:10
  gaitSignal = helperGaitImport(pnames{i});
  IND2 = midcross(gaitSignal(1,:),Fs,'Tolerance',25);
  IST{i} = diff(IND2(9:2:end));   
  varIST(i) = var(IST{i});
end

Plot the inter-stride times.
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figure
hold on
for i = 1:5
  plot(1:length(IST{i}),IST{i},'.-r')
  plot(1:length(IST{i+5}),IST{i+5},'.-b')
end
xlabel('Stride Number')
ylabel('Time Between Strides (sec)')
legend('ALS','Control')

The variance of the inter-stride times is higher overall for the ALS patients.

Measure Similarity of Walking Patterns

Having quantified the distance between steps, proceed to analyze the shape of the gait signal data
independent of these inter-step variations. Compare two segments of the signal using dtw. Ideally,
one would compare the shape of the gait signal over time as treatment or disease progresses. Here,
we compare two segments of the same record, one segment taken early in the recording
(sigsInitialLeft), and the second towards the end (sigsFinalLeft). Each segment contains six
steps.

Load the gait signal data segments.

load PNGaitSegments.mat
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The patient does not walk at the same rate throughout the record. dtw provides a measure of the
distance between segments by warping them to align them in time. Compare the two segments using
dtw.

figure
dtw(sigsInitialLeft{1},sigsFinalLeft{1});
legend('Early segment','Later segment','location','southeast')

The two segments are aligned in time. Although the step rate of the patient appears to change over
time, as can be seen in the offset of the original signals, dtw matches the two segments by allowing
samples of either segment to repeat. The distance via dtw, along with the variance of the inter-stride
times, will be explored as features for a gait signal classifier.

Construct a Feature Vector to Classify Signals

Suppose you are building a classifier to decide whether or not a patient is healthy based on a gait
signals. Investigate the variance of inter-stride times, feature1, and the distance via dtw between
initial and final signal segments, feature2, as classification features.

Feature 1 was previously computed using midcross.

feature1 = varIST;

Extract Feature 2 for the ALS patients and the control group.

feature2 = zeros(10,1);
for i = 1:length(sigsInitialLeft)
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  feature2(i) = dtw(sigsInitialLeft{i},sigsFinalLeft{i});
end

Plot the features for ALS subjects and control subjects.

figure
plot(feature1(1:5),feature2(1:5),'r*',...
    feature1(6:10),feature2(6:10),'b+',...
    'MarkerSize',10,'LineWidth',1)
xlabel('Variance of Inter-Stride Times')
ylabel('Distance Between Segments')
legend('ALS','Control')

ALS patients seem to have a larger variance in their inter-stride times, but a smaller distance via dtw
between segments. These features compliment each other and can be explored for use in a classifier
such as a Neural Network or Support Vector Machine.

Conclusions

midcross and dtw provide a convenient way to compare gait signals and other physiological data
which repeat irregularly over time due to different rates of motion or activity. In this example, step
times were located using midcross and segment distances were computed using dtw. These were
complimentary measures, as dtw removed any time variation that midcross distances would
measure. As features, these two metrics showed separation between control and ALS patients for this
dataset. midcross and dtw could likewise be used to examine other physiological signals whose
shape varies as a function of activity.
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See Also
dtw | midcross
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Detecting Outbreaks and Significant Changes in Signals
This example shows how to determine changes or breakouts in signals via cumulative sums and
changepoint detection.

Detecting Outbreaks via Cumulative Sums

There are many practical applications where you are monitoring data and you want to be alerted as
quickly as possible when the underlying process has changed. A very popular technique to achieve
this is by means of a cumulative sum (CUSUM) control chart.

To illustrate how CUSUM works, first examine the total reported cases of the 2014 West African
Ebola outbreak.

Source: Centers for Disease Control and Prevention

load WestAfricanEbolaOutbreak2014
plot(WHOreportdate, [TotalCasesGuinea TotalCasesLiberia TotalCasesSierraLeone],'.-')
legend('Guinea','Liberia','Sierra Leone');
title('Total suspected, probable and confirmed cases of Ebola virus disease');

If you look at the leading edge of the first outbreak in Guinea, you can see that the first hundred
cases were reported around March 25, 2014, and increase significantly after that date. What is
interesting to note is that while Liberia also had a few suspected cases in March, the number of cases
stayed relatively in control until about thirty days later.
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To get a sense of the incoming rate of new patients, plot the relative day-to-day changes in the total
number of cases, beginning at the onset on March 25, 2015.

daysSinceOutbreak = datetime(2014, 3, 24+(0:400));
cases = interp1(WHOreportdate, TotalCasesLiberia, daysSinceOutbreak);
dayOverDayCases = diff(cases);

plot(dayOverDayCases)
title('Rate of new cases (per diem) in Liberia since March 25, 2014');
ylabel('Change in number of reported cases per diem');
xlabel('Number of days since outbreak began');

If you zoom in on the first hundred days of data, you can see that while there was an initial influx of
cases, many of them were ruled out after day 30, where rate of changes dropped below zero
temporarily. You also see a significant upward trend between days 95 and 100, where a rate of seven
new cases per day was reached.

xlim([1 101])
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Performing a CUSUM test on the input data can be a quick way to determine when an outbreak
occurs. CUSUM keeps track of two cumulative sums: an upper sum that detects when the local mean
shifts upward, and a lower sum that detects when the mean shifts downward. The integration
technique provides CUSUM the ability to ignore a large (transient) spike in the incoming rate but still
have sensitivity to steadier small changes in rate.

Calling CUSUM with default arguments will inspect the data of the first twenty-five samples and
alarm when it encounters a shift in mean more than five standard deviations from within the initial
data.

cusum(dayOverDayCases(1:101))
legend('Upper sum','Lower sum')
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Note that CUSUM caught the false reported cases at day 30 (at day 33) and picked up the initial
onset of the outbreak starting at day 80 (at day 90). If you compare these results carefully against the
previous plot, you can see that CUSUM was able to ignore the spurious uptick at day 29 but still
trigger an alarm five days before the large upward trend starting on day 95.

If you adjust CUSUM so that it has a target mean of zero cases/day with a target of plus or minus
three cases/day, you can ignore the false alarm at day 30 and pick up the outbreak at day 92:

climit = 5;
mshift = 1;
tmean = 0;
tdev = 3;
cusum(dayOverDayCases(1:100),climit,mshift,tmean,tdev)
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Finding a Significant Change in Variance

Another method of detecting abrupt changes in statistics is through changepoint detection, which
partitions a signal into adjacent segments where a statistic (e.g. mean, variance, slope, etc.) is
constant within each segment.

The next example analyzes the yearly minimal water level of the Nile river for the years 622 to 1281
AD measured at the Roda gauge near Cairo.

load nilometer
years = 622:1284;
plot(years,nileriverminima)
title('Yearly Minimum level of Nile River')
xlabel('Year')
ylabel('Level (m)')
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Construction began on a newer more accurate measuring device around 715 AD. Not much is known
before this time, but on further examination, you can see that there is considerably less variability
after around 722. To find the period of time when the new device became operational, you can search
for the best change in the root-mean-square water level after performing element-wise differentiation
to remove any slowly varying trends.

i = findchangepts(diff(nileriverminima),'Statistic','rms');

ax = gca;
xp = [years(i) ax.XLim([2 2]) years(i)];
yp = ax.YLim([1 1 2 2]);
patch(datenum(xp),yp,[.5 .5 .5],'facealpha',0.1);
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While sample-wise differentiation is a simple method to remove trends, there are other more
sophisticated methods to examine variance over larger scales. For an example of how to perform
changepoint detection via wavelets using this dataset, see “Wavelet Changepoint Detection” (Wavelet
Toolbox).

Detecting Multiple Changes in an Input Signal

The next example is concerned with a 45 second simulation of a CR-CR 4-speed transmission block,
sampled at 1 ms intervals. The simulation data of the car engine RPM and torque are shown below.

load simcarsig

subplot(2,1,2);
plot(carTorqueNM);
xlabel('Samples');
ylabel('Torque (N m)');
title('Torque');

subplot(2,1,1);
plot(carEngineRPM);
xlabel('Samples');
ylabel('Speed (RPM)');
title('Engine Speed');

 Detecting Outbreaks and Significant Changes in Signals

24-125



Here the car accelerates, changes gears three times, switches to neutral, and then applies the brake.

Since the engine speed can be naturally modeled as a series of linear segments, you can use
findchangepts to find the samples where the car changes gears.

figure
findchangepts(carEngineRPM,'Statistic','linear','MaxNumChanges',4)
xlabel('Samples');
ylabel('Engine speed (RPM)');
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Here you can see four changes (between five linear segments) and that they occurred around the
10,000, 20,000, 30,000, and 40,000 sample mark. Zoom into the idle portion of the waveform:

xlim([18000 22000])
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Note that the straight-line fit closely tracks the input waveform, however it can be improved.

Observing Changes of a Multi-Stage Event Shared Between Signals

To see the improvement, increase the number of changepoints to 20, and observe the changes within
the vicinity of the gear change at sample number 19000

findchangepts(carEngineRPM,'Statistic','linear','MaxNumChanges',20)
xlim([18000 22000])

24 Featured Examples

24-128



Observe that the engine speed started decreasing at sample 19035 and took 510 samples before it
settled at sample 19550. Since the sampling interval is 1 ms, this is a ~0.51 s delay and is a typical
amount of time after changing gears.

Now look at the changepoints of engine torque within the same region:

findchangepts(carTorqueNM,'Statistic','Linear','MaxNumChanges',20)
xlim([19000 20000])
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Observe that the engine torque was fully delivered to the axle at sample 19605, 55 milliseconds after
the engine speed finished settling. This time is related to the delay between the intake stroke of the
engine and torque production.

To find when the clutch became engaged you can zoom further into the signal.

xlim([19000 19050])
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The clutch was depressed at sample 19011 and took about 30 samples (milliseconds) to become
completely disengaged.

See Also
cusum | findchangepts | interp1
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Finding a Signal in Data
This example shows how to use findsignal to find a time-varying signal in your data. It includes
examples of how to find exact and closely matching signals by using a distance metric, how to
compensate for a slowly varying offset, and the use of dynamic time-warping to allow for variations in
sampling.

Finding Exact Matches

When you wish to find numerically exact matches of a signal, you can use strfind to perform the
matching.

For example, if we have a vector of data:

data = [1 4 3 2 55 2 3 1 5 2 55 2 3 1 6 4 2 55 2 3 1 6 4 2];

and we want to find the location of the signal:

signal = [55 2 3 1];

we can use strfind to find the starting indices of where the signal exists in the data so long as the
signal and data are numerically exact.

iStart = strfind(data,signal)

iStart = 1×3

     5    11    18

Finding the Closest Matching Signal

strfind works well for numerically exact matches. However, this approach fails when there may be
errors due to quantization noise or other artifacts in your signal.

For example, if you have a sinusoid:

data = sin(2*pi*(0:25)/16);

and you want to find the location of the signal:

signal = cos(2*pi*(0:10)/16);

strfind is unable to locate the sinusoid in the data which starts at the fifth sample:

iStart = strfind(data,signal)

iStart =

     []

strfind cannot find the signal in the data because, due to round-off error, not all values are
numerically equal. To see this, subtract the data from the signal in the matching region.

data(5:15) - signal

ans = 1×11
10-15 ×
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         0         0         0    0.0555    0.0612    0.0555         0    0.2220         0    0.2220         0

There are numerical differences on the order of 1e-15.

To remedy this, you can use findsignal, which by default sweeps the signal across the data and
computes the sum of the squared differences between the signal and data locally at each location,
looking for the lowest sum.

To produce a plot of the signal and data where the best matching location is highlighted, you can call
findsignal as follows:

findsignal(data,signal)

Finding the Closest Matches under a Threshold

By default findsignal always returns the closest match of the signal with the data. To return
multiple matches, you can specify a bound on the maximum sum squared difference.

data = sin(2*pi*(0:100)/16);
signal = cos(2*pi*(0:10)/16);
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findsignal(data,signal,'MaxDistance',1e-14)

findsignal returns matches in sorted order of closeness

[iStart, iStop, distance] = findsignal(data,signal,'MaxDistance',1e-14);
fprintf('iStart iStop  total squared distance\n')

iStart iStop  total squared distance

fprintf('%4i %5i     %.7g\n',[iStart; iStop; distance])

  37    47     0
  69    79     0
  85    95     0
   5    15     1.776357e-15
  21    31     1.776357e-15
  53    63     1.776357e-15

Searching for a Complex Signal Trajectory with a Varying Offset

This next example shows how to use findsignal to find a signal that traces a known trajectory. The
file "cursiveex.mat" contains a recording of the x- and y- position of the tip of a pen as it traced out
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the word "phosphorescence" on a piece of paper. The x,y data is encoded as the real and imaginary
components of a complex signal, respectively.

load cursiveex
plot(data)
xlabel('real')
ylabel('imag')

The same writer traced out a letter "p" as a template signal.

plot(signal)
title('signal')
xlabel('real')
ylabel('imag')
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You can find the first "p" in the data fairly easily using findsignal. This is because values of the
signal line up fairly well at the beginning of the data.

findsignal(data,signal)
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However, the second "p" has two characteristics that make it difficult for findsignal to identify: It
has a significant but constant offset from the first letter, and parts of the letter were drawn at a
different rate of speed than the template signal.

If you are interested in just matching the overall shape of the letter, you can subtract off a windowed
local mean from both the signal and data element. This allows you to mitigate the effect of constant
shifts.

To mitigate the effect of the varying speeds at which the letters are drawn, you can use dynamic time
warping, which will stretch either the signal or data to a common time base as it performs the search:

findsignal(data,signal,'TimeAlignment','dtw', ...
               'Normalization','center', ...
               'NormalizationLength',600, ...
               'MaxNumSegments',2)
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Finding Time-Stretched Power Signals

This next example shows how to use findsignal to find the location of a spoken word in a phrase.

The following file contains an audio recording of the phrase: "Accelerating the pace of engineering
and science" and a separate audio recording of "engineering" spoken by the same speaker.

load slogan
soundsc(phrase,fs)
soundsc(hotword,fs)

It is common for the same speaker to vary the pronunciation of individual spoken words in a sentence
or phrase. The speaker in this example pronounced "engineering" in two different ways: The speaker
took roughly 0.5 seconds to pronounce the word in the phrase, stressing the second syllable ("en-
GIN-eer-ing"); the same speaker took 0.75 seconds to pronounce the word in isolation, stressing the
third syllable ("en-gin-EER-ing").

To compensate for these local variations in both time and volume, you can use a spectrogram to
report the spectral power distribution as it evolves across time.

To get started, use a spectrogram with a fairly coarse frequency resolution. This is done to
deliberately blur the narrow-band glottal pulses of the vocal tract, leaving just the wider-band
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resonances of the oral and nasal cavities undisturbed. This allows you to lock onto the spoken vowels
of a word. Consonants (especially plosives and fricatives) are considerably more difficult to identify
using spectrograms. The code below computes a spectrogram

Nwindow = 64;
Nstride = 8;
Beta = 64;

Noverlap = Nwindow - Nstride;
[~,~,~,PxxPhrase] = spectrogram(phrase, kaiser(Nwindow,Beta), Noverlap);
[~,~,~,PxxHotWord] = spectrogram(hotword, kaiser(Nwindow,Beta), Noverlap);

Now that you have the spectrogram of the phrase and search word, you can use dynamic time
warping to account for local variations in word length. Similarly, you can account for variations in
power by using power normalization in conjunction with the symmetric Kullback-Leibler distance.

[istart,istop] = findsignal(PxxPhrase, PxxHotWord, ...
    'Normalization','power','TimeAlignment','dtw','Metric','symmkl')

istart = 1144

istop = 1575

Plot and play the identified word.

findsignal(PxxPhrase, PxxHotWord, 'Normalization','power', ...
    'TimeAlignment','dtw','Metric','symmkl')
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soundsc(phrase(Nstride*istart-Nwindow/2 : Nstride*istop+Nwindow/2),fs)

See Also
findsignal
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Filter Design Gallery
This example shows how to design a variety of FIR and IIR digital filters with the designfilt
function in the Signal Processing Toolbox® product.

The gallery is designed for you to identify a filter response of interest, view the code, and use it in
your own project. It contains examples for each of the available filter responses offered by
designfilt. Note, however, that these are only a few of the possible ways in which you can design
filters for each response type. For an exhaustive list of specification sets, see the Signal Processing
Toolbox documentation.

Except when noted otherwise, in this example all frequency units are in hertz, and all ripple and
attenuation values are in decibels.

Lowpass FIR Filters

Equiripple Design

Fpass = 100;
Fstop = 150;
Apass = 1;
Astop = 65;
Fs = 1e3;

d = designfilt('lowpassfir', ...
  'PassbandFrequency',Fpass,'StopbandFrequency',Fstop, ...
  'PassbandRipple',Apass,'StopbandAttenuation',Astop, ...
  'DesignMethod','equiripple','SampleRate',Fs);

fvtool(d)
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Lowpass IIR Filters

Maximally Flat Design

Fpass = 100;
Fstop = 150;
Apass = 0.5;
Astop = 65;
Fs = 1e3;

d = designfilt('lowpassiir', ...
  'PassbandFrequency',Fpass,'StopbandFrequency',Fstop, ...
  'PassbandRipple',Apass,'StopbandAttenuation',Astop, ...
  'DesignMethod','butter','SampleRate',Fs);

fvtool(d)
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Ripple in Passband and Stopband

N = 8;
Fpass = 100;
Apass = 0.5;
Astop = 65;
Fs = 1e3;

d = designfilt('lowpassiir', ...
  'FilterOrder',N, ...  
  'PassbandFrequency',Fpass, ...
  'PassbandRipple',Apass,'StopbandAttenuation',Astop, ...
  'SampleRate',Fs);

fvtool(d)
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Highpass FIR Filters

Equiripple Design

Fstop = 350;
Fpass = 400;
Astop = 65;
Apass = 0.5;
Fs = 1e3;

d = designfilt('highpassfir','StopbandFrequency',Fstop, ...
  'PassbandFrequency',Fpass,'StopbandAttenuation',Astop, ...
  'PassbandRipple',Apass,'SampleRate',Fs,'DesignMethod','equiripple');

fvtool(d)
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Highpass IIR Filters

Maximally Flat Design

Fstop = 350;
Fpass = 400;
Astop = 65;
Apass = 0.5;
Fs = 1e3;

d = designfilt('highpassiir','StopbandFrequency',Fstop ,...
  'PassbandFrequency',Fpass,'StopbandAttenuation',Astop, ...
  'PassbandRipple',Apass,'SampleRate',Fs,'DesignMethod','butter');

fvtool(d)
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Ripple in Passband and Stopband

N = 8;
Fpass = 400;
Astop = 65;
Apass = 0.5;
Fs = 1e3;

d = designfilt('highpassiir', ...
  'FilterOrder',N, ...  
  'PassbandFrequency',Fpass, ...
  'StopbandAttenuation',Astop,'PassbandRipple',Apass, ...
  'SampleRate',Fs);

fvtool(d)
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Bandpass FIR Filters

Equiripple Design

Fstop1 = 150;
Fpass1 = 200;
Fpass2 = 300;
Fstop2 = 350;
Astop1 = 65;
Apass  = 0.5;
Astop2 = 65;
Fs = 1e3;

d = designfilt('bandpassfir', ...
  'StopbandFrequency1',Fstop1,'PassbandFrequency1', Fpass1, ...
  'PassbandFrequency2',Fpass2,'StopbandFrequency2', Fstop2, ...
  'StopbandAttenuation1',Astop1,'PassbandRipple', Apass, ...
  'StopbandAttenuation2',Astop2, ...
  'DesignMethod','equiripple','SampleRate',Fs);

fvtool(d)
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Asymmetric Band Attenuations

N = 50;
Fstop1 = 150;
Fpass1 = 200;
Fpass2 = 300;
Fstop2 = 350;
Wstop1 = 3;
Wstop2 = 100;
Fs = 1e3;

d = designfilt('bandpassfir', ...
  'FilterOrder',N, ...
  'StopbandFrequency1',Fstop1,'PassbandFrequency1', Fpass1, ...
  'PassbandFrequency2',Fpass2,'StopbandFrequency2', Fstop2, ...
  'StopbandWeight1',Wstop1,'StopbandWeight2',Wstop2, ...
   'DesignMethod','equiripple','SampleRate',Fs);
  
fvtool(d)
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Bandpass IIR Filters

Maximally Flat Design

Fstop1 = 150;
Fpass1 = 200;
Fpass2 = 300;
Fstop2 = 350;
Astop1 = 65;
Apass  = 0.5;
Astop2 = 65;
Fs = 1e3;

d = designfilt('bandpassiir', ...
  'StopbandFrequency1',Fstop1,'PassbandFrequency1', Fpass1, ...
  'PassbandFrequency2',Fpass2,'StopbandFrequency2', Fstop2, ...
  'StopbandAttenuation1',Astop1,'PassbandRipple', Apass, ...
  'StopbandAttenuation2',Astop2, ...
  'DesignMethod','butter','SampleRate', Fs);

fvtool(d)
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Ripple in Passband and Stopband

N = 8;
Fpass1 = 200;
Fpass2 = 300;
Astop1 = 65;
Apass  = 0.5;
Astop2 = 65;
Fs = 1e3;

d = designfilt('bandpassiir', ...
  'FilterOrder',N, ...
  'PassbandFrequency1', Fpass1,'PassbandFrequency2', Fpass2, ...
  'StopbandAttenuation1', Astop1, 'PassbandRipple', Apass, ...
  'StopbandAttenuation2', Astop2, ...
  'SampleRate', Fs);

fvtool(d)
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Bandstop FIR Filters

Equiripple Design

Fpass1 = 100;
Fstop1 = 150;
Fstop2 = 350;
Fpass2 = 400;
Apass1 = 0.5;
Astop  = 65;
Apass2 = 0.5;
Fs = 1e3;

d = designfilt('bandstopfir', ...
  'PassbandFrequency1',Fpass1,'StopbandFrequency1',Fstop1, ...
  'StopbandFrequency2',Fstop2,'PassbandFrequency2',Fpass2, ...
  'PassbandRipple1',Apass1,'StopbandAttenuation',Astop, ...
  'PassbandRipple2', Apass2, ...
  'DesignMethod','equiripple','SampleRate', Fs);

fvtool(d)
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Asymmetric Passband Ripples

N = 30;
Fpass1 = 100;
Fstop1 = 150;
Fstop2 = 350;
Fpass2 = 400;
Wpass1 = 1;
Wpass2  = 10;
Fs = 1e3;

d = designfilt('bandstopfir', ...
  'FilterOrder',N, ...
  'PassbandFrequency1',Fpass1,'StopbandFrequency1',Fstop1, ...
  'StopbandFrequency2',Fstop2,'PassbandFrequency2',Fpass2, ...
  'PassbandWeight1',Wpass1,'PassbandWeight2',Wpass2, ...
  'DesignMethod','equiripple','SampleRate', Fs);

fvtool(d)
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Bandstop IIR Filters

Maximally Flat Design

Fpass1 = 100;
Fstop1 = 150;
Fstop2 = 350;
Fpass2 = 400;
Apass1 = 0.5;
Astop  = 65;
Apass2 = 0.5;
Fs = 1e3;

d = designfilt('bandstopiir', ...
  'PassbandFrequency1',Fpass1,'StopbandFrequency1',Fstop1, ...
  'StopbandFrequency2',Fstop2,'PassbandFrequency2',Fpass2, ...
  'PassbandRipple1',Apass1,'StopbandAttenuation',Astop, ...
  'PassbandRipple2', Apass2, ...
  'DesignMethod','butter','SampleRate', Fs);

fvtool(d)
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Ripple in Passband and Stopband

N = 8;
Fpass1 = 125;
Fpass2 = 375;
Apass = 0.5;
Astop  = 65;
Fs = 1e3;

d = designfilt('bandstopiir', ...
  'FilterOrder',N, ...
  'PassbandFrequency1',Fpass1,'PassbandFrequency2',Fpass2, ...
  'PassbandRipple',Apass,'StopbandAttenuation', Astop, ...
  'SampleRate',Fs);

fvtool(d)
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Arbitrary Magnitude FIR Filters

Single-Band Arbitrary Magnitude Design

N = 300;

% Frequencies are in normalized units
F1 = 0:0.01:0.18;
F2 = [.2 .38 .4 .55 .562 .585 .6 .78];
F3 = 0.79:0.01:1;
FreqVect = [F1 F2 F3]; % vector of frequencies

% Define desired response using linear units
A1 = .5+sin(2*pi*7.5*F1)/4;    % Sinusoidal section
A2 = [.5 2.3 1 1 -.2 -.2 1 1]; % Piecewise linear section
A3 = .2+18*(1-F3).^2;          % Quadratic section

AmpVect = [A1 A2 A3];

d = designfilt('arbmagfir',...
  'FilterOrder',N,'Amplitudes',AmpVect,'Frequencies',FreqVect,...
  'DesignMethod','freqsamp');

fvtool(d,'MagnitudeDisplay','Zero-phase')
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Multiband Lowpass Design with Stepped Attenuation Levels on Stopband

N = 150;
B = 2; % Number of bands
% Frequencies are in normalized units
F1 = [0 .25]; % Passband
F2 = [.3 .4 .401 .5 .501 .6 .601 .7 .701 .8 .801 .9 .901 1]; % Stopband
A1 = ones(size(F1));  % Desired amplitudes for band 1 in linear units
A2 = zeros(size(F2)); % Desired amplitudes for band 2 in linear units
% Vector of weights
W = 10.^([0 0 5 5 10 10 15 15 20 20 25 25 30 30 35 35]/20);
W1 = W(1:2);   % Weights for band 1
W2 = W(3:end); % Weights for band 2

d = designfilt('arbmagfir', ...
  'FilterOrder',N,'NumBands',B, ...
  'BandFrequencies1',F1,'BandAmplitudes1',A1, ...
  'BandFrequencies2',F2,'BandAmplitudes2',A2, ...
  'BandWeights1',W1,'BandWeights2', W2);

fvtool(d)
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Differentiator FIR Filters

Full Band Design

N = 41;
Fs = 1e3;

d = designfilt('differentiatorfir', ...
'FilterOrder',N, 'DesignMethod','equiripple','SampleRate',Fs);

fvtool(d,'MagnitudeDisplay','zero-phase','OverlayedAnalysis','phase')
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Partial Band Design

N = 40;
Fpass = 100;
Fstop = 150;
Fs = 1e3;

d = designfilt('differentiatorfir', ...
'FilterOrder',N, ...
'PassbandFrequency',Fpass,'StopbandFrequency',Fstop, ...
'DesignMethod','equiripple','SampleRate',Fs);

fvtool(d,'MagnitudeDisplay','zero-phase','OverlayedAnalysis','phase')
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Hilbert FIR Filters

Equiripple Design

N = 40;
Tw = 50;
Fs = 1e3;

d = designfilt('hilbertfir', ...
'FilterOrder',N,'TransitionWidth',Tw, ...
'DesignMethod','equiripple','SampleRate',Fs);

fvtool(d,'MagnitudeDisplay','Zero-phase','OverlayedAnalysis','phase')
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See Also
FVTool | designfilt
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Practical Introduction to Digital Filter Design
This example shows how to design FIR and IIR filters based on frequency response specifications
using the designfilt function in the Signal Processing Toolbox® product. The example
concentrates on lowpass filters but most of the results apply to other response types as well.

This example focuses on the design of digital filters rather than on their applications. If you want to
learn more about digital filter applications, see “Practical Introduction to Digital Filtering” on page
24-174.

FIR Filter Design

Lowpass Filter Specifications

The ideal lowpass filter is one that leaves unchanged all frequency components of a signal below a
designated cutoff frequency, ωc, and rejects all components above ωc. Because the impulse response
required to implement the ideal lowpass filter is infinitely long, it is impossible to design an ideal FIR
lowpass filter. Finite length approximations to the ideal impulse response lead to the presence of
ripples in both the passband (ω < ωc) and the stopband (ω > ωc) of the filter, as well as to a nonzero
transition width between passband and stopband.

Both the passband/stopband ripples and the transition width are undesirable but unavoidable
deviations from the response of an ideal lowpass filter when approximated with a finite impulse
response. These deviations are depicted in the following figure:

• Practical FIR designs typically consist of filters that have a transition width and
maximum passband and stopband ripples that do not exceed allowable values. In
addition to those design specifications, one must select the filter order, or, equivalently,
the length of the truncated impulse response.

A useful metaphor for the design specifications in filter design is to think of each specification as one
of the angles in the triangle shown in the figure below.
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The triangle is used to understand the degrees of freedom available when choosing design
specifications. Because the sum of the angles is fixed, one can at most select the values of two of the
specifications. The third specification will be determined by the particular design algorithm.
Moreover, as with the angles in a triangle, if we make one of the specifications larger/smaller, it will
impact one or both of the other specifications.

FIR filters are very attractive because they are inherently stable and can be designed to have linear
phase. Nonetheless, these filters can have long transient responses and might prove computationally
expensive in certain applications.

Minimum-Order FIR Designs

Minimum-order designs are obtained by specifying passband and stopband frequencies as well as a
passband ripple and a stopband attenuation. The design algorithm then chooses the minimum filter
length that complies with the specifications.

Design a minimum-order lowpass FIR filter with a passband frequency of 0.37*pi rad/sample, a
stopband frequency of 0.43*pi rad/sample (hence the transition width equals 0.06*pi rad/sample), a
passband ripple of 1 dB and a stopband attenuation of 30 dB.

Fpass = 0.37; 
Fstop = 0.43;
Ap = 1;
Ast = 30;

d = designfilt('lowpassfir','PassbandFrequency',Fpass,...
  'StopbandFrequency',Fstop,'PassbandRipple',Ap,'StopbandAttenuation',Ast);

hfvt = fvtool(d);
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The resulting filter order can be queried using the filtord function.

N = filtord(d)

N = 39

You can use the info function to get information about the parameters used to design the filter

info(d)

ans = 17x44 char array
    'FIR Digital Filter (real)                   '
    '-------------------------                   '
    'Filter Length  : 40                         '
    'Stable         : Yes                        '
    'Linear Phase   : Yes (Type 2)               '
    '                                            '
    'Design Method Information                   '
    'Design Algorithm : Equiripple               '
    '                                            '
    'Design Specifications                       '
    'Sample Rate     : N/A (normalized frequency)'
    'Response        : Lowpass                   '
    'Specification   : Fp,Fst,Ap,Ast             '
    'Passband Ripple : 1 dB                      '
    'Stopband Atten. : 30 dB                     '
    'Stopband Edge   : 0.43                      '
    'Passband Edge   : 0.37                      '
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• The designfilt function chooses an equiripple design algorithm by default. Linear-
phase equiripple filters are desirable because for a given order they have the smallest
possible maximum deviation from the ideal filter.

Note, however, that minimum-order designs can also be obtained using a Kaiser window. Even though
the Kaiser window method yields a larger filter order for the same specifications, the algorithm is less
computationally expensive and less likely to have convergence issues when the design specifications
are very stringent. This may occur if the application requires a very narrow transition width or a very
large stopband attenuation.

Design a filter with the same specifications as above using the Kaiser window method and compare
its response to the equiripple filter.

dk = designfilt('lowpassfir','PassbandFrequency',Fpass,...
  'StopbandFrequency',Fstop,'PassbandRipple',Ap,...
  'StopbandAttenuation',Ast, 'DesignMethod', 'kaiserwin');

addfilter(hfvt,dk);
legend(hfvt,'Equiripple design', 'Kaiser window design')

N = filtord(dk)

N = 52

Specifying Frequency Parameters in Hertz
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If you know the sample rate at which the filter will operate, you can specify the sample rate and the
frequencies in hertz. Redesign the minimum-order equiripple filter for a sample rate of 2 kHz.

Fpass = 370;
Fstop = 430;
Ap = 1;
Ast = 30;
Fs = 2000; 

d = designfilt('lowpassfir','PassbandFrequency',Fpass,...
  'StopbandFrequency',Fstop,'PassbandRipple',Ap,...
  'StopbandAttenuation',Ast,'SampleRate',Fs);
  
hfvt = fvtool(d);

Fixed Order, Fixed Transition Width

Fixed-order designs are useful for applications that are sensitive to computational load or impose a
limit on the number of filter coefficients. An option is to fix the transition width at the expense of
control over the passband ripple/stopband attenuation.

Consider a 30-th order lowpass FIR filter with a passband frequency of 370 Hz, a stopband frequency
of 430 Hz, and sample rate of 2 kHz. There are two design methods available for this particular set of
specifications: equiripple and least squares. Let us design one filter for each method and compare the
results.

N = 30;
Fpass = 370;
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Fstop = 430;
Fs = 2000; 

% Design method defaults to 'equiripple' when omitted
deq = designfilt('lowpassfir','FilterOrder',N,'PassbandFrequency',Fpass,...
  'StopbandFrequency',Fstop,'SampleRate',Fs);

dls = designfilt('lowpassfir','FilterOrder',N,'PassbandFrequency',Fpass,...
  'StopbandFrequency',Fstop,'SampleRate',Fs,'DesignMethod','ls');

hfvt = fvtool(deq,dls);
legend(hfvt,'Equiripple design', 'Least-squares design')

Equiripple filters are ideally suited for applications in which a specific tolerance must be met, such as
designing a filter with a given minimum stopband attenuation or a given maximum passband ripple.
On the other hand, these designs may not be desirable if we want to minimize the energy of the error
(between ideal and actual filter) in the passband/stopband.

• If you want to reduce the energy of a signal as much as possible in a certain frequency
band, use a least-squares design.

In the examples above, the designed filters had the same ripple in the passband and in the stopband.
We can use weights to reduce the ripple in one of the bands while keeping the filter order fixed. For
example, if you wish the stopband ripple to be a tenth of that in the passband, you must give the
stopband ten times the passband weight. Redesign the equiripple filter using that fact.
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deqw = designfilt('lowpassfir','FilterOrder',N,'PassbandFrequency',Fpass,...
  'StopbandFrequency',Fstop,'SampleRate',Fs,...
  'PassbandWeight',1,'StopbandWeight',10);

hfvt = fvtool(deq,deqw);
legend(hfvt,'Equiripple design', 'Equiripple design with weighted stopband')

Fixed Order, Fixed Cutoff Frequency

You can design filters with fixed filter order and cutoff frequency using a window design method.

• You can use different windows to control the stopband attenuation while keeping the
filter order unchanged.

For example, consider a 100-th order lowpass FIR filter with a cutoff frequency of 60 Hz and a sample
rate of 1 kHz. Compare designs that result from using a Hamming window, and a Chebyshev window
with 90 dB of sidelobe attenuation.

dhamming = designfilt('lowpassfir','FilterOrder',100,'CutoffFrequency',60,...
  'SampleRate',1000,'Window','hamming');

dchebwin = designfilt('lowpassfir','FilterOrder',100,'CutoffFrequency',60,...
  'SampleRate',1000,'Window',{'chebwin',90});

hfvt = fvtool(dhamming,dchebwin);
legend(hfvt,'Hamming window', 'Chebyshev window')
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There are other ways in which you can specify a filter with fixed order: fixed cutoff frequency,
passband ripple, and stopband attenuation; fixed transition width; and fixed half-power (3dB)
frequency.

IIR Filter Design

One of the drawbacks of FIR filters is that they require a large filter order to meet some design
specifications. If the ripples are kept constant, the filter order grows inversely proportional to the
transition width. By using feedback, it is possible to meet a set of design specifications with a far
smaller filter order. This is the idea behind IIR filter design. The term "infinite impulse response" (IIR)
stems from the fact that, when an impulse is applied to the filter, the output never decays to zero.

• IIR filters are useful when computational resources are at a premium. However, stable,
causal IIR filters cannot have perfectly linear phase. Avoid IIR designs in cases where
phase linearity is a requirement.

Another important reason for using IIR filters is their small group delay relative to FIR filters, which
results in a shorter transient response.

Butterworth Filters

Butterworth filters are maximally flat IIR filters. The flatness in the passband and stopband causes
the transition band to be very wide. Large orders are required to obtain filters with narrow transition
widths.

Design a minimum-order Butterworth filter with passband frequency 100 Hz, stopband frequency 300
Hz, maximum passband ripple 1 dB, and 60 dB stopband attenuation. The sample rate is 2 kHz.
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Fp = 100;
Fst = 300;
Ap = 1;
Ast = 60;
Fs = 2e3;

dbutter = designfilt('lowpassiir','PassbandFrequency',Fp,...
  'StopbandFrequency',Fst,'PassbandRipple',Ap,...
  'StopbandAttenuation',Ast,'SampleRate',Fs,'DesignMethod','butter');

Chebyshev Type I Filters

Chebyshev Type I filters attain smaller transition widths than Butterworth filters of the same order by
allowing for passband ripple.

• Butterworth and Chebyshev Type I filters both have maximally flat stopbands. For a given
filter order, the tradeoff is between passband ripple and transition width.

Design a Chebyshev Type I filter with the same specifications as the Butterworth filter above.

dcheby1 = designfilt('lowpassiir','PassbandFrequency',Fp,...
  'StopbandFrequency',Fst,'PassbandRipple',Ap,...
  'StopbandAttenuation',Ast,'SampleRate',Fs,'DesignMethod','cheby1');

Chebyshev Type II Filters

• Chebyshev Type II filters have maximally flat passbands and equiripple stopbands.

Since extremely large attenuations are typically not required, we may be able to attain the required
transition width with a relatively small order by allowing for some stopband ripple.

Design a minimum-order Chebyshev Type II filter with the same specifications as in the previous
examples.

dcheby2 = designfilt('lowpassiir','PassbandFrequency',Fp,...
  'StopbandFrequency',Fst,'PassbandRipple',Ap,...
  'StopbandAttenuation',Ast,'SampleRate',Fs,'DesignMethod','cheby2');

Elliptic Filters

Elliptic filters generalize Chebyshev and Butterworth filters by allowing for ripple in both the
passband and the stopband. As ripples are made smaller, elliptic filters can approximate arbitrarily
close the magnitude and phase response of either Chebyshev or Butterworth filters.

• Elliptic filters attain a given transition width with the smallest order.

dellip = designfilt('lowpassiir','PassbandFrequency',Fp,...
  'StopbandFrequency',Fst,'PassbandRipple',Ap,...
  'StopbandAttenuation',Ast,'SampleRate',Fs,'DesignMethod','ellip');

Compare the response and the order of the four IIR filters.

• For the same specification constraints, the Butterworth method yields the highest order
and the elliptic method yields the smallest.

FilterOrders = [filtord(dbutter) filtord(dcheby1) filtord(dcheby2) filtord(dellip)]

FilterOrders = 1×4
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hfvt = fvtool(dbutter,dcheby1,dcheby2,dellip);
axis([0 1e3 -80 2]);
legend(hfvt,'Butterworth', 'Chebyshev Type I',...
  'Chebyshev Type II','Elliptic')

Zoom into the passband to see the ripple differences.

axis([0 150 -3 2]);
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Matching Exactly the Passband or Stopband Specifications

With minimum-order designs, the ideal order needs to be rounded to the next integer. This additional
fractional order allows the algorithm to actually exceed the specifications.

• Use the 'MatchExactly' parameter to constrain the design algorithm to match one band
exactly. The other band exceeds its specification.

By default, Chebyshev Type I designs match the passband, Butterworth and Chebyshev Type II match
the stopband, and elliptic designs match both the passband and the stopband (while the stopband
edge frequency is exceeded):

dellip1 = designfilt('lowpassiir','PassbandFrequency',Fp,...
  'StopbandFrequency',Fst,'PassbandRipple',Ap,...
  'StopbandAttenuation',Ast,'SampleRate',Fs,'DesignMethod','ellip',...
  'MatchExactly','passband');

dellip2 = designfilt('lowpassiir','PassbandFrequency',Fp,...
  'StopbandFrequency',Fst,'PassbandRipple',Ap,...
  'StopbandAttenuation',Ast,'SampleRate',Fs,'DesignMethod','ellip',...
  'MatchExactly','stopband');

hfvt = fvtool(dellip, dellip1, dellip2);
legend(hfvt,'Matched passband and stopband','Matched passband',...
  'Matched stopband');
axis([0 1e3 -80 2]);
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The matched-passband and matched-both designs have a ripple of exactly 1 dB at the passband
frequency value of 100 Hz.

Group Delay Comparison

With IIR filters, we need to consider not only the ripple/transition width tradeoff, but also the degree
of phase distortion. We know that it is impossible to have linear-phase throughout the entire Nyquist
interval. Thus we may want to see how far from linear the phase response is. A good way to do this is
to look at the (ideally constant) group delay and see how flat it is.

Compare the group delay of the four IIR filters designed above.

• If phase is an issue, keep in mind that Butterworth and Chebyshev Type II designs have
the flattest group delay and thus introduce the least distortion.

hfvt = fvtool(dbutter,dcheby1,dcheby2,dellip,'Analysis','grpdelay');
legend(hfvt,'Butterworth', 'Chebyshev Type I',...
  'Chebyshev Type II','Elliptic')
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Conclusions

In this example, you learned how to use designfilt to obtain a variety of lowpass FIR and IIR filters
with different constraints and design methods. designfilt can also be used to obtain highpass,
bandpass, bandstop, arbitrary-magnitude, differentiator, and Hilbert designs. To learn more about all
available options, “Filter Design Gallery” on page 24-141.

Further Reading

For more information on filter design and analysis, see the Signal Processing Toolbox® software
documentation. For more information on filter applications see “Practical Introduction to Digital
Filtering” on page 24-174.

See Also
FVTool | designfilt | filtord
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Practical Introduction to Digital Filtering
This example shows how to design, analyze, and apply a digital filter to your data. It will help you
answer questions such as: how do I compensate for the delay introduced by a filter?, How do I avoid
distorting my signal?, How do I remove unwanted content from my signal?, How do I differentiate my
signal?, and How do I integrate my signal?

Filters can be used to shape the signal spectrum in a desired way or to perform mathematical
operations such as differentiation and integration. In what follows you will learn some practical
concepts that will ease the use of filters when you need them.

This example focuses on applications of digital filters rather than on their design. If you want to learn
more about how to design digital filters see the “Practical Introduction to Digital Filter Design” on
page 24-161 example.

Compensating for Delay Introduced by Filtering

Digital filters introduce delay in your signal. Depending on the filter characteristics, the delay can be
constant over all frequencies, or it can vary with frequency. The type of delay determines the actions
you have to take to compensate for it. The grpdelay function allows you to look at the filter delay as
a function of frequency. Looking at the output of this function allows you to identify if the delay of the
filter is constant or if it varies with frequency (in other words, if it is frequency-dependent).

Filter delay that is constant over all frequencies can be easily compensated for by shifting the signal
in time. FIR filters usually have constant delay. On the other hand, delay that varies with frequency
causes phase distortion and can alter a signal waveform significantly. Compensating for frequency-
dependent delay is not as trivial as for the constant delay case. IIR filters introduce frequency-
dependent delay.

Compensating for Constant Filter Delay

As mentioned before, you can measure the group of delay of the filter to verify that it is a constant
function of frequency. You can use the grpdelay function to measure the filter delay, D, and
compensate for this delay by appending D zeros to the input signal and shifting the output signal in
time by D samples.

Consider a noisy electrocardiogram signal that you want to filter to remove high frequency noise
above 75 Hz. You want to apply an FIR lowpass filter and compensate for the filter delay so that the
noisy and filtered signals are aligned correctly and can be plotted on top of each other for
comparison.

Fs = 500;                    % Sample rate in Hz
N = 500;                     % Number of signal samples
rng default;
x = ecg(N)'+0.25*randn(N,1); % Noisy waveform
t = (0:N-1)/Fs;              % Time vector

Design a 70th-order lowpass FIR filter with a cutoff frequency of 75 Hz.

Fnorm = 75/(Fs/2);           % Normalized frequency
df = designfilt('lowpassfir','FilterOrder',70,'CutoffFrequency',Fnorm);

Plot the group delay of the filter to verify that it is constant across all frequencies indicating that the
filter is linear phase. Use the group delay to measure the delay of the filter.
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grpdelay(df,2048,Fs)         % Plot group delay

D = mean(grpdelay(df)) % Filter delay in samples

D = 35

Before filtering, append D zeros at the end of the input data vector, x. This ensures that all the useful
samples are flushed out of the filter, and that the input signal and the delay-compensated output
signal have the same length. Filter the data and compensate for the delay by shifting the output
signal by D samples. This last step effectively removes the filter transient.

y = filter(df,[x; zeros(D,1)]);  % Append D zeros to the input data
y = y(D+1:end);                  % Shift data to compensate for delay

plot(t,x,t,y,'r','linewidth',1.5)
title('Filtered Waveforms')
xlabel('Time (s)')
legend('Original Noisy Signal','Filtered Signal')
grid on
axis tight
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Compensating for Frequency-Dependent Delay

Frequency-dependent delay causes phase distortion in the signal. Compensating for this type of delay
is not as trivial as for the constant delay case. If your application allows off-line processing, you can
remove the frequency-dependent delay by implementing zero-phase filtering using the filtfilt
function. filtfilt performs zero-phase filtering by processing the input data in both the forward
and reverse directions. The main effect is that you obtain zero-phase distortion, i.e., you filter data
with an equivalent filter that has a constant delay of 0 samples. Other effects are that you get a filter
transfer function which equals the squared magnitude of the original filter transfer function, and a
filter order that is double the order of the original filter.

Consider the ECG signal defined in the previous section. Filter this signal with and without delay
compensation. Design a 7th-order lowpass IIR elliptic filter with a cutoff frequency of 75 Hz.

Fnorm = 75/(Fs/2); % Normalized frequency
df = designfilt('lowpassiir',...
               'PassbandFrequency',Fnorm,...
               'FilterOrder',7,...
               'PassbandRipple',1,...
               'StopbandAttenuation',60);

Plot the group delay of the filter. The group delay varies with frequency, indicating that the filter
delay is frequency-dependent.

grpdelay(df,2048,'half',Fs)
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Filter the data and look at the effects of each filter implementation on the time signal. Zero-phase
filtering effectively removes the filter delay.

y1 = filter(df,x);    % Nonlinear phase filter - no delay compensation
y2 = filtfilt(df,x);  % Zero-phase implementation - delay compensation

plot(t,x)
hold on
plot(t,y1,'r','linewidth',1.5)
plot(t,y2,'linewidth',1.5)
title('Filtered Waveforms')
xlabel('Time (s)')
legend('Original Signal','Non-linear phase IIR output',...
  'Zero-phase IIR output')
xlim([0.25 0.55])
grid on
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Zero-phase filtering is a great tool if your application allows for the non-causal forward/backward
filtering operations, and for the change of the filter response to the square of the original response.

Filters that introduce constant delay are linear phase filters. Filters that introduce frequency-
dependent delay are non-linear phase filters.

Removing Unwanted Spectral Content from a Signal

Filters are commonly used to remove unwanted spectral content from a signal. You can choose from a
variety of filters to do this. You choose a lowpass filter when you want to remove high frequency
content, or a highpass filter when you want to remove low frequency content. You can also choose a
bandpass filter to remove low and high frequency content while leaving an intermediate band of
frequencies intact. You choose a bandstop filter when you want to remove frequencies over a given
band.

Consider an audio signal that has a power-line hum and white noise. The power-line hum is caused by
a 60 Hz tone. White noise is a signal that exists across all the audio bandwidth.

Load the audio signal. Specify a sample rate of 44.1 kHz.

Fs = 44100;
y = audioread('noisymusic.wav');

Plot the power spectrum of the signal. The red triangular marker shows the strong 60 Hz tone
interfering with the audio signal.
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[P,F] = pwelch(y,ones(8192,1),8192/2,8192,Fs,'power');
helperFilterIntroductionPlot1(F,P,[60 60],[-9.365 -9.365],...
  {'Original signal power spectrum', '60 Hz Tone'})

You can first remove as much white noise spectral content as possible using a lowpass filter. The
passband of the filter should be set to a value that offers a good trade-off between noise reduction
and audio degradation due to loss of high frequency content. Applying the lowpass filter before
removing the 60 Hz hum is very convenient since you will be able to downsample the band-limited
signal. The lower rate signal will allow you to design a sharper and narrower 60 Hz bandstop filter
with a smaller filter order.

Design a lowpass filter with passband frequency of 1 kHz and stopband frequency of 1.4 kHz. Choose
a minimum-order design.

Fp = 1e3;    % Passband frequency in Hz
Fst = 1.4e3; % Stopband frequency in Hz
Ap = 1;      % Passband ripple in dB
Ast = 95;    % Stopband attenuation in dB

df = designfilt('lowpassfir','PassbandFrequency',Fp,...
                'StopbandFrequency',Fst,'PassbandRipple',Ap,...
                'StopbandAttenuation',Ast,'SampleRate',Fs);

Analyze the filter response.

fvtool(df,'Fs',Fs,'FrequencyScale','log',...
  'FrequencyRange','Specify freq. vector','FrequencyVector',F)
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Filter the data and compensate for delay.

D = mean(grpdelay(df)); % Filter delay
ylp = filter(df,[y; zeros(D,1)]);
ylp = ylp(D+1:end);

Look at the spectrum of the lowpass filtered signal. The frequency content above 1400 Hz has been
removed.

[Plp,Flp] = pwelch(ylp,ones(8192,1),8192/2,8192,Fs,'power');
helperFilterIntroductionPlot1(F,P,Flp,Plp,...
  {'Original signal','Lowpass filtered signal'})

24 Featured Examples

24-180



From the power spectrum plot above, you can see that the maximum non-negligible frequency
content of the lowpass filtered signal is at 1400 Hz. By the sampling theorem, a sample rate of
2 × 1400 = 2800 Hz would suffice to represent the signal correctly, you however, are using a sample
rate of 44100 Hz which is a waste since you will need to process more samples than those necessary.
You can downsample the signal to reduce the sample rate and reduce the computational load by
reducing the number of samples that you need to process. A lower sample rate will also allow you to
design a sharper and narrower bandstop filter, needed to remove the 60 Hz noise, with a smaller
filter order.

Downsample the lowpass filtered signal by a factor of 10 to obtain a sample rate of Fs/10 = 4.41 kHz.
Plot the spectrum of the signal before and after downsampling.

Fs = Fs/10;
yds = downsample(ylp,10);

[Pds,Fds] = pwelch(yds,ones(8192,1),8192/2,8192,Fs,'power');
helperFilterIntroductionPlot1(F,P,Fds,Pds,...
  {'Signal sampled at 44100 Hz', 'Downsampled signal, Fs = 4410 Hz'})
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Now remove the 60 Hz tone using an IIR bandstop filter. Let the stopband have a width of 4 Hz
centered at 60 Hz. Choose an IIR filter to achieve a sharp frequency notch, small passband ripple,
and a relatively low order.

df = designfilt('bandstopiir','PassbandFrequency1',55,...
               'StopbandFrequency1',58,'StopbandFrequency2',62,...
               'PassbandFrequency2',65,'PassbandRipple1',1,...
               'StopbandAttenuation',60,'PassbandRipple2',1,...
               'SampleRate',Fs,'DesignMethod','ellip');                          

Analyze the magnitude response.

fvtool(df,'Fs',Fs,'FrequencyScale','log',...
  'FrequencyRange','Specify freq. vector','FrequencyVector',Fds(Fds>F(2)))

24 Featured Examples

24-182



Perform zero-phase filtering to avoid phase distortion. Use the filtfilt function to process the
data.

ybs = filtfilt(df,yds);

Finally, upsample the signal to bring it back to the original audio sample rate of 44.1 kHz which is
compatible with audio soundcards.

yf = interp(ybs,10);
Fs = Fs*10;

Take a final look at the spectrum of the original and processed signals. The high frequency noise floor
and the 60 Hz tone have been attenuated by the filters.

[Pfinal,Ffinal] = pwelch(yf,ones(8192,1),8192/2,8192,Fs,'power');
helperFilterIntroductionPlot1(F,P,Ffinal,Pfinal,...
  {'Original signal','Final filtered signal'})
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If your computer has a sound card, you can listen to the signal before and after processing. As
mentioned above, the end result is that you have effectively attenuated the 60 Hz hum and the high-
frequency noise in the audio file.

% To play the original signal, uncomment the next two lines
% hplayer = audioplayer(y, Fs);
% play(hplayer)

% To play the noise-reduced signal, uncomment the next two lines
% hplayer = audioplayer(yf, Fs);
% play(hplayer);

Differentiating a Signal

The MATLAB diff function differentiates a signal with the drawback that you can potentially
increase the noise levels at the output. A better option is to use a differentiator filter that acts as a
differentiator in the band of interest, and as an attenuator at all other frequencies, effectively
removing high frequency noise.

As an example, analyze the speed of displacement of a building floor during an earthquake.
Displacement or drift measurements were recorded on the first floor of a three story test structure
under earthquake conditions and saved in the quakedrift.mat file. The length of the data vector is
10e3, the sample rate is 1 kHz, and the units of the measurements are cm.

Differentiate the displacement data to obtain estimates of the speed and acceleration of the building
floor during the earthquake. Compare the results using diff and an FIR differentiator filter.
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load quakedrift.mat 

Fs  = 1000;                 % Sample rate
dt = 1/Fs;                  % Time differential
t = (0:length(drift)-1)*dt; % Time vector

Design a 50th-order differentiator filter with a passband frequency of 100 Hz, which is the bandwidth
over which most of the signal energy is found. Set the stopband frequency of the filter to 120 Hz.

df = designfilt('differentiatorfir','FilterOrder',50,...
                'PassbandFrequency',100,'StopbandFrequency',120,...
                'SampleRate',Fs);

The diff function can be seen as a first order FIR filter with response H(Z) = 1 − Z−1. Use FVTool to
compare the magnitude response of the 50th-order differentiator FIR filter and the response of the
diff function. Clearly, both responses are equivalent in the passband region (from 0 to 100 Hz).
However, in the stopband region, the 50th-order filter attenuates components while the diff response
amplifies components. This effectively increases the levels of high frequency noise.

hfvt = fvtool(df,[1 -1],1,'MagnitudeDisplay','zero-phase','Fs',Fs);
legend(hfvt,'50th order FIR differentiator','Response of diff function');

Differentiate using the diff function. Add zeros to compensate for the missing samples due to the
diff operation.

v1 = diff(drift)/dt;
a1 = diff(v1)/dt;
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v1 = [0; v1];
a1 = [0; 0; a1];

Differentiate using the 50th order FIR filter and compensate for delay.

D = mean(grpdelay(df)); % Filter delay
v2 = filter(df,[drift; zeros(D,1)]);
v2 = v2(D+1:end);
a2 = filter(df,[v2; zeros(D,1)]);
a2 = a2(D+1:end);
v2 = v2/dt;
a2 = a2/dt^2;

Plot a few data points of the floor displacement. Plot also a few data points of the speed and
acceleration as computed with diff and with the 50th order FIR filter. Notice how the noise has been
slightly amplified in the speed estimates and largely amplified in the acceleration estimates obtained
with diff.

helperFilterIntroductionPlot2(t,drift,v1,v2,a1,a2)
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Integrating a Signal

A leaky integrator filter is an all-pole filter with transfer function H(Z) = 1/[1 − cZ−1] where c is a
constant that must be smaller than 1 to ensure stability of the filter. It is no surprise that as c
approaches one, the leaky integrator approaches the inverse of the diff transfer function. Apply the
leaky integrator to the acceleration and speed estimates obtained in the previous section to get back
the speed and the drift respectively. Use the estimates obtained with the diff function since they
are noisier.

Use a leaky integrator with a = 0 . 999. Plot the magnitude response of the leaky integrator filter. The
filter acts as a lowpass filter effectively eliminating high-frequency noise.

fvtool(1,[1 -.999],'Fs',Fs)
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Filter the velocity and acceleration with the leaky integrator. Multiply by time differential.

v_original = v1;
a_original = a1;

d_leakyint = filter(1,[1 -0.999],v_original);
v_leakyint = filter(1,[1 -0.999],a_original);

d_leakyint = d_leakyint * dt;
v_leakyint = v_leakyint * dt;

Plot the displacement and speed estimates and compare to the original signals.

helperFilterIntroductionPlot3(t,drift,d_leakyint,v_original,v_leakyint)
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You can also integrate a signal using the cumsum and cumtrapz functions. Results will be similar to
those obtained with the leaky integrator.

Conclusions

In this example you learned about linear and nonlinear phase filters and you learned how to
compensate for the phase delay introduced by each filter type. You also learned how to apply filters to
remove unwanted frequency components from a signal, and how to downsample a signal after
limiting its bandwidth with a lowpass filter. Finally, you learned how to differentiate and integrate a
signal using digital filter designs. Throughout the example you also learned how to use analysis tools
to look at the response and group delay of your filters.

For more information on filter applications, see the Signal Processing Toolbox™ documentation. For
more information on how to design digital filters see the “Practical Introduction to Digital Filter
Design” on page 24-161 example.
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Appendix

The following helper functions are used in this example:
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• helperFilterIntroductionPlot1.m
• helperFilterIntroductionPlot2.m
• helperFilterIntroductionPlot3.m.

See Also
bandpass | bandstop | designfilt | fftfilt | filter | filtfilt | grpdelay | highpass |
lowpass
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Introduction to Filter Designer
This example shows how to use Filter Designer as a convenient alternative to the command-line filter
design functions.

Filter Designer is a powerful graphical user interface (GUI) in Signal Processing Toolbox™ for
designing and analyzing filters.

Filter Designer enables you to quickly design digital FIR or IIR filters by setting filter performance
specifications, by importing filters from your MATLAB® workspace or by adding, moving, or deleting
poles and zeros. Filter Designer also provides tools for analyzing filters, such as magnitude and phase
response plots and pole-zero plots.

Getting Started

Type filterDesigner at the MATLAB command prompt:

>> filterDesigner

A Tip of the Day dialog displays with suggestions for using Filter Designer. Then, the GUI displays
with a default filter.
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The GUI has three main regions:

• The Current Filter Information region
• The Filter Display region and
• The Design panel

The upper half of the GUI displays information on filter specifications and responses for the current
filter. The Current Filter Information region, in the upper left, displays filter properties, namely the
filter structure, order, number of sections used and whether the filter is stable or not. It also provides
access to the Filter manager for working with multiple filters.

The Filter Display region, in the upper right, displays various filter responses, such as, magnitude
response, group delay and filter coefficients.
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The lower half of the GUI is the interactive portion of Filter Designer. The Design Panel, in the lower
half is where you define your filter specifications. It controls what is displayed in the other two upper
regions. Other panels can be displayed in the lower half by using the sidebar buttons.

The tool includes Context-sensitive help. You can right-click or click the What's This? button to get
information on the different parts of the tool.

Designing a Filter

We will design a low pass filter that passes all frequencies less than or equal to 20% of the Nyquist
frequency (half the sampling frequency) and attenuates frequencies greater than or equal to 50% of
the Nyquist frequency. We will use an FIR Equiripple filter with these specifications:

• Passband attenuation 1 dB
• Stopband attenuation 80 dB
• A passband frequency 0.2 [Normalized (0 to 1)]
• A stopband frequency 0.5 [Normalized (0 to 1)]

To implement this design, we will use the following specifications:

1. Select Lowpass from the dropdown menu under Response Type and Equiripple under FIR
Design Method. In general, when you change the Response Type or Design Method, the filter
parameters and Filter Display region update automatically.

2. Select Specify order in the Filter Order area and enter 30.

3. The FIR Equiripple filter has a Density Factor option which controls the density of the frequency
grid. Increasing the value creates a filter which more closely approximates an ideal equiripple filter,
but more time is required as the computation increases. Leave this value at 20.

4. Select Normalized (0 to 1) in the Units pull down menu in the Frequency Specifications area.

5. Enter 0.2 for wpass and 0.5 for wstop in the Frequency Specifications area.

6. Wpass and Wstop, in the Magnitude Specifications area are positive weights, one per band,
used during optimization in the FIR Equiripple filter. Leave these values at 1.
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7. After setting the design specifications, click the Design Filter button at the bottom of the GUI to
design the filter.

The magnitude response of the filter is displayed in the Filter Analysis area after the coefficients are
computed.

Viewing other Analyses

Once you have designed the filter, you can view the following filter analyses in the display window by
clicking any of the buttons on the toolbar:

In order from left to right, the buttons are

• Magnitude response
• Phase response
• Magnitude and Phase responses
• Group delay response
• Phase delay response
• Impulse response
• Step response
• Pole-zero plot
• Filter Coefficients
• Filter Information

Changing Axes Units

You can change the x- or y-axis units by right-clicking the mouse on an axis label and selecting the
desired units. The current units have a check mark.
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Marking Data Points

In the Display region, you can click on any point in the plot to add a data marker, which displays the
values at that point. Right-clicking on the data marker displays a menu where you can move, delete or
adjust the appearance of the data markers.

Optimizing the Design

To minimize the cost of implementation of the filter, we will try to reduce the number of coefficients
by using Minimum Order option in the design panel.

Change the selection in Filter Order to Minimum Order in the Design Region and leave the other
parameters as they are.

Click the Design Filter button to design the new filter.
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As you can see in the Current Filter Information area, the filter order decreased from 30 to 16, the
number of ripples decreased and the transition width became wider. The passband and the stopband
specifications still meet the design criteria.

Changing Analyses Parameters

By right-clicking on the plot and selecting Analysis Parameters, you can display a dialog box for
changing analysis-specific parameters. (You can also select Analysis Parameters from the Analysis
menu.)

To save the displayed parameters as the default values, click Save as Default. To restore the
MATLAB-defined default values, click Restore Original Defaults.

Exporting the Filter

Once you are satisfied with your design, you can export your filter to the following destinations:
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• MATLAB workspace
• MAT-file
• Text-file

Select Export from the File menu.

When you choose to export to the MATLAB workspace or to a MAT-file, you can export the filter as
coefficients. If a DSP System Toolbox™ is available you can also export your filter as a System object.

Generating a MATLAB File

Filter Designer allows you to generate MATLAB code to re-create your filter. This enables you to
embed your design into existing code or automate the creation of your filters in a script.

Select Generate MATLAB code from the File menu, choose Filter Design Function and specify
the filename in the Generate MATLAB code dialog box.

The following code was generated from the minimum order filter we designed above:
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Quantizing a Filter

If you have the DSP System Toolbox™ installed, the Set quantization parameters panel is available
on the sidebar:
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You can use this panel to quantize and analyze double-precision filters. With the DSP System Toolbox
you can quantize from double-precision to single-precision. If you have the Fixed-Point Designer, you
can quantize filters to fixed-point precision. Note that you cannot mix floating-point and fixed-point
arithmetic in your filter.

Targets

The Targets menu of Filter Designer allows you to generate various types of code representing your
filter. For example, you can generate C header files, XILINX coefficients(COE) files (with the DSP
System Toolbox) and VHDL, Verilog along with test benches (with Filter Design HDL Coder™).

Additional Features

Filter Designer also integrates additional functionality from these other MathWorks™ products:

• DSP System Toolbox- Adds advanced FIR and IIR design techniques (i.e. Filter transformations,
Multirate filters) and generates equivalent block for the filter
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• Embedded Coder™- Generates, builds and deploys code for Texas Instruments C6000
processors.

• Filter Design HDL Coder- Generates synthesizable VHDL or Verilog code for fixed-point filters
• Simulink®- Generates filters from atomic Simulink blocks

See Also
Filter Designer
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Filter Analysis using FVTool
This example shows how to use several filter analysis functions in a single figure window by using the
Filter Visualization Tool (FVTool), a Graphical User Interface available in the Signal Processing
Toolbox™.

FVTool also has an Application Program Interface (API) that allows you to interact with the GUI from
the command line. This enables you to integrate FVTool into other applications.

Launching FVTool

We want to create a lowpass filter with a passband frequency of 0.4π rad/sample, a stopband
frequency of 0.6π rad/sample, a passband ripple of 1 dB and a stopband attenuation of 80 dB. We will
design the filters using some of the Signal Processing Toolbox's filter design tools and then analyze
the results in FVTool.

Design a lowpass equiripple FIR filter

Df1 = designfilt('lowpassfir','PassbandFrequency',0.4,...
                              'StopbandFrequency',0.6,...
                              'PassbandRipple',1,...
                              'StopbandAttenuation',80,...
                              'DesignMethod','equiripple');

Design a lowpass elliptic IIR filter

Df2 = designfilt('lowpassiir','PassbandFrequency',0.4,...
                              'StopbandFrequency',0.6,...
                              'PassbandRipple',1,...
                              'StopbandAttenuation',80,...
                              'DesignMethod','ellip');

Launch FVTool with the filter objects and return a handle to FVTool which enables us to reuse the
same FVTool figure.

hfvt = fvtool(Df1, Df2);
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Adding and Removing Filters

We can observe that both filters meet the design specifications, but we also want to see how well the
Chebyshev Type II design performs.

You can add a filter to FVTool using the ADDFILTER function.

Df3 = designfilt('lowpassiir','PassbandFrequency',0.4,...
                              'StopbandFrequency',0.6,...
                              'PassbandRipple',1,...
                              'StopbandAttenuation',80,...
                              'DesignMethod','cheby2');
addfilter(hfvt, Df3);
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To identify which line on the plot belongs to which filter, you can add a legend using the LEGEND
function of the FVTool handle.

legend(hfvt, 'Equiripple', 'Elliptic', 'Chebyshev Type II');
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You can remove a filter from FVTool using the DELETEFILTER function and passing the index of the
filter(s) that you want to remove.

deletefilter(hfvt, [1 3]);
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Changing the Analysis Parameters

The handle that FVTool returns contains properties that allow you to interact with both the filter and
the current analysis.

To see all of the available properties you can use the GET command. The first properties are those of
a regular MATLAB® figure. The last fourteen properties are FVTool specific. The last six of these
(from FrequencyScale to MagnitudeDisplay) are analysis specific.

s = get(hfvt);
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% Keep the last 14 properties
c = struct2cell(s);
f = fieldnames(s);
s = cell2struct(c(end-14:end),f(end-14:end),1)

s = struct with fields:
       SelectionHighlight: on
                      Tag: 'filtervisualizationtool'
                 UserData: []
                  Visible: on
        OverlayedAnalysis: ''
            ShowReference: 'on'
           FrequencyScale: 'Linear'
                 Analysis: 'magnitude'
           FrequencyRange: '[0, pi)'
         MagnitudeDisplay: 'Magnitude (dB)'
      NormalizedFrequency: 'on'
            PolyphaseView: 'off'
    NormalizeMagnitudeto1: 'off'
          FrequencyVector: [1x256 double]
           NumberofPoints: 8192

All the parameters that are available from the FVTool's Analysis Parameters dialog are also available
as properties of the FVTool object. The SET command with only two input arguments returns all
possible values.

set(hfvt, 'MagnitudeDisplay')

 Filter Analysis using FVTool

24-207



ans = 1x4 cell
  Columns 1 through 3

    {'Magnitude'}    {'Magnitude (dB)'}    {'Magnitude squared'}

  Column 4

    {'Zero-phase'}

Turn the display to 'Magnitude Squared'

hfvt.MagnitudeDisplay = 'Magnitude Squared';

Get all possible values for the 'Analysis' property

set(hfvt, 'Analysis')

ans = 1x12 cell
  Columns 1 through 5

    {'magnitude'}    {'phase'}    {'freq'}    {'grpdelay'}    {'phasedelay'}

  Columns 6 through 10

    {'impulse'}    {'step'}    {'polezero'}    {'coefficients'}    {'info'}

  Columns 11 through 12
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    {'magestimate'}    {'noisepower'}

Let us now change the analysis to look at the Group Delay Response of the filter.

hfvt.Analysis = 'grpdelay';

The GET command will return new Analysis Parameters for the new analysis.

GroupDelayUnits = hfvt.GroupDelayUnits;

Overlaying Two Analyses

We would also like to see how the Group Delay and the magnitude response overlap in the frequency
domain.

You can overlay any two analyses in FVTool that share a common x-axis (time or frequency) by setting
the 'OverlayedAnalysis' property.

set(hfvt, 'OverlayedAnalysis', 'magnitude', 'Legend', 'On')
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To turn off the overlayed analysis simply set the 'OverlayedAnalysis' property to ''.

hfvt.OverlayedAnalysis = '';
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Interacting with FVTool like a Figure Window

The FVTool window can also be annotated like a normal figure window.

The FVTool figure behaves as a normal figure window. This allows you to use MATLAB's grid and axis
functions.

grid on
axis([.3 .45 5 25]);
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The axis is also accessible from the command line. This allows you to change the title and labels.

title('Group Delay of an Elliptic filter');
xlabel('Frequency (normalized to 1)');
ylabel('Group Delay in samples');

htext = text(.35, 23, 'Maximum Group Delay');
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FVTool will not automatically delete additional annotations from your analysis, you can do this by
deleting the handle itself. You can close the FVTool figure by calling the close function on the FVTool
handle.

delete(htext);
close(hfvt)

See Also
FVTool | designfilt
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FIR Gaussian Pulse-shaping Filter Design
This example shows how to design a Gaussian pulse-shaping FIR filter and the parameters influencing
this design. The FIR Gaussian pulse-shaping filter design is done by truncating a sampled version of
the continuous-time impulse response of the Gaussian filter which is given by:

h(t) = π
a e−

π2t2

a2

The parameter 'a' is related to 3-dB bandwidth-symbol time product (B*Ts) of the Gaussian filter as
given by:

a = 1
BTs

log2
2

There are two approximation errors in this design: a truncation error and a sampling error. The
truncation error is due to a finite-time (FIR) approximation of the theoretically infinite impulse
response of the ideal Gaussian filter. The sampling error (aliasing) is due to the fact that a Gaussian
frequency response is not really band-limited in a strict sense (i.e. the energy of the Gaussian signal
beyond a certain frequency is not exactly zero). This can be noted from the transfer function of the
continuous-time Gaussian filter, which is given as below:

H(f ) = e−a2f2

As f increases, the frequency response tends to zero, but never is exactly zero, which means that it
cannot be sampled without some aliasing occurring.

Continuous-time Gaussian Filter

To design a continuous-time Gaussian filter, let us define the symbol time (Ts) to be 1 micro-second
and the number of symbols between the start of the impulse response and its end (filter span) to be 6.
From the equations above, we can see that the impulse response and the frequency response of the
Gaussian filter depend on the parameter 'a' which is related to the 3 dB bandwidth-symbol time
product. To study the effect of this parameter on the Gaussian FIR filter design, we will define various
values of 'a' in terms of Ts and compute the corresponding bandwidths. Then, we will plot the impulse
response for each 'a' and the magnitude response for each bandwidth.

Ts   = 1e-6; % Symbol time (sec)
span = 6;    % Filter span in symbols

a = Ts*[.5, .75, 1, 2];
B = sqrt(log(2)/2)./(a);

t = linspace(-span*Ts/2,span*Ts/2,1000)';
hg = zeros(length(t),length(a));
for k = 1:length(a)
  hg(:,k) = sqrt(pi)/a(k)*exp(-(pi*t/a(k)).^2);
end

plot(t/Ts,hg)
title({'Impulse response of a continuous-time Gaussian filter';...
  'for various bandwidths'});
xlabel('Normalized time (t/Ts)')
ylabel('Amplitude')
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legend(sprintf('a = %g*Ts',a(1)/Ts),sprintf('a = %g*Ts',a(2)/Ts),...
  sprintf('a = %g*Ts',a(3)/Ts),sprintf('a = %g*Ts',a(4)/Ts))
grid on;

Note that the impulse responses are normalized to the symbol time.

Frequency Response for Continuous-time Gaussian Filter

We will compute and plot the frequency response for continuous-time Gaussian filters with different
bandwidths. In the graph below, the 3-dB cutoff is indicated by the red circles ('o') on the magnitude
response curve. Note that 3-dB bandwidth is between DC and B.

f = linspace(0,32e6,10000)';
Hideal = zeros(length(f),length(a));
for k = 1:length(a)
  Hideal(:,k) = exp(-a(k)^2*f.^2);
end

plot(f,20*log10(Hideal))
titleStr = {'Ideal magnitude response for a continuous-time ';...
  'Gaussian filter for various bandwidths'};
title(titleStr);
legend(sprintf('B = %g',B(1)),sprintf('B = %g',B(2)),...
  sprintf('B = %g',B(3)),sprintf('B = %g',B(4)))
hold on
for k = 1:length(a)
  plot(B,20*log10(exp(-a.^2.*B.^2)),'ro','HandleVisibility','off')
end
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axis([0 5*max(B) -50 5])
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
grid on;

FIR approximation of the Gaussian Filter

We will design the FIR Gaussian filter using the gaussdesign function. The inputs to this function are
the 3-dB bandwidth-symbol time product, the number of symbol periods between the start and end of
the filter impulse response, i.e. filter span in symbols, and the oversampling factor (i.e. the number of
samples per symbol).

The oversampling factor (OVSF) determines the sampling frequency and the filter length and hence,
plays a significant role in the Gaussian FIR filter design. The approximation errors in the design can
be reduced with an appropriate choice of oversampling factor. We illustrate this by comparing the
Gaussian FIR filters designed with two different oversampling factors.

First, we will consider an oversampling factor of 16 to design the discrete Gaussian filter.

ovsf = 16; % Oversampling factor (samples/symbol)
h = zeros(97,4);
iz = zeros(97,4);
for k = 1:length(a)
  BT = B(k)*Ts;
  h(:,k) = gaussdesign(BT,span,ovsf);
  [iz(:,k),t] = impz(h(:,k));
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end
figure('Color','white')
t = (t-t(end)/2)/Ts;
stem(t,iz)
title({'Impulse response of the Gaussian FIR filter for ';...
  'various bandwidths, OVSF = 16'});
xlabel('Normalized time (t/Ts)')
ylabel('Amplitude')
legend(sprintf('a = %g*Ts',a(1)/Ts),sprintf('a = %g*Ts',a(2)/Ts),...
  sprintf('a = %g*Ts',a(3)/Ts),sprintf('a = %g*Ts',a(4)/Ts))
grid on;

Frequency Response for FIR Gaussian Filter (oversampling factor=16)

We will calculate the frequency response for the Gaussian FIR filter with an oversampling factor of 16
and we will compare it with the ideal frequency response (i.e. frequency response of a continuous-
time Gaussian filter).

Fs = ovsf/Ts;
fvtool(h(:,1),1,h(:,2),1,h(:,3),1,h(:,4),1,...
  'FrequencyRange', 'Specify freq. vector', ...
  'FrequencyVector',f,'Fs',Fs,'Color','white');
title('Ideal magnitude responses and FIR approximations, OVSF = 16')
hold on
plot(f*Ts,20*log10(Hideal),'--')
hold off
axis([0 32 -350 5])
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legend(append(["B = " "Ideal, B = "],string(num2str(B','%g'))), ...
   'NumColumns',2,'Location','best')

Notice that the first two FIR filters exhibit aliasing errors and the last two FIR filters exhibit
truncation errors. Aliasing occurs when the sampling frequency is not greater than the Nyquist
frequency. In case of the first two filters, the bandwidth is large enough that the oversampling factor
does not separate the spectral replicas enough to avoid aliasing. The amount of aliasing is not very
significant however.

On the other hand, the last two FIR filters show the FIR approximation limitation before any aliasing
can occur. The magnitude responses of these two filters reach a floor before they can overlap with the
spectral replicas.

Significance of the Oversampling Factor

The aliasing and truncation errors vary according to the oversampling factor. If the oversampling
factor is reduced, these errors will be more severe, since this reduces the sampling frequency
(thereby moving the replicas closer) and also reduces the filter lengths (increasing the error in the
FIR approximation).

For example, if we select an oversampling factor of 4, we will see that all the FIR filters exhibit
aliasing errors as the sampling frequency is not large enough to avoid the overlapping of the spectral
replicas.

ovsf = 4; % Oversampling factor (samples/symbol)
h = zeros(25,4);
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iz = zeros(25,4);
for k = 1:length(a)
  BT = B(k)*Ts;
  h(:,k) = gaussdesign(BT,span,ovsf);
  [iz(:,k),t] = impz(h(:,k));
end
figure('Color','white')
t = (t-t(end)/2)/Ts;
stem(t,iz)
title({'Impulse response of the Gaussian FIR filter'; 'for various bandwidths, OVSF = 4'});
xlabel('Normalized time (t/Ts)')
ylabel('Amplitude')
legend(sprintf('a = %g*Ts',a(1)/Ts),sprintf('a = %g*Ts',a(2)/Ts),...
  sprintf('a = %g*Ts',a(3)/Ts),sprintf('a = %g*Ts',a(4)/Ts))
grid on;

Frequency Response for FIR Gaussian Filter (oversampling factor=4)

We will plot and study the frequency response for the Gaussian FIR filter designed with oversampling
factor of 4. A smaller oversampling factor means smaller sampling frequency. As a result, this
sampling frequency is not enough to avoid the spectral overlap and all the FIR approximation filters
exhibit aliasing.

Fs = ovsf/Ts;
fvtool(h(:,1),1,h(:,2),1,h(:,3),1,h(:,4),1,...
  'FrequencyRange', 'Specify freq. vector', ...
  'FrequencyVector',f,'Fs',Fs,'Color','white');
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title('Ideal magnitude responses and FIR approximations, OVSF = 4')
hold on
plot(f*Ts,20*log10(Hideal),'--')
hold off
axis([0 32 -350 5])
legend(append(["B = " "Ideal, B = "],string(num2str(B','%g'))), ...
   'NumColumns',2,'Location','southeast')

See Also
FVTool | gaussdesign
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Generating Guitar Chords Using the Karplus-Strong Algorithm
This example shows how to generate realistic guitar chords using the Karplus-Strong Algorithm and
discrete-time filters.

Setup

Begin by defining variables that we will be using later, e.g. the sampling frequency, the first harmonic
frequency of the A string, the offset of each string relative to the A string.

Fs       = 44100;
A        = 110; % The A string of a guitar is normally tuned to 110 Hz
Eoffset  = -5;
Doffset  = 5;
Goffset  = 10;
Boffset  = 14;
E2offset = 19;

Generate the frequency vector that we will use for analysis.

F = linspace(1/Fs, 1000, 2^12);

Generate 4 seconds of zeros to be used to generate the guitar notes.

x = zeros(Fs*4, 1);

Play a Note on an Open String

When a guitar string is plucked or strummed, it produces a sound wave with peaks in the frequency
domain that are equally spaced. These are called the harmonics and they give each note a full sound.
We can generate sound waves with these harmonics with discrete-time filter objects.

Determine the feedback delay based on the first harmonic frequency.

delay = round(Fs/A);

Generate an IIR filter whose poles approximate the harmonics of the A string. The zeros are added for
subtle frequency domain shaping.

b  = firls(42, [0 1/delay 2/delay 1], [0 0 1 1]);
a  = [1 zeros(1, delay) -0.5 -0.5];

Show the magnitude response of the filter.

[H,W] = freqz(b, a, F, Fs);
plot(W, 20*log10(abs(H)));
title('Harmonics of an open A string');
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');
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To generate a 4 second synthetic note first we create a vector of states with random numbers. Then
we filter zeros using these initial states. This forces the random states to exit the filter shaped into
the harmonics.

zi = rand(max(length(b),length(a))-1,1);
note = filter(b, a, x, zi);

Normalize the sound for the audioplayer.

note = note-mean(note);
note = note/max(abs(note));

% To hear, type: hplayer = audioplayer(note, Fs); play(hplayer)

Play a Note on a Fretted String

Each fret along a guitar's neck allows the player to play a half tone higher, or a note whose first
harmonic is 21/12 higher.

fret  = 4;
delay = round(Fs/(A*2^(fret/12)));

b  = firls(42, [0 1/delay 2/delay 1], [0 0 1 1]);
a  = [1 zeros(1, delay) -0.5 -0.5];

[H,W] = freqz(b, a, F, Fs);
hold on
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plot(W, 20*log10(abs(H)));
title('Harmonics of the A string');
legend('Open A string', 'A string on the 4th fret');

Populate the states with random numbers.

zi = rand(max(length(b),length(a))-1,1);

Create a 4 second note.

note = filter(b, a, x, zi);

Normalize the sound for the audioplayer.

note = note-mean(note);
note = note/max(note);

% To hear, type: hplayer = audioplayer(note, Fs); play(hplayer)

Play a Chord

A chord is a group of notes played together whose harmonics enforce each other. This happens when
there is a small integer ratio between the two notes, e.g. a ratio of 2/3 would mean that the first notes
third harmonic would align with the second notes second harmonic.

Define the frets for a G major chord.

fret = [3 2 0 0 0 3];
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Get the delays for each note based on the frets and the string offsets.

delay = [round(Fs/(A*2^((fret(1)+Eoffset)/12))), ...
    round(Fs/(A*2^(fret(2)/12))), ...
    round(Fs/(A*2^((fret(3)+Doffset)/12))), ...
    round(Fs/(A*2^((fret(4)+Goffset)/12))), ...
    round(Fs/(A*2^((fret(5)+Boffset)/12))), ...
    round(Fs/(A*2^((fret(6)+E2offset)/12)))];

  
b = cell(length(delay),1);
a = cell(length(delay),1);
H = zeros(length(delay),4096);
note = zeros(length(x),length(delay));
for indx = 1:length(delay)
    
    % Build a cell array of numerator and denominator coefficients.
    b{indx} = firls(42, [0 1/delay(indx) 2/delay(indx) 1], [0 0 1 1]).';
    a{indx} = [1 zeros(1, delay(indx)) -0.5 -0.5].';
    
    % Populate the states with random numbers and filter the input zeros.
    zi = rand(max(length(b{indx}),length(a{indx}))-1,1);
    
    note(:, indx) = filter(b{indx}, a{indx}, x, zi);
    
    % Make sure that each note is centered on zero.
    note(:, indx) = note(:, indx)-mean(note(:, indx));
    
    [H(indx,:),W] = freqz(b{indx}, a{indx}, F, Fs);
end

Display the magnitude for all the notes in the chord.

hline = plot(W,20*log10(abs(H.')));
title('Harmonics of a G major chord');
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');
legend(hline,'G','B','D','G','B','G2');
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Combine the notes and normalize them.

combinedNote = sum(note,2);
combinedNote = combinedNote/max(abs(combinedNote));

% To hear, type: hplayer = audioplayer(combinedNote, Fs); play(hplayer)

Add a Strumming Effect

To add a strumming effect we simply offset each previously created note.

Define the offset between strings as 50 milliseconds.

offset = 50; 
offset = ceil(offset*Fs/1000);

Add 50 milliseconds between each note by prepending zeros.

for indx = 1:size(note, 2)
    note(:, indx) = [zeros(offset*(indx-1),1); ...
                note((1:end-offset*(indx-1)), indx)];
end

combinedNote = sum(note,2);
combinedNote = combinedNote/max(abs(combinedNote));
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% To hear, type: hplayer = audioplayer(combinedNote, Fs); play(hplayer)

See Also
firls | freqz
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DFT Estimation with the Goertzel Algorithm
This example shows how to use the Goertzel function to implement a DFT-based DTMF detection
algorithm.

Dual-tone Multi-Frequency (DTMF) signaling is the basis for voice communications control and is
widely used worldwide in modern telephony to dial numbers and configure switchboards. It is also
used in systems such as in voice mail, electronic mail and telephone banking.

Generating DTMF Tones

A DTMF signal consists of the sum of two sinusoids – or tones – with frequencies taken from two
mutually exclusive groups. These frequencies were chosen to prevent any harmonics from being
incorrectly detected by the receiver as some other DTMF frequency. Each pair of tones contains one
frequency of the low group (697 Hz, 770 Hz, 852 Hz, 941 Hz) and one frequency of the high group
(1209 Hz, 1336 Hz, 1477 Hz) and represents a unique symbol. The frequencies allocated to the push-
buttons of the telephone pad are shown below:

Generate and plot a DTMF signal for each button on the telephone pad. Each signal has a sample rate
of 8 kHz and a duration of 100 ms.

symbol = {'1','2','3','4','5','6','7','8','9','*','0','#'};
[tones, Fs, f, lfg, hfg] = helperDTMFToneGenerator(symbol, false);
helperDFTEstimationPlot1(tones, symbol, Fs, f);
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Playing DTMF Tones

For example, play the tones corresponding to phone number 508-647-7000. The "0" symbol
corresponds to the 11th tone.

% To hear, uncomment these lines:

% for i = [5 11 8 6 4 7 7 11 11 11]
%     p = audioplayer(tones(:,i),Fs,16);
%     play(p)
%     pause(0.5)
% end

Estimating DTMF Tones with the Goertzel Algorithm

The minimum duration of a DTMF signal defined by the ITU standard is 40 ms. Therefore, there are
at most 0.04 x 8000 = 320 samples available for estimation and detection. The DTMF decoder needs
to estimate the frequencies contained in these short signals.
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One common approach to this estimation problem is to compute the Discrete-Time Fourier Transform
(DFT) samples close to the seven fundamental tones. For a DFT-based solution, it has been shown that
using 205 samples in the frequency domain minimizes the error between the original frequencies and
the points at which the DFT is estimated.

Nt = 205;
original_f = [lfg(:);hfg(:)]  % Original frequencies

original_f = 7×1

         697
         770
         852
         941
        1209
        1336
        1477

k = round(original_f/Fs*Nt);  % Indices of the DFT
estim_f = round(k*Fs/Nt)      % Frequencies at which the DFT is estimated

estim_f = 7×1

         702
         780
         859
         937
        1210
        1327
        1483

To minimize the error between the original frequencies and the points at which the DFT is estimated,
we truncate the tones, keeping only 205 samples or 25.6 ms for further processing.

tones = tones(1:205,:);

At this point we could use the Fast Fourier Transform (FFT) algorithm to calculate the DFT. However,
the popularity of the Goertzel algorithm in this context lies in the small number of points at which the
DFT is estimated. In this case, the Goertzel algorithm is more efficient than the FFT algorithm.

for toneChoice = 1:12
    % Select tone
    tone = tones(:,toneChoice);
    % Estimate DFT using Goertzel
    ydft(:,toneChoice) = goertzel(tone,k+1); % Goertzel uses 1-based indexing   
end

Plot Goertzel's DFT magnitude estimate of each tone on a grid corresponding to the telephone pad.

helperDFTEstimationPlot2(ydft,symbol,f, estim_f);
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Detecting DTMF Tones

The digital tone detection can be achieved by measuring the energy present at the seven frequencies
estimated above. Each symbol can be separated by simply taking the component of maximum energy
in the lower and upper frequency groups.

Appendix

The following helper functions are used in this example.

• helperDTMFToneGenerator.m
• helperDFTEstimationPlot1.m
• helperDFTEstimationPlot2.m

See Also
goertzel
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Discrete Walsh-Hadamard Transform
Introduction

This example shows how to use the Walsh-Hadamard transform (WHT) and some of its properties by
showcasing two applications: communications using spread spectrum and processing of ECG signals.

WHTs are used in many different applications, such as power spectrum analysis, filtering, processing
speech and medical signals, multiplexing and coding in communications, characterizing non-linear
signals, solving non-linear differential equations, and logical design and analysis.

The WHT is a suboptimal, non-sinusoidal, orthogonal transformation that decomposes a signal into a
set of orthogonal, rectangular waveforms called Walsh functions. The transformation has no
multipliers and is real because the amplitude of Walsh (or Hadamard) functions has only two values,
+1 or -1.

Walsh (or Hadamard) Functions

Walsh functions are rectangular or square waveforms with values of -1 or +1. An important
characteristic of Walsh functions is sequency which is determined from the number of zero-crossings
per unit time interval. Every Walsh function has a unique sequency value.

Walsh functions can be generated in many ways (see [1]). Here we use the hadamard function in
MATLAB® to generate Walsh functions. Length eight Walsh functions are generated as follows.

N = 8;  % Length of Walsh (Hadamard) functions
hadamardMatrix = hadamard(N)

hadamardMatrix = 8×8

     1     1     1     1     1     1     1     1
     1    -1     1    -1     1    -1     1    -1
     1     1    -1    -1     1     1    -1    -1
     1    -1    -1     1     1    -1    -1     1
     1     1     1     1    -1    -1    -1    -1
     1    -1     1    -1    -1     1    -1     1
     1     1    -1    -1    -1    -1     1     1
     1    -1    -1     1    -1     1     1    -1

The rows (or columns) of the symmetric hadamardMatrix contain the Walsh functions. The Walsh
functions in the matrix are not arranged in increasing order of their sequencies or number of zero-
crossings (i.e. 'sequency order') but are arranged in 'Hadamard order'. The Walsh matrix, which
contains the Walsh functions along the rows or columns in the increasing order of their sequencies is
obtained by changing the index of the hadamardMatrix as follows.

HadIdx = 0:N-1;                          % Hadamard index
M = log2(N)+1;                           % Number of bits to represent the index

Each column of the sequency index (in binary format) is given by the modulo-2 addition of columns of
the bit-reversed Hadamard index (in binary format).

binHadIdx = fliplr(dec2bin(HadIdx,M))-'0'; % Bit reversing of the binary index
binSeqIdx = zeros(N,M-1);                  % Pre-allocate memory
for k = M:-1:2
    % Binary sequency index 
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    binSeqIdx(:,k) = xor(binHadIdx(:,k),binHadIdx(:,k-1));
end
SeqIdx = binSeqIdx*pow2((M-1:-1:0)');    % Binary to integer sequency index
walshMatrix = hadamardMatrix(SeqIdx+1,:) % 1-based indexing

walshMatrix = 8×8

     1     1     1     1     1     1     1     1
     1     1     1     1    -1    -1    -1    -1
     1     1    -1    -1    -1    -1     1     1
     1     1    -1    -1     1     1    -1    -1
     1    -1    -1     1     1    -1    -1     1
     1    -1    -1     1    -1     1     1    -1
     1    -1     1    -1    -1     1    -1     1
     1    -1     1    -1     1    -1     1    -1

Discrete Walsh-Hadamard Transform

The forward and inverse Walsh transform pair for a signal x(t) of length N are

yn = 1
N ∑

i = 0

N − 1
xiWAL(n, i), n = 1, 2, …, N − 1

xi = ∑
n = 0

N − 1
ynWAL(n, i), i = 1, 2, …, N − 1

Fast algorithms, similar to the Cooley-Tukey algorithm, have been developed to implement the Walsh-
Hadamard transform with complexity O N log N  (see [1] and [2]). Since the Walsh matrix is
symmetric, both the forward and inverse transformations are identical operations except for the
scaling factor of 1/N. The functions fwht and ifwht implement the forward and the inverse WHT
respectively.

Example 1 Perform WHT on the Walsh matrix. The expected result is an identity matrix because the
rows (or columns) of the symmetric Walsh matrix contain the Walsh functions.

y1 = fwht(walshMatrix)                % Fast Walsh-Hadamard transform

y1 = 8×8

     1     0     0     0     0     0     0     0
     0     1     0     0     0     0     0     0
     0     0     1     0     0     0     0     0
     0     0     0     1     0     0     0     0
     0     0     0     0     1     0     0     0
     0     0     0     0     0     1     0     0
     0     0     0     0     0     0     1     0
     0     0     0     0     0     0     0     1

Example 2 Construct a discontinuous signal by scaling and adding arbitrary columns of the
Hadamard matrix. This signal is formed using weighted Walsh functions, so the WHT should return
non-zero values equal to the weights at the respective sequency indices. While evaluating the WHT,
the ordering is specified as 'hadamard', because a Hadamard matrix (instead of the Walsh matrix)
is used to obtain the Walsh functions.
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N = 8;
H = hadamard(N);                      % Hadamard matrix
% Construct a signal by adding a few weighted Walsh functions
x = 8.*H(1,:) + 12.*H(3,:) + 18.*H(5,:) + 10.*H(8,:);           
y = fwht(x,N,'hadamard')

y = 1×8

     8     0    12     0    18     0     0    10

WHT is a reversible transform and the original signal can be recovered perfectly using the inverse
transform. The norm between the original signal and the signal obtained from inverse transformation
equals zero, indicating perfect reconstruction.

xHat = ifwht(y,N,'hadamard');
norm(x-xHat)

ans = 0

The Walsh-Hadamard transform involves expansion using a set of rectangular waveforms, so it is
useful in applications involving discontinuous signals that can be readily expressed in terms of Walsh
functions. Below are two applications of Walsh-Hadamard transforms.

Walsh-Transform Applications

ECG signal processing Often, it is necessary to record electro-cardiogram (ECG) signals of patients
at different instants of time. This results in a large amount of data, which needs to be stored for
analysis, comparison, etc. at a later time. Walsh-Hadamard transform is suitable for compression of
ECG signals because it offers advantages such as fast computation of Walsh-Hadamard coefficients,
less required storage space since it suffices to store only those sequency coefficients with large
magnitudes, and fast signal reconstruction.

An ECG signal and its corresponding Walsh-Hadamard transform is evaluated and shown below.

x1 = ecg(512);                    % Single ecg wave
x = repmat(x1,1,8);                 
x = x + 0.1.*randn(1,length(x));  % Noisy ecg signal
y = fwht(x);                      % Fast Walsh-Hadamard transform
figure
subplot(2,1,1)
plot(x)
xlabel('Sample index')
ylabel('Amplitude')
title('ECG Signal')
subplot(2,1,2)
plot(abs(y))
xlabel('Sequency index')
ylabel('Magnitude')
title('WHT Coefficients')
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As can be seen in the above plot, most of the signal energy is concentrated at lower sequency values.
For investigation purposes, only the first 1024 coefficients are stored and used to reconstruct the
original signal. Truncating the higher sequency coefficients also helps with noise suppression. The
original and the reproduced signals are shown below.

y(1025:length(x)) = 0;            % Zeroing out the higher coefficients    
xHat = ifwht(y);                  % Signal reconstruction using inverse WHT  
figure
plot(x)
hold on
plot(xHat,'r')
xlabel('Sample index')
ylabel('ECG signal amplitude')
legend('Original Signal','Reconstructed Signal')
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The reproduced signal is very close to the original signal.

To reconstruct the original signal, we stored only the first 1024 coefficients and the ECG signal
length. This represents a compression ratio of approximately 4:1.

req = [length(x) y(1:1024)];   
whos x req

  Name      Size              Bytes  Class     Attributes

  req       1x1025             8200  double              
  x         1x4096            32768  double              

Communication using Spread Spectrum Spread spectrum-based communication technologies,
like CDMA, use Walsh codes (derived from Walsh functions) to spread message signals and WHT
transforms to despread them. Since Walsh codes are orthogonal, any Walsh-encoded signal appears
as random noise to a terminal unless that terminal uses the same code for encoding. Below we show
the process of spreading, determining Walsh codes used for spreading, and despreading to recover
the message signal.

Two CDMA terminals spread their respective message signals using two different Walsh codes (also
known as Hadamard codes) of length 64. The spread message signals are corrupted by a additive
white Gaussian noise of variance 0.1.

At the receiver (base station), signal processing is non-coherent and the received sequence of length
N needs to be correlated with 2^N Walsh codewords to extract the Walsh codes used by the
respective transmitters. This can be effectively done by transforming the received signals to sequency
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domain using the fast Walsh-Hadamard transform. Using the sequency location at a which a peak
occurs, the corresponding Walsh-Hadamard code (or the Walsh function) used can be determined.
The plot below shows that Walsh-Hadamard codes with sequency (with ordering = 'hadamard') 60
and 10 were used in the first and the second transmitter, respectively.

load mess_rcvd_signals.mat
N = length(rcvdSig1);
y1 = fwht(rcvdSig1,N,'hadamard');
y2 = fwht(rcvdSig2,N,'hadamard');
figure
plot(0:63,y1,0:63,y2,'r')
xlabel('Sequency index')
ylabel('WHT of the Received Signals')
title('Walsh-Hadamard Code Extraction')
legend('WHT of Tx - 1 signal','WHT of Tx - 2 signal')

Despreading (or decoding) to extract the message signal can be carried out in a straightforward
manner by multiplying the received signals by the respective Walsh-Hadamard codes generated using
the hadamard function. (Note that the indexing in MATLAB® starts from 1, hence Walsh-Hadamard
codes with sequency 60 and 10 are obtained from by selecting the columns (or rows) 61 and 11 in the
Hadamard matrix.)

N = 64; 
hadamardMatrix = hadamard(N);
codeTx1 = hadamardMatrix(:,61);         % Code used by transmitter 1  
codeTx2 = hadamardMatrix(:,11);         % Code used by transmitter 2
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The decoding operation to recover the original message signal is

xHat1 = codeTx1 .* rcvdSig1;            % Decoded signal at receiver 1
xHat2 = codeTx2 .* rcvdSig2;            % Decoded signal at receiver 2

The recovered message signals at the receiver side are shown below and superimposed with the
original signals for comparison.

subplot(2,1,1)
plot(x1)
hold on
plot(xHat1,'r')
legend('Original Message','Reconstructed Message','Location','Best')
xlabel('Sample index')
ylabel('Message signal amplitude')
subplot(2,1,2)
plot(x2)
hold on
plot(xHat2,'r')
legend('Original Message','Reconstructed Message','Location','Best')
xlabel('Sample index')
ylabel('Message signal amplitude')

References

1 K.G. Beauchamp, Applications of Walsh and Related Functions - With an Introduction to
Sequency Theory, Academic Press, 1984

 Discrete Walsh-Hadamard Transform

24-237



2 T. Beer, Walsh Transforms, American Journal of Physics, Vol. 49, Issue 5, May 1981

See Also
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Single Sideband Modulation via the Hilbert Transform
This example shows how to use the discrete Hilbert Transform to implement Single Sideband
Modulation.

The Hilbert Transform finds applications in modulators and demodulators, speech processing,
medical imaging, direction of arrival (DOA) measurements, essentially anywhere complex-signal
(quadrature) processing simplifies the design.

Introduction

Single Sideband (SSB) Modulation is an efficient form of Amplitude Modulation (AM) that uses half
the bandwidth used by AM. This technique is most popular in applications such as telephony, HAM
radio, and HF communications, i.e., voice-based communications. This example shows how to
implement SSB Modulation using a Hilbert Transformer.

To motivate the need to use a Hilbert Transformer in SSB modulation, it's helpful to first quickly
review double sideband modulation.

Double Sideband Modulation

A simple form of AM is the Double Sideband (DSB) Modulation, which typically consists of two
frequency-shifted copies of a modulated signal on either side of a carrier frequency. More precisely
this is referred to as a DSB Suppressed Carrier, and is defined as

f (n) = m(n)cos(2πf0n/ fs)

where m n  is usually referred to as the message signal and f 0 is the carrier frequency. As shown in
the equation above, DSB modulation consists of multiplying the message signal m n  by the carrier
cos 2πf0n/ fs , therefore, we can use the modulation theorem of Fourier transforms to calculate the
transform of f n

F(f ) = 1
2[M(f − f0) + M(f + f0)]

where M f  is the Discrete-time Fourier Transform (DTFT) of m n . If the message signal is lowpass
with bandwidth W, then F f  is a bandpass signal with twice the bandwidth. Let's look at an example
DSB signal and its spectrum.

% Define and plot a message signal which contains three tones at 500, 600,
% and 700 Hz with varying amplitudes.
Fs = 10e3;
t = 0:1/Fs:0.1-1/Fs;
m = sin(2*pi*500*t) + 0.5*sin(2*pi*600*t) + 2*sin(2*pi*700*t);
plot(t,m)

grid
xlabel('Time')
ylabel('Amplitude')
title('Message Signal m(n)')
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Below we calculate and plot the power spectrum of the message signal.

periodogram(m,[],4096,Fs,'power','centered')
ylim([-75 12])
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The double-sided power spectrum clearly shows the three tones near DC. If we zoom in further we'll
be able to read the power of each component.

xlim([0.1 1])
ylim([-18 2])
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The power for the 500 Hz tone is roughly –6 dB, for the 600 Hz tone is –12 dB, and for the 700 Hz
tone is 0 dB, which corresponds to the message signal's tone amplitudes of 1, 0.5, and 2, respectively.

Using this message signal m n , let's multiply it by a carrier to create a DSB signal, and look at its
spectrum.

fo = 3.5e3; % Carrier frequency in Hz
f = m.*cos(2*pi*fo*t);
idx = 100;
plot(t(1:idx),f(1:idx),t(1:idx),m(1:idx),':')
grid

xlabel('Time')
ylabel('Amplitude')
title('Message Signal and Message Signal Modulated')
legend('Modulated Message Signal','Message Signal m(n)')
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The blue solid line is the modulated message signal, and the red dotted line is the slow varying
message signal. The power spectrum of our modulated signal is then

periodogram(f,[],4096,Fs,'power','centered')
ylim([-75 0])
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We can see that the message signal (three tones), has been shifted to the center frequency f0.
Moreover, each component's power has been reduced to one quarter, due to the amplitudes being
halved, as indicated by the DTFT of the modulated m n . Let's zoom to read the new power values

ylim([-20 0])
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Our positive frequency components are now at –6 dB, –18 dB, and –12 dB.

Now that we've defined DSB modulation, let's take a look at single sideband modulation.

Single Sideband Modulation

Single Sideband (SSB) Modulation is similar to DSB modulation, but instead of using the whole
spectrum it uses a filter to select either the lower or upper sideband. The selection of the lower or
upper sideband results in the lower sideband (LSB) or upper sideband (USB) modulation,
respectively. There are two approaches to eliminating one of the sidebands, one is the filter method
and the other is the phasing method. The process of selective filtering of the upper or lower sideband
is difficult due to the stringent filters required, especially if there's signal content close to DC. This
example shows how to use the phasing method, which uses a Hilbert Transformer to implement SSB
Modulation.

SSB modulation requires the shifting of the message signal to another center frequency without
creating pairs of frequency components X f − f0  and X f + f0  as in the case of the DSB modulation,
i.e., avoiding the need to filter either the upper or lower sideband. This can be done by using a
Hilbert Transformer.

Let's first review the definition and properties of the ideal Hilbert Transform before we discuss its use
in SSB modulation. This will help motivate its use in SSB modulation.

Ideal Hilbert Transform

The discrete Hilbert Transform is a process by which a signal's negative frequencies are phase-
advanced by 90 degrees and the positive frequencies are phase-delayed by 90 degrees. Shifting the
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results of the Hilbert Transform (+ j) and adding it to the original signal creates a complex signal as
we'll see below.

If mi n  is the Hilbert Transform of mr n , then:

mc(n) = mr(n) + jmi(n)

is a complex signal known as the Analytic Signal. The diagram below shows the generation of an
analytic signal by means of the ideal Hilbert Transform.

One important characteristic of the analytic signal is that its spectral content lies in the positive
Nyquist interval. This is because if we shift the imaginary part of our analytic (complex) signal by 90
degrees (+ j) and add it to the real part, the negative frequencies will cancel while the positive
frequencies will add. This results in a signal with no negative frequencies. Also, the magnitude of the
frequency component in the complex signal is twice the magnitude of the frequency component in the
real signal. This is similar to a one-sided spectrum, which contains the total signal power in the
positive frequencies.

Next we introduce a Spectral Shifter. The Spectral Shifter shifts (translates) the spectral content of a
signal by modulating the analytic signal formed from the signal whose spectrum we want to shift.
This concept can be used for SSB modulation as shown later.

Spectral Shifter

Using the message signal m n  defined above we'll create an analytic signal by employing the Hilbert
Transform, which will then be modulated to the desired center frequency. The scheme is shown in the
diagram below.

Using this method of spectral shifting will ensure that the power of our signal is shifted to the
frequency of interest while maintaining a real-valued signal in the end.
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As we indicated earlier the analytic signal is made up of the original real-valued signal plus the
Hilbert Transform of that real signal. Running the real signal by the hilbert function in the Signal
Processing Toolbox™ will produce an analytic signal.

Note: The hilbert function produces the complete analytic (complex) signal, not just the imaginary
part.

mc = hilbert(m);

We can also calculate and plot the spectral content of the analytic signal constructed from our
message signal m n .

periodogram(mc,[],4096,Fs,'power','centered')
ylim([-75 6])

As shown in the spectrum plot, our analytic signal is complex and only contains positive frequency
components. Moreover, if we measure the power, or zoom in our plot further at the positive frequency
component we'll see that the power of the frequency components of the analytic signal is twice the
total power of the positive (or negative) frequency component of the real signal, i.e., it's similar to a
one-sided spectrum which contains the signal's total power. See zoomed-in plot below.

xlim([0.1 1])
ylim([-10 6])
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We see that the power of the analytic (complex) signal's frequency components 500 Hz, 600 Hz, and
700 Hz are roughly 0, –6 dB, and 6 dB, respectively, which is the original signal's total power. These
values correspond to our original real-valued signal which has three tones with amplitudes of 1, 0.5,
and 2, respectively.

At this point we can modulate the analytic signal to shift the spectral content to another center
frequency without producing frequency component pairs and maintain a real-valued signal.

To modulate the signal to the carrier frequency f0, we'll multiply the analytic signal by an
exponential.

mcm = mc.*exp(1i*2*pi*fo*t);

As shown in the Spectral Shifter diagram, after modulating our signal we'll compute the real part.
The spectrum of which is

periodogram(real(mcm),[],4096,Fs,'power','centered')
ylim([-75 0])
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As shown in the plot above our signal has been modulated to a new center frequency of f0 without
creating the frequency pairs, i.e., it resulted in upper sideband.

If we compare the spectral plot above with that of the DSB modulation we can see that the Spectral
Shifter accomplished the SSB modulation.

Efficient Implementation of SSB Modulation

From our previous derivation we can see that the SSB modulated signal, f n  can be written as

f (n) = ℜ [mc(n)exp( j2πf0n/ fs)]

where mc n  is the analytic signal defined as

mc(n) = m(n) + jm∼(n)

Expanding that equation and taking the real part we get

f (n) = [m(n)cos(2πf0n/ fs) −m∼(n)sin(2πf0n/ fs)]

which results in a single sideband, upper sideband (SSBU). Similarly, we can define the SSB lower
sideband (SSBL) by

f (n) = ℜ [mc(n)exp( − j2πf0n/ fs)]

f (n) = [m(n)cos(2πf0n/ fs) + m∼(n)sin(2πf0n/ fs)]
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The SSBU equation above suggests a more efficient way of implementing SSB. Rather than
performing the complex multiplication of mc n  with exp j2πf0n/ fs  and then throwing away the
imaginary part, we can compute only the quantities we need by implementing SSBU as shown below.

To implement the SSB modulation shown above we need to calculate the Hilbert Transform of our
message signal m n  and modulate both signals. But before we do that we need to point out the fact
that ideal Hilbert transformers are not realizable. However, algorithms that approximate the Hilbert
Transformer, such as the Parks-McClellan FIR filter design technique, have been developed which can
be used. Signal Processing Toolbox™ provides the firpm function, which designs such filters. Also,
since the filter introduces a delay we need to compensate for that delay by adding delay (N/2, where
N is the filter order) to the signal that is being multiplied by the cosine term as shown below.
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For the FIR Hilbert transformer we will use an odd length filter which is computationally more
efficient than an even length filter. Albeit even length filters enjoy smaller passband errors. The
savings in odd length filters is a result that these filters have several of the coefficients that are zero.
Also, using an odd length filter will require a shift by an integer time delay, as opposed to a fractional
time delay that is required by an even length filter. For an odd length filter, the magnitude response of
a Hilbert Transformer is zero for w = 0 and w = π. For even length filers the magnitude response
doesn't have to be 0 at π, therefore they have increased bandwidths. So for odd length filters the
useful bandwidth is limited to

0 < w < π

Let's design the filter and plot its zero-phase response.

Hd = designfilt('hilbertfir','FilterOrder',60, ...
    'TransitionWidth',0.1,'DesignMethod','equiripple');

hfv = fvtool(Hd,'MagnitudeDisplay','Zero-phase', ...
    'FrequencyRange','[-pi, pi)');
hfv.Color = 'white';
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To approximate the Hilbert Transform we'll filter the message signal with the filter.

m_tilde = filter(Hd,m);

The upper sideband signal is then

G = filtord(Hd)/2;   % Filter delay
m_delayed = [zeros(1,G),m(1:end-G)];
f = m_delayed.*cos(2*pi*fo*t) - m_tilde.*sin(2*pi*fo*t);

and the spectrum is

periodogram(f,[],4096,Fs,'power','centered')
ylim([-75 0])
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As seen in the plot above we successfully modulated the message signal (three tones) to the carrier
frequency of 3.5 kHz and kept only the upper sideband.

Summary

As we have seen, by using an approximation to the Hilbert Transform we can produce analytic
signals, which are useful in many signal applications that require spectral shifting. Specifically we
have seen how an approximate Hilbert Transformer can be used to implement Single Sideband
Modulation.

See Also
designfilt | hilbert | periodogram
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Practical Introduction to Frequency-Domain Analysis
This example shows how to perform and interpret basic frequency-domain signal analysis. The
example discusses the advantages of using frequency-domain versus time-domain representations of
a signal and illustrates basic concepts using simulated and real data. The example answers basic
questions such as: what is the meaning of the magnitude and phase of an FFT? Is my signal periodic?
How do I measure power? Is there one, or more than one signal in this band?

Frequency-domain analysis is a tool of utmost importance in signal processing applications.
Frequency-domain analysis is widely used in such areas as communications, geology, remote sensing,
and image processing. While time-domain analysis shows how a signal changes over time, frequency-
domain analysis shows how the signal's energy is distributed over a range of frequencies. A
frequency-domain representation also includes information on the phase shift that must be applied to
each frequency component in order to recover the original time signal with a combination of all the
individual frequency components.

A signal can be converted between the time and frequency domains with a pair of mathematical
operators called a transform. An example is the Fourier transform, which decomposes a function into
the sum of a (potentially infinite) number of sine wave frequency components. The 'spectrum' of
frequency components is the frequency domain representation of the signal. The inverse Fourier
transform converts the frequency domain function back to a time function. The fft and ifft
functions in MATLAB allow you to compute the Discrete Fourier transform (DFT) of a signal and the
inverse of this transform respectively.

Magnitude and Phase Information of the FFT

The frequency-domain representation of a signal carries information about the signal's magnitude
and phase at each frequency. This is why the output of the FFT computation is complex. A complex
number, , has a real part, , and an imaginary part, , such that . The magnitude of 

is computed as , and the phase of  is computed as . You can use MATLAB
functions abs and angle to respectively get the magnitude and phase of any complex number.

Use an audio example to develop some insight on what information is carried by the magnitude and
the phase of a signal. To do this, load an audio file containing 15 seconds of acoustic guitar music.
The sample rate of the audio signal is 44.1 kHz.

Fs = 44100;
y = audioread('guitartune.wav');

Use fft to observe the frequency content of the signal.

NFFT = length(y);
Y = fft(y,NFFT);
F = ((0:1/NFFT:1-1/NFFT)*Fs).';

The output of the FFT is a complex vector containing information about the frequency content of the
signal. The magnitude tells you the strength of the frequency components relative to other
components. The phase tells you how all the frequency components align in time.

Plot the magnitude and the phase components of the frequency spectrum of the signal. The
magnitude is conveniently plotted in a logarithmic scale (dB). The phase is unwrapped using the
unwrap function so that we can see a continuous function of frequency.

magnitudeY = abs(Y);        % Magnitude of the FFT
phaseY = unwrap(angle(Y));  % Phase of the FFT
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helperFrequencyAnalysisPlot1(F,magnitudeY,phaseY,NFFT)

You can apply an inverse Fourier transform to the frequency domain vector, Y, to recover the time
signal. The 'symmetric' flag tells ifft that you are dealing with a real-valued time signal so it will
zero out the small imaginary components that appear on the inverse transform due to numerical
inaccuracies in the computations. Notice that the original time signal, y, and the recovered signal, y1,
are practically the same (the norm of their difference is on the order of 1e-14). The very small
difference between the two is also due to the numerical inaccuracies mentioned above. Play and
listen the un-transformed signal y1.

y1 = ifft(Y,NFFT,'symmetric');
norm(y-y1)

ans =

   3.9112e-14

hplayer = audioplayer(y1, Fs);
play(hplayer);

To see the effects of changing the magnitude response of the signal, remove frequency components
above 1 kHz directly from the FFT output (by making the magnitudes equal to zero) and listen to the
effect this has on the sound of the audio file. Removing high frequency components of a signal is
referred to as lowpass filtering.
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Ylp = Y;
Ylp(F>=1000 & F<=Fs-1000) = 0;

helperFrequencyAnalysisPlot1(F,abs(Ylp),unwrap(angle(Ylp)),NFFT,...
  'Frequency components above 1 kHz have been zeroed')

Get the filtered signal back into time domain using ifft.

ylp = ifft(Ylp,'symmetric');

Play the signal. You can still hear the melody but it sounds like if you had covered your ears (you filter
high frequency sounds when you do this). Even though guitars produce notes that are between 400
and 1 kHz, as you play a note on a string, the string also vibrates at multiples of the base frequency.
These higher frequency components, referred to as harmonics, are what give the guitar its particular
tone. When you remove them, you make the sound seem "opaque".

hplayer = audioplayer(ylp, Fs);
play(hplayer);

The phase of a signal has important information about when in time the notes of the song appear. To
illustrate the importance of phase on the audio signal, remove the phase information completely by
taking the magnitude of each frequency component. Note that by doing this you keep the magnitude
response unchanged.

% Take the magnitude of each FFT component of the signal
Yzp = abs(Y);
helperFrequencyAnalysisPlot1(F,abs(Yzp),unwrap(angle(Yzp)),NFFT,[],...
  'Phase has been set to zero')
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Get the signal back in the time domain and play the audio. You cannot recognize the original sound at
all. The magnitude response is the same, no frequency components have been removed this time, but
the order of the notes has disappeared completely. The signal now consists of a group of sinusoids all
aligned at time equal to zero. In general, phase distortions caused by filtering can damage a signal to
the point of rendering it unrecognizable.

yzp = ifft(Yzp,'symmetric');
hplayer = audioplayer(yzp, Fs);
play(hplayer);

Finding Signal Periodicities

The frequency domain representation of a signal allows you to observe several characteristics of the
signal that are either not easy to see, or not visible at all when you look at the signal in the time
domain. For instance, frequency-domain analysis becomes useful when you are looking for cyclic
behavior of a signal.

Analyzing Cyclic Behavior of the Temperature in an Office Building

Consider a set of temperature measurements in an office building during the winter season.
Measurements were taken every 30 minutes for about 16.5 weeks. Look at the time domain data with
the time axis scaled to weeks. Could there be any periodic behavior on this data?

load officetemp.mat
Fs = 1/(60*30);   % Sample rate is 1 sample every 30 minutes
t = (0:length(temp)-1)/Fs;
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helperFrequencyAnalysisPlot2(t/(60*60*24*7),temp,...
  'Time in weeks','Temperature (Fahrenheit)')

It is almost impossible to know if there is any cyclic behavior on the office temperatures by looking at
the time-domain signal. However, the cyclic behavior of the temperature becomes evident if we look
at its frequency-domain representation.

Obtain the frequency-domain representation of the signal. If you plot the magnitude of the FFT
output with a frequency axis scaled to cycles/week, you can see that there are two spectral lines that
are clearly larger than any other frequency component. One spectral line lies at 1 cycle/week, the
other one lies at 7 cycles/week. This makes sense given that the data comes from a temperature-
controlled building on a 7 day calendar. The first spectral line indicates that building temperatures
follow a weekly cycle with lower temperatures on the weekends and higher temperatures during the
week. The second line indicates that there is also a daily cycle with lower temperatures during the
night and higher temperatures during the day.

NFFT = length(temp);              % Number of FFT points
F = (0 : 1/NFFT : 1/2-1/NFFT)*Fs; % Frequency vector

TEMP = fft(temp,NFFT);
TEMP(1) = 0; % remove the DC component for better visualization

helperFrequencyAnalysisPlot2(F*60*60*24*7,abs(TEMP(1:NFFT/2)),...
  'Frequency (cycles/week)','Magnitude',[],[],[0 10])
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Measuring Power

The periodogram function computes the signal's FFT and normalizes the output to obtain a power
spectral density, PSD, or a power spectrum from which you can measure power. The PSD describes
how the power of a time signal is distributed with frequency, it has units of watts/Hz. You compute the
power spectrum by integrating each point of the PSD over the frequency interval at which that point
is defined (i.e. over the resolution bandwidth of the PSD). The units of the power spectrum are watts.
You can read power values directly from the power spectrum without having to integrate over an
interval. Note that the PSD and power spectrum are real, so they do not contain any phase
information.

Measuring Harmonics at the Output of a Non-Linear Power Amplifier

Load the data measured at the output of a power amplifier that has third order distortion of the form
, where  is the output voltage and  is the input voltage. The data was

captured with a sample rate of 3.6 kHz. The input  consists of a 60 Hz sinusoid with unity
amplitude. Due to the nature of the non-linear distortion, you should expect the amplifier output
signal to contain a DC component, a 60 Hz component, and second and third harmonics at 120 and
180 Hz.

Load 3600 samples of the amplifier output, compute the power spectrum, and plot the result in a
logarithmic scale (decibels-watts or dBW).

load ampoutput1.mat
Fs = 3600;
NFFT = length(y);
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% Power spectrum is computed when you pass a 'power' flag input
[P,F] = periodogram(y,[],NFFT,Fs,'power');

helperFrequencyAnalysisPlot2(F,10*log10(P),'Frequency in Hz',...
  'Power spectrum (dBW)',[],[],[-0.5 200])

The plot of the power spectrum shows three of the four expected peaks at DC, 60, and 120 Hz. It also
shows several more spurious peaks that must be caused by noise in the signal. Note that the 180 Hz
harmonic is completely buried in the noise.

Measure the power of the visible expected peaks:

PdBW = 10*log10(P);
power_at_DC_dBW = PdBW(F==0)   % dBW

[peakPowers_dBW, peakFreqIdx] = findpeaks(PdBW,'minpeakheight',-11);
peakFreqs_Hz = F(peakFreqIdx)
peakPowers_dBW

power_at_DC_dBW =

   -7.8873

peakFreqs_Hz =
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    60
   120

peakPowers_dBW =

   -0.3175
  -10.2547

Improving Power Measurements for Noisy Signals

As seen on the plot above, the periodogram shows several frequency peaks that are not related to the
signal of interest. The spectrum looks very noisy. The reason for this is that you only analyzed one
short realization of the noisy signal. Repeating the experiment several times and averaging would
remove the spurious spectral peaks and yield more accurate power measurements. You can achieve
this averaging using the pwelch function. This function will take a large data vector, break it into
smaller segments of a specified length, compute as many periodograms as there are segments, and
average them. As the number of available segments increases, the pwelch function will yield a
smoother power spectrum (less variance) with power values closer to the expected values.

Load a larger observation consisting of 500e3 points of the amplifier output. Keep the number of
points used to perform the FFTs as 3600 so that floor(500e3/3600) = 138 FFTs are averaged to obtain
the power spectrum.

load ampoutput2.mat
SegmentLength = NFFT;

% Power spectrum is computed when you pass a 'power' flag input
[P,F] = pwelch(y,ones(SegmentLength,1),0,NFFT,Fs,'power');

helperFrequencyAnalysisPlot2(F,10*log10(P),'Frequency in Hz',...
  'Power spectrum (dBW)',[],[],[-0.5 200])
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As seen on the plot, pwelch effectively removes all the spurious frequency peaks caused by noise.
The spectral component at 180 Hz that was buried in noise is now visible. Averaging removes
variance from the spectrum and this effectively yields more accurate power measurements.

Measuring Total Average Power and Power Over a Frequency Band

Measuring the total average power of a time-domain signal is an easy and common task. For the
amplifier output signal, y, the total average power is computed in the time domain as:

pwr = sum(y.^2)/length(y) % in watts

pwr =

    8.1697

In the frequency-domain, the total average power is computed as the sum of the power of all the
frequency components of the signal. The value of pwr1 consists of the sum of all the frequency
components available in the power spectrum of the signal. The value agrees with the value of pwr
computed above using the time domain signal:

pwr1 = sum(P) % in watts

pwr1 =
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    8.1698

But what if you wanted to measure the total power available over a band of frequencies? You can use
the bandpower function to compute the power over any desired frequency band. You can pass the
time-domain signal directly as an input to this function to obtain the power over a specified band. In
this case, the function will estimate the power spectrum with the periodogram method.

Compute the power over the 50 Hz to 70 Hz band. The result will include the 60 Hz power plus the
noise power over the band of interest:

pwr_band = bandpower(y,Fs,[50 70]);
pwr_band_dBW = 10*log10(pwr_band) % dBW

pwr_band_dBW =

    0.0341

If you want to control the computation of the power spectrum used to measure the power in a band,
you can pass a PSD vector to the bandpower function. For instance, you can use the pwelch function
as you did before to compute the PSD and ensure averaging of the noise effects:

% Power spectral density is computed when you specify the 'psd' option
[PSD,F]  = pwelch(y,ones(SegmentLength,1),0,NFFT,Fs,'psd');
pwr_band1 = bandpower(PSD,F,[50 70],'psd');
pwr_band_dBW1 = 10*log10(pwr_band1) % dBW

pwr_band_dBW1 =

    0.0798

Finding Spectral Components

A signal might be composed of one or more frequency components. The ability to observe all the
spectral components depends on the frequency resolution of your analysis. The frequency resolution
or resolution bandwidth of the power spectrum is defined as R = Fs/N, where N is the length of the
signal observation. Only spectral components separated by a frequency larger than the frequency
resolution will be resolved.

Analyzing a Building's Earthquake Vibration Control System

Active Mass Driver (AMD) control systems are used to reduce vibration in a building under an
earthquake. An active mass driver is placed on the top floor of the building and, based on
displacement and acceleration measurements of the building floors, a control system sends signals to
the driver so that the mass moves to attenuate ground disturbances. Acceleration measurements
were recorded on the first floor of a three story test structure under earthquake conditions.
Measurements were taken without the active mass driver control system (open loop condition), and
with the active control system (closed loop condition).

Load the acceleration data and compute the power spectrum for the acceleration of the first floor.
The length of the data vectors is 10e3 and the sample rate is 1 kHz. Use pwelch with segments of
length 64 data points to obtain floor(10e3/64) = 156 FFT averages and a resolution bandwidth of
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Fs/64 = 15.625 Hz. As was shown before, averaging reduces noise effects and yields more accurate
power measurements. Use 512 FFT points. Using NFFT > N effectively interpolates frequency points
rendering a more detailed spectrum plot (this is achieved by appending NFFT-N zeros at the end of
the time signal and taking the NFFT-point FFT of the zero padded vector).

The open loop and close loop acceleration power spectra show that when the control system is active,
the acceleration power spectrum decreases between 4 and 11 dB. The maximum attenuation occurs
at about 23.44 kHz. An 11 dB reduction means that the vibration power is reduced by a factor of 12.6.
The total power is reduced from 0.1670 to 0.059 watts, a factor of 2.83.

load quakevibration.mat

Fs = 1e3;                 % sample rate
NFFT = 512;               % number of FFT points
segmentLength = 64;       % segment length

% open loop acceleration power spectrum
[P1_OL,F] = pwelch(gfloor1OL,ones(segmentLength,1),0,NFFT,Fs,'power');

% closed loop acceleration power spectrum
P1_CL     = pwelch(gfloor1CL,ones(segmentLength,1),0,NFFT,Fs,'power');

helperFrequencyAnalysisPlot2(F,10*log10([(P1_OL) (P1_CL)]),...
  'Frequency in Hz','Acceleration Power Spectrum in dB',...
  'Resolution bandwidth = 15.625 Hz',{'Open loop', 'Closed loop'},[0 100])
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You are analyzing vibration data and you know that vibrations have a cyclic behavior. Then how is it
that the spectrum plots shown above do not contain any sharp spectral lines typical of cyclic
behavior? Maybe you are missing those lines because they are not resolvable with the resolution
obtained with 64 point segment lengths? Increase the frequency resolution to see if there are spectral
lines that were not resolvable before. Do this by increasing the data segment length used in the
pwelch function to 512 points. This yields a new resolution of Fs/512 = 1.9531 Hz. In this case, the
number of FFT averages is reduced to floor(10e3/512) = 19. Clearly, there is a trade-off between
number of averages and frequency resolution when using pwelch. Keep the number of FFT points
equal to 512.

NFFT = 512;            % number of FFT points
segmentLength = 512;   % segment length

[P1_OL,F] = pwelch(gfloor1OL,ones(segmentLength,1),0,NFFT,Fs,'power');
P1_CL     = pwelch(gfloor1CL,ones(segmentLength,1),0,NFFT,Fs,'power');

helperFrequencyAnalysisPlot2(F,10*log10([(P1_OL) (P1_CL)]),...
  'Frequency in Hz','Acceleration Power Spectrum in dB',...
  'Resolution bandwidth = 1.95 Hz',{'Open loop', 'Closed loop'},[0 100])

Notice how the increase in frequency resolution allows you to observe three peaks on the open loop
spectrum and two on the close loop spectrum. These peaks were not resolvable before. The
separation between the peaks on the open loop spectrum is about 11 Hz which is smaller than the
frequency resolution obtained with segments of length 64 but larger than the resolution obtained
with segments of length 512. The cyclic behavior of the vibrations is now visible. The main vibration
frequency is at 5.86 Hz, and the equispaced frequency peaks suggest that they are harmonically
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related. While it has already been observed that the control system reduces the overall power of the
vibrations, the higher resolution spectra shows that another effect of the control system is to notch
the harmonic component at 17.58 Hz. So the control system not only reduces the vibration but also
brings it closer to a sinusoid.

It is important to note that frequency resolution is determined by the number of signal points, not by
the number of FFT points. Increasing the number of FFT points interpolates the frequency data to
give you more details on the spectrum but it does not improve resolution.

Conclusions

In this example you learned how to perform frequency-domain analysis of a signal using the fft,
ifft, periodogram, pwelch, and bandpower functions. You understood the complex nature of the
FFT and what is the information contained in the magnitude and the phase of the frequency
spectrum. You saw the advantages of using frequency domain data when analyzing the periodicity of
a signal. You learned how compute the total power or power over a particular band of frequencies of
a noisy signal. You understood how increasing the frequency resolution of the spectrum allows you to
observe closely spaced frequency components and you learned about the tradeoff between frequency
resolution and spectral averaging.

Further Reading

For more information on frequency domain analysis see the Signal Processing Toolbox.

Reference: J.G. Proakis and D. G. Manolakis, "Digital Signal Processing. Principles, Algorithms, and
Applications", Prentice Hall, 1996.

Appendix

The following helper functions are used in this example.

• helperFrequencyAnalysisPlot1.m
• helperFrequencyAnalysisPlot2.m

See Also
fft | periodogram | pspectrum | pwelch
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Practical Introduction to Time-Frequency Analysis
This example shows how to perform and interpret basic time-frequency signal analysis. In practical
applications, many signals are nonstationary. This means that their frequency-domain representation
(their spectrum) changes over time. The example discusses the advantages of using time-frequency
techniques over frequency-domain or time-domain representations of a signal. It answers basic
questions, such as: When is a particular frequency component present in my signal? How do I
increase time or frequency resolution? How can I sharpen the spectrum of a component or extract a
particular mode? How do I measure power in a time-frequency representation? How do I visualize the
time-frequency information of my signal? How do I find intermittent interference within the
frequency content of the signal of interest?

Using Time-Frequency Analysis to Identify Numbers in a DTMF Signal

You can divide almost any time-varying signal into time intervals short enough that the signal is
essentially stationary in each section. Time-frequency analysis is most commonly performed by
segmenting a signal into those short periods and estimating the spectrum over sliding windows. The
pspectrum function used with the 'spectrogram' option computes an FFT-based spectral estimate
over each sliding window and lets you visualize how the frequency content of the signal changes over
time.

Consider the signaling system of a digital phone dial. The signals produced by such a system are
known as dual-tone multi-frequency (DTMF) signals. The sound generated by each dialed number
consists of the sum of two sinusoids − or tones − with frequencies taken from two mutually exclusive
groups. Each pair of tones contains one frequency of the low group (697 Hz, 770 Hz, 852 Hz, or 941
Hz) and one frequency of the high group (1209 Hz, 1336 Hz, or 1477Hz) and represents a unique
symbol. The following are the frequencies allocated to the buttons of a telephone pad:

Generate a DTMF signal and listen to it.

[tones, Fs] = helperDTMFToneGenerator();
p = audioplayer(tones,Fs,16);
play(p)

Listening to the signal, you can tell that a three-digit number was dialed. However, you cannot tell
which number it was. Next, visualize the signal in time and in frequency domain over the 650 to 1500
Hz band. Set the 'Leakage' parameter of the pspectrum function to 1 to use a rectangular window
and improve frequency resolution.

N = numel(tones);
t = (0:N-1)/Fs; 
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subplot(2,1,1)
plot(1e3*t,tones)
xlabel('Time (ms)')
ylabel('Amplitude')
title('DTMF Signal')
subplot(2,1,2)
pspectrum(tones,Fs,'Leakage',1,'FrequencyLimits',[650, 1500])

The time-domain plot of the signal confirms the presence of three bursts of energy, corresponding to
three pushed buttons. To measure the length of the burst, you can take the pulse width of the RMS
envelope.

env = envelope(tones,80,'rms');
pulsewidth(env,Fs)

ans = 3×1

    0.1041
    0.1042
    0.1047

title('Pulse Width of RMS Envelope')
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Here you can see three pulses, each one approximately 100 milliseconds long. However, you cannot
tell which numbers were dialed. A frequency-domain plot helps you figure this out because it shows
the frequencies present in the signal.

Locate the frequency peaks by estimating the mean frequency in four different frequency bands.

f = [meanfreq(tones,Fs,[700 800]), ...
     meanfreq(tones,Fs,[800 900]), ...
     meanfreq(tones,Fs,[900 1000]), ...
     meanfreq(tones,Fs,[1300 1400])];
round(f)

ans = 1×4

         770         852         941        1336

By matching the estimated frequencies to the diagram of the telephone pad, you can say that the
dialed buttons were '5', '8', and '0'. However, the frequency-domain plot does not provide any type of
time information that would allow you to figure out the order in which they were dialed. The
combination could be '580','508','805','850', '085', or '058'. To solve this puzzle, use the pspectrum
function to compute the spectrogram and observe how the frequency content of the signal varies with
time.

Compute the spectrogram over the 650 to 1500 Hz band and remove content below the −10 dB
power level to visualize only the main frequency components. To see the tone durations and their
locations in time use 0% overlap.
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pspectrum(tones,Fs,'spectrogram','Leakage',1,'OverlapPercent',0, ...
    'MinThreshold',-10,'FrequencyLimits',[650, 1500]);

The colors of the spectrogram encode frequency power levels. Yellow colors indicate frequency
content with higher power; blue colors indicate frequency content with very low power. A strong
yellow horizontal line indicates the existence of a tone at a particular frequency. The plot clearly
shows the presence of a 1336 Hz tone in all three dialed digits, telling you that they are all on the
second column of the keypad. From the plot you can see that the lowest frequency, 770 Hz, was
dialed first. The highest frequency, 941 Hz, was next. The middle frequency, 852 Hz, came last.
Hence, the dialed number was 508.

Trading Off Time and Frequency Resolution to Get the Best Representation of Your Signal

The pspectrum function divides a signal into segments. Longer segments provide better frequency
resolution; shorter segments provide better time resolution. The segment lengths can be controlled
using the 'FrequencyResolution' and 'TimeResolution' parameters. When no frequency
resolution or time resolution values are specified, pspectrum attempts to find a good balance
between time and frequency resolutions based on the input signal length.

Consider the following signal, sampled at 4 kHz, that consists of the trill portion of a Pacific blue
whale song:

load whaleTrill
p = audioplayer(whaleTrill,Fs,16);
play(p)
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The trill signal consists of a train of tonal pulses. Look at the time signal and the spectrogram
obtained by pspectrum when no resolution is specified and when time resolution is set to 10
milliseconds. Set the 'Leakage' parameter to 1 to use rectangular windows. Since we want to
localize the time position of the pulses, set overlap percent to 0. Finally, use a 'MinThreshold' of −
60 dB to remove background noise from the spectrogram view.

t = (0:length(whaleTrill)-1)/Fs;
figure
ax1 = subplot(3,1,1);
plot(t,whaleTrill)
ax2 = subplot(3,1,2);
pspectrum(whaleTrill,Fs,'spectrogram','OverlapPercent',0, ...
    'Leakage',1,'MinThreshold',-60)
colorbar(ax2,'off')
ax3 = subplot(3,1,3);
pspectrum(whaleTrill,Fs,'spectrogram','OverlapPercent',0, ...
    'Leakage',1,'MinThreshold',-60,'TimeResolution', 10e-3)
colorbar(ax3,'off')
linkaxes([ax1,ax2,ax3],'x')

The 47 milliseconds time resolution chosen by pspectrum is not small enough to localize all the trill
pulses in the spectrogram. On the other hand, a time resolution of 10 milliseconds is enough to
localize each trill pulse in time. This becomes even clearer if we zoom into a few pulses:

xlim([0.3 0.55])
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Now load a signal that consists of an echolocation pulse emitted by a big brown bat (Eptesicus
fuscus). The signal is measured with a sampling interval of 7 microseconds. Analyze the spectrogram
of the signal.

load batsignal
Fs = 1/DT;
figure
pspectrum(batsignal,Fs,'spectrogram')
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The spectrogram with default parameter values shows four coarse time-frequency ridges. Reduce the
frequency resolution value to 3 kHz to get more details on the frequency variation of each ridge.

pspectrum(batsignal,Fs,'spectrogram','FrequencyResolution',3e3)
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Observe that now the frequency ridges are better localized in frequency. However, since frequency
and time resolution are inversely proportional, the time resolution of the spectrogram is considerably
smaller. Set an overlap of 99% to smooth out the time windows. Use a 'MinThreshold' of −60 dB to
remove unwanted background content.

pspectrum(batsignal,Fs,'spectrogram','FrequencyResolution',3e3, ...
    'OverlapPercent',99,'MinTHreshold',-60)
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The new settings yield a spectrogram that clearly shows the four frequency ridges of the echolocation
signal.

Time-Frequency Reassignment

Even though we have been able to identify four frequency ridges, we can still see that each ridge is
spread over several adjacent frequency bins. This is due to the leakage of the windowing method
used in both time and frequency.

The pspectrum function is capable of estimating the center of energy for each spectral estimate in
both time and frequency. If you reassign the energy of each estimate to the bin closest to the new
time and frequency centers, you can correct for some of the leakage of the window. You can do this by
using the 'Reassign' parameter. Setting this parameter to true computes the reassigned
spectrogram of the signal.

pspectrum(batsignal,Fs,'spectrogram','FrequencyResolution',3e3, ...
    'OverlapPercent',99,'MinTHreshold',-60,'Reassign',true)
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Now the frequency ridges are much sharper and better localized in time. You can also localize the
signal energy using the function fsst, which is discussed in the next section.

Reconstructing a Time-Frequency Ridge

Consider the following recording, consisting of a chirp signal whose frequency decreases over time
and a final splat sound.

load splat
p = audioplayer(y,Fs,16);
play(p)
pspectrum(y,Fs,'spectrogram')
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Let us reconstruct a portion of the "splat" sound by extracting a ridge in the time-frequency plane. We
use fsst to sharpen the spectrum of a noisy version the splat signal, tfridge to identify the ridge of
the chirp sound, and ifsst to reconstruct the chirp. The process denoises the reconstructed signal.

Add Gaussian noise to the chirp portion of the "splat" sound. The added noise simulates an audio
recording taken with an inexpensive microphone. Examine the time-frequency spectral content.

rng('default')
t = (0:length(y)-1)/Fs;
yNoise = y + 0.1*randn(size(y));
yChirp = yNoise(t<0.35);
pspectrum(yChirp,Fs,'spectrogram','MinThreshold',-70)
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Sharpen the spectrum using the Fourier synchrosqueezed transform, fsst. fsst localizes energy in
the time-frequency plane by reassigning energy in frequency for a fixed time. Compute and plot the
synchrosqueezed transform of the noisy chirp.

fsst(yChirp,Fs,'yaxis')
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The chirp appears as a localized ridge in the time-frequency plane. Identify the ridge using tfridge.
Plot the ridge along with the transform.

[sst,f] = fsst(yChirp,Fs); 
[fridge, iridge] = tfridge(sst,f,10);
helperPlotRidge(yChirp,Fs,fridge);
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Next, reconstruct the chirp signal using the ridge index vector iridge. Include one bin on each side
of the ridge. Plot the spectrogram of the reconstructed signal.

yrec = ifsst(sst,kaiser(256,10),iridge,'NumFrequencyBins',1);
pspectrum(yrec,Fs,'spectrogram','MinThreshold',-70)
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Reconstructing the ridge has removed noise from the signal. Play the noisy and denoised signals
consecutively to hear the difference.

p = audioplayer([yChirp;zeros(size(yChirp));yrec],Fs,16);
play(p);

Measuring Power

Consider a complex linear frequency modulated (LFM) pulse, which is a common radar waveform.
Compute the spectrogram of the signal using a time resolution of 1.27 microseconds and 90%
overlap.

Fs = 1e8;
bw = 60e6;
t = 0:1/Fs:10e-6;
IComp = chirp(t,-bw/2,t(end), bw/2,'linear',90)+0.15*randn(size(t));
QComp = chirp(t,-bw/2,t(end), bw/2,'linear',0) +0.15*randn(size(t));
IQData = IComp + 1i*QComp;

segmentLength = 128;
pspectrum(IQData,Fs,'spectrogram','TimeResolution',1.27e-6,'OverlapPercent',90)

 Practical Introduction to Time-Frequency Analysis

24-281



The parameters used to compute the spectrogram give a clear time-frequency representation of the
LFM signal. pspectrum computes a power spectrogram, this means that the color values correspond
to true power levels in dB. The color bar shows that the power level of the signal is around −4 dB.

Logarithmic Frequency Scale Visualization

In certain applications, it may be preferable to visualize the spectrogram of a signal on a logarithmic
frequency scale. You can achieve this by changing the YScale property of the y-axis. For example,
consider a logarithmic chirp sampled at 1 kHz. The frequency of the chirp increases from 10 Hz to
400 Hz in 10 seconds.

Fs = 1e3;                    
t = 0:1/Fs:10;               
fo = 10;                     
f1 = 400;                    
y = chirp(t,fo,10,f1,'logarithmic');
pspectrum(y,Fs,'spectrogram','FrequencyResolution',1, ...
    'OverlapPercent',90,'Leakage',0.85,'FrequencyLimits',[1 Fs/2])
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The spectrogram of the chirp becomes a straight line when the frequency scale is logarithmic.

ax = gca;
ax.YScale = 'log';
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Three-Dimensional Waterfall Visualization

With the view command, you can visualize the spectrogram of a signal as a three-dimensional
waterfall plot. You can also change the display colors with the colormap function.

Fs = 10e3;
t = 0:1/Fs:2;
x1 = vco(sawtooth(2*pi*t,0.5),[0.1 0.4]*Fs,Fs);
pspectrum(x1,Fs,'spectrogram','Leakage',0.8)
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view(-45,65)
colormap bone
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Finding Interferences Using Persistence Spectrum

The persistence spectrum of a signal is a time-frequency view that shows the percentage of the time
that a given frequency is present in a signal. The persistence spectrum is a histogram in power-
frequency space. The longer a particular frequency persists in a signal as the signal evolves, the
higher its time percentage and thus the brighter or "hotter" its color in the display. Use the
persistence spectrum to identify signals hidden in other signals.

Consider an interference narrowband signal embedded within a broadband signal. Generate a chirp
sampled at 1 kHz for 500 seconds. The frequency of the chirp increases from 180 Hz to 220 Hz
during the measurement.

fs = 1000;
t = (0:1/fs:500)';

x = chirp(t,180,t(end),220) + 0.15*randn(size(t));

The signal also contains a 210 Hz interference, with an amplitude of 0.05, that is present only for 1/6
of the total signal duration.

idx = floor(length(x)/6);
x(1:idx) = x(1:idx) + 0.05*cos(2*pi*t(1:idx)*210);

Compute the power spectrum of the signal over the 100 to 290 Hz interval. The weak sinusoid is
obscured by the chirp.

pspectrum(x,fs,'FrequencyLimits',[100 290])
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Compute the persistence spectrum of the signal. Now both signal components are clearly visible.

figure
colormap parula
pspectrum(x,fs,'persistence','FrequencyLimits',[100 290],'TimeResolution',1)

 Practical Introduction to Time-Frequency Analysis

24-287



Conclusions

In this example, you learned how to perform time-frequency analysis using the pspectrum function
and how to interpret spectrogram data and power levels. You learned how to change time and
frequency resolution to improve your understanding of signal and how to sharpen spectra and extract
time-frequency ridges using fsst, ifsst, and tfridge. You learned how to configure the
spectrogram plot to get a logarithmic frequency scale and three-dimensional visualization. Finally,
you learned how to find interference signals by computing a persistence spectrum.

Appendix

The following helper functions are used in this example.

• helperDTMFToneGenerator.m
• helperTimeFrequencyAnalysisPlotReassignment.m

See Also
fsst | ifsst | pspectrum | tfridge
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Measure Power of Deterministic Periodic Signals
This example shows how to measure the power of deterministic periodic signals. Although continuous
in time, periodic deterministic signals produce discrete power spectra. The example also shows how
to improve power measurements using the reassignment technique.

Signal Classification

In general, signals can be classified into three broad categories, power signals, energy signals, or
neither. Deterministic signals which are made up of sinusoids, are an example of power signals, which
have infinite energy but finite average power. Random signals also have finite average power and fall
into the category of power signals. A transient signal is an example of energy signals, which start and
end with zero amplitude. There are still other signals that cannot be characterized as either power
signals or energy signals.

Theoretical Power of a Single Sinusoid

As a first example, estimate the average power of a sinusoidal signal with a peak amplitude of 1 and a
frequency component at 128 Hz.

Fs = 1024;
t = 0:1/Fs:1-(1/Fs);
A = 1;
F1 = 128;
x = A*sin(2*pi*t*F1);

Plot a portion of the signal in the time domain.

idx = 1:128;
plot(t(idx),x(idx))
ylabel('Amplitude')
xlabel('Time (seconds)')
axis tight
grid
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The theoretical average power (mean-square) of each complex sinusoid is A2/4, which in this example
is 0.25 or –6.02 dB. So, accounting for the power in the positive and negative frequencies results in
an average power of 2 × A2/4.

power_theoretical = (A^2/4)*2

power_theoretical = 0.5000

Compute in dB the power contained in the positive frequencies:

pow2db(power_theoretical/2)

ans = -6.0206

Measuring the Power of a Single Sinusoid

To measure the average power of the signal, call periodogram and specify the 'power' option.

periodogram(x,hamming(length(x)),[],Fs,'centered','power')
ylim([-10 -5.5])
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As you can see from the zoomed-in portion of the plot, each complex sinusoid has an average power
of roughly –6 dB.

Estimating the Power of a Single Sinusoid via PSD

Another way to calculate the average power of a signal is by "integrating" the area under the PSD
curve.

periodogram(x,hamming(length(x)),[],Fs,'centered','psd')
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In this plot, the peaks of the spectrum plot do not have the same height as in the power spectrum
plot. The heights are different because it is the area under the curve — which is the measure of the
average power — that matters when taking power spectral density (PSD) measurements. To verify
that statement, use the bandpower function, which calculates the average power using the rectangle
approximation to integrate under the curve.

[Pxx_hamming,F] = periodogram(x,hamming(length(x)),[],Fs,'psd');
power_freqdomain = bandpower(Pxx_hamming,F,'psd')

power_freqdomain = 0.5000

According to Parseval's theorem, the total average power of a sinusoid is the same in both the time
domain and the frequency domain. Use that fact to check the value of the signal's estimated total
average power by summing up the signal in the time domain.

power_timedomain = sum(abs(x).^2)/length(x)

power_timedomain = 0.5000

Theoretical Power of Multiple Sinusoids

For the second example, estimate the total average power of a signal containing energy at multiple
frequency components: one at DC with amplitude 1.5, one at 100 Hz with amplitude 4, and one at 200
Hz with amplitude 3.

Fs = 1024;
t  = 0:1/Fs:1-(1/Fs);

24 Featured Examples

24-292



Ao = 1.5;
A1 = 4;
A2 = 3;
F1 = 100;
F2 = 200;
x  = Ao + A1*sin(2*pi*t*F1) + A2*sin(2*pi*t*F2);

Plot the first 128 samples of the signal.

idx = 1:128;
plot(t(idx),x(idx))
grid
ylabel('Amplitude')
xlabel('Time (seconds)')

As in the previous example, the theoretical average power of each complex sinusoid is A2/4. The DC
average power of the signal is equal to its peak power (since it is constant) and therefore is given by
A0

2. Accounting for the power in the positive and negative frequencies results in a total average power
value (sum of the average power of each harmonic component) of A0

2 + 2 × A1
2/4 + 2 × A2

2/4 for the
signal.

power_theoretical = Ao^2 + (A1^2/4)*2 + (A2^2/4)*2

power_theoretical = 14.7500

Calculate the average power of each unique frequency component in dB to see that the theoretical
results match the mean-square spectrum plot below.
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pow2db([Ao^2 A1^2/4 A2^2/4])

ans = 1×3

    3.5218    6.0206    3.5218

Measuring the Power of Multiple Sinusoids

To measure once again the average power of the signal, use the periodogram function once more to
calculate and plot the power spectrum of the signal.

periodogram(x,hamming(length(x)),[],Fs,'centered','power')
ylim([0 7])

Estimating the Power of Multiple Sinusoids Using PSD

As in the first example, estimate the total average power of the signal by "integrating" under the PSD
curve.

periodogram(x,hamming(length(x)),[],Fs,'centered','psd')
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Once again the height of the peaks of the spectral density plot at a specific frequency component may
not match the ones of the plot of the power spectrum. The difference is due to the reasons noted in
the first example.

[Pxx, F] = periodogram(x, hamming(length(x)),[],Fs,'centered','psd');
power_freqdomain = bandpower(Pxx,F,'psd')

power_freqdomain = 14.7500

Again verify the estimated average power of the signal by invoking Parseval's theorem and summing
up the signal in the time domain.

power_timedomain = sum(abs(x).^2)/length(x)

power_timedomain = 14.7500

Relationship between Power Spectrum, Power Spectral Density and ENBW

You may have noticed that, while the height of the peaks of the power and power spectral density
plots are different, the ratio of one to the other is constant.

Pxx = periodogram(x,hamming(length(x)),[],Fs,'centered','psd');
Sxx = periodogram(x,hamming(length(x)),[],Fs,'centered','power');

plot(F,Sxx./Pxx)
grid
axis tight
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xlabel('Frequency (Hz)')
title('Ratio of Power Spectrum to Power Spectral Density')

ratio = mean(Sxx./Pxx)

ratio = 1.3638

The ratio of power to power spectral density is related to the two-sided equivalent noise bandwidth
(ENBW) of the window. You can compute this ratio directly by calling the enbw function with the
window and its corresponding sample rate as input arguments.

bw = enbw(hamming(length(x)),Fs)

bw = 1.3638

Enhanced Power Measurements Using Reassigned Periodogram

In the previous sections, power was measured from one or multiple sinusoids having a frequency that
coincided with a bin. Peak power estimates are usually less accurate when the signal frequency is out
of bin. To see this effect, create a sinusoid with a non-integer number of cycles over a one-second
period.

Fs = 1024;
t = 0:1/Fs:1-(1/Fs);
A = 1;
F = 20.4;
x = A*sin(2*pi*F*t);
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nfft = length(x);
power_theoretical = pow2db(A^2/4*2);

Create a Hamming window and a flat top window.

w1 = hamming(length(x));
w2 = flattopwin(length(x));

Compute the periodogram of x using the Hamming window. Zoom in on the peak.

h1 = figure;
stem(F,power_theoretical,'BaseValue',-50);

[Pxx1,f1] = periodogram(x,w1,nfft,Fs,'power');

hold on
plot(f1,pow2db(Pxx1),'+-')

axis([0 40 -45 0])
legend('Theoretical','Periodogram')
xlabel('Frequency (Hz)')
ylabel('Power (dB)')
title('Periodogram Power Spectrum Estimate')
grid

The peak power estimate is below the theoretical peak, and the frequency of the peak estimate differs
from the true frequency.
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[Pmax,imax] = max(Pxx1);
dPmax_w1 = pow2db(Pmax) - power_theoretical

dPmax_w1 = -1.1046

dFreq = f1(imax) - F

dFreq = -0.4000

Reduce Amplitude Error with Zero-Padding

To see why this is happening, compute the periodogram using a larger number of FFT bins.

[Pxx2,f2] = periodogram(x,w1,100*nfft,Fs,'power');

figure
stem(F,power_theoretical,'BaseValue',-50)

hold on
plot(f1,pow2db(Pxx1),'+')
plot(f2,pow2db(Pxx2))
hold off

axis([0 40 -40 0])
legend('Theoretical Peak','nfft = 1024','nfft = 102400')
xlabel('Frequency (Hz)')
ylabel('Power (dB)')
title('Periodogram Power Spectrum Estimate')
grid
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In the original periodogram, the spectral peak is located between two bins, and for that reason the
estimated peak is below the theoretical peak. Increasing the number of FFT bins gives a better
picture of the spectrum, although this may be a computationally expensive way to improve peak
measurements.

Reduce Amplitude Error with a Flat Top Window

Another way to produce a better estimate for the peak amplitude is to use a different window.
Compute the periodogram of x using the flat top window.

[Pxx,F1] = periodogram(x,w2,nfft,Fs,'power');

figure(h1)
plot(F1,pow2db(Pxx))
legend('Theoretical','Hamming','Flat Top')
hold off

The flat top window is broad and flat. It produces a peak estimate closer to the theoretical value when
x does not contain an integer number of cycles, and hence the spectral peak does not fall exactly on a
bin.

dPmax_w2 = pow2db(max(Pxx)) - power_theoretical

dPmax_w2 = -6.2007e-04

The broader peak that the flat top window produces could be a disadvantage when trying to resolve
closely spaced peaks, and the frequency of the measured peak is again different from the frequency
of the theoretical peak.
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Reduce Amplitude Error with Reassigned Periodogram

Now add the 'reassigned' flag to periodogram. Periodogram reassignment uses phase
information, which is normally discarded, to reassign the signal to its center of energy. The procedure
can result in sharper spectral estimates. Plot the reassigned periodogram of x and zoom in on the
peak. Use the Hamming window and the flat top window.

[RPxx1,~,~,Fc1] = periodogram(x,w1,nfft,Fs,'power','reassigned');
[RPxx2,~,~,Fc2] = periodogram(x,w2,nfft,Fs,'power','reassigned');

stem(F,power_theoretical,'*','BaseValue',-40)
hold on
stem(Fc1,pow2db(RPxx1),'BaseValue',-50)
stem(Fc2,pow2db(RPxx2),'BaseValue',-50)
hold off

legend('Theoretical','Hamming Reassignment','Flattop Reassignment')
xlabel('Frequency (Hz)')
ylabel('Power (dB)')
title('Periodogram Power Spectrum Estimate')
axis([19.5 21 -4 -2])
grid

The reassigned estimates of power are closer to the theoretical value for both windows, with the flat
top window producing the best peak measurement.
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[RPxx1max,imax1] = max(RPxx1);
[RPxx2max,imax2] = max(RPxx2);
dPmax_reassign_w1 = pow2db(RPxx1max) - power_theoretical

dPmax_reassign_w1 = -0.0845

dPmax_reassign_w2 = pow2db(RPxx2max) - power_theoretical

dPmax_reassign_w2 = -1.1131e-05

The frequency estimates are also improved using the reassigned periodogram, with the flat top
window again giving the best results.

Fc1(imax1)-F

ans = -0.0512

Fc2(imax2)-F

ans = 5.6552e-04

See Also
bandpower | enbw | periodogram | pow2db
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Spectral Analysis of Nonuniformly Sampled Signals
This example shows how to perform spectral analysis on nonuniformly sampled signals. It helps you
determine if a signal is uniformly sampled or not, and if not, it shows how to compute its spectrum or
its power spectral density.

The example introduces the Lomb-Scargle periodogram, which can compute spectra of nonuniformly
sampled signals.

Nonuniformly Sampled Signals

Nonuniformly sampled signals are often found in the automotive industry, in communications, and in
fields as diverse as medicine and astronomy. Nonuniform sampling might be due to imperfect sensors,
mismatched clocks, or event-triggered phenomena.

The computation and study of spectral content is an important part of signal analysis. Conventional
spectral analysis techniques like the periodogram and the Welch method require the input signal to
be uniformly sampled. When the sampling is nonuniform, one can resample or interpolate the signal
onto a uniform sample grid. This, however, can add undesired artifacts to the spectrum and might
lead to analysis errors.

A better alternative is to use the Lomb-Scargle method, which works directly with the nonuniform
samples and thus makes it unnecessary to resample or interpolate. The algorithm has been
implemented in the plomb function.

Spectral Analysis of Signals with Missing Data

Consider a temperature monitoring system in which a microcontroller records the temperature of a
room and transmits this reading every 15 minutes to a cloud-based server that stores it. It is known
that glitches in internet connectivity prevent the cloud-based system from receiving some of the
readings sent by the microcontroller. Also, at least once during the measurement period the
microcontroller's battery ran out, leading to a large gap in the sampling.

Load the temperature readings and the corresponding timestamps.

load('nonuniformdata.mat','roomtemp','t1')

figure
plot(t1/(60*60*24*7),roomtemp,'LineWidth',1.2)

grid
xlabel('Time (weeks)')
ylabel('Temperature (\circF)')
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An easy way to determine if a signal is uniformly sampled is to take a histogram of the intervals
between successive sample times.

Plot a histogram of sampling intervals (time differences) in minutes. Include only points at which
samples are present.

tAtPoints = t1(~isnan(roomtemp))/60;
TimeIntervalDiff = diff(tAtPoints);

figure
hist(TimeIntervalDiff,0:100)
grid
xlabel('Sampling intervals (minutes)')
ylabel('Occurrences')
xlim([10 100])
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The majority of the measurements are spaced approximately 15 minutes apart, as expected. However,
a fair number of occurrences have sampling intervals of around 30 and 45 minutes, which correspond
to one or two consecutive dropped samples. This causes the signal to be nonuniformly sampled.
Furthermore, the histogram shows some jitter surrounding the bars showing high occurrences. This
could relate to TCP/IP latency.

Use the Lomb-Scargle method to compute and visualize the spectral content of the signal. To help
visualize the spectrum better, consider frequencies up to 0.02 mHz, which correspond to about 13
cycles per week.

[Plomb,flomb] = plomb(roomtemp,t1,2e-5,'power');

figure
plot(flomb*60*60*24*7,Plomb)
grid
xlabel('Frequency (cycles/week)')
ylabel('Power (dBW)')
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The spectrum shows dominant periodicities at 7 cycles per week and 1 cycle per week. This is
understandable, given that the data comes from a temperature-controlled building on a seven-day
calendar. The spectral line showing a peak at 1 cycle per week indicates that the temperature in the
building follows a weekly cycle, with lower temperatures on weekends and higher temperatures
during the week. The spectral line of 7 cycles per week indicates that there is also a daily cycle with
lower temperatures at night and higher temperatures during the day.

Spectral Analysis of Signals with Unevenly Spaced Samples

Heart-rate variability (HRV) signals, which represent the physiological variation in time between
heartbeats, are typically unevenly sampled because human heart rates are not constant. HRV signals
are derived from electrocardiogram (ECG) readings.

The sample points of an HRV signal are located at the R-Peak times of the ECG. The amplitude of
each point is computed as the inverse of the time difference between consecutive R-Peaks and is
placed at the instant of the second R-Peak.

% Load the signal, the timestamps, and the sample rate
load('nonuniformdata.mat','ecgsig','t2','Fs')

% Find the ECG peaks
[pks,locs] = findpeaks(ecgsig,Fs, ...
    'MinPeakProminence',0.3,'MinPeakHeight',0.2);

% Determine the RR intervals
RLocsInterval = diff(locs);
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% Derive the HRV signal
tHRV = locs(2:end);
HRV = 1./RLocsInterval;

% Plot the signals
figure
a1 = subplot(2,1,1); 
plot(t2,ecgsig,'b',locs,pks,'*r')
grid
a2 = subplot(2,1,2);
plot(tHRV,HRV)
grid
xlabel(a2,'Time(s)')
ylabel(a1,'ECG (mV)')
ylabel(a2,'HRV (Hz)')

The varying intervals between the R-peaks cause the sample-time nonuniformity in the HRV data.
Consider the peak locations of the signal and plot a histogram of their separations in seconds.

figure
hist(RLocsInterval)

grid
xlabel('Sampling interval (s)')
ylabel('RR distribution')
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The typical frequency bands of interest in HRV spectra are:

• Very Low Frequency (VLF), from 3.3 to 40 mHz,
• Low Frequency (LF), from 40 to 150 mHz,
• High Frequency (HF), from 150 to 400 mHz.

These bands approximately confine the frequency ranges of the distinct biological regulatory
mechanisms that contribute to HRV. Fluctuations in any of these bands have biological significance.

Use plomb to calculate the spectrum of the HRV signal.

figure
plomb(HRV,tHRV,'Pd',[0.95, 0.5])

 Spectral Analysis of Nonuniformly Sampled Signals

24-307



The dashed lines denote 95% and 50% detection probabilities. These thresholds measure the
statistical significance of peaks. The spectrum shows peaks in all three bands of interest listed above.
However, only the peak located at 23.2 mHz in the VLF range shows a detection probability 95%,
while the other peaks have detection probabilities of less than 50%. The peaks lying below 40 mHz
are thought to be due to long-term regulatory mechanisms, such as the thermoregulatory system and
hormonal factors.

See Also
plomb
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Linear Prediction and Autoregressive Modeling
This example shows how to compare the relationship between autoregressive modeling and linear
prediction. Linear prediction and autoregressive modeling are two different problems that can yield
the same numerical results. In both cases, the ultimate goal is to determine the parameters of a
linear filter. However, the filter used in each problem is different.

Introduction

In the case of linear prediction, the intention is to determine an FIR filter that can optimally predict
future samples of an autoregressive process based on a linear combination of past samples. The
difference between the actual autoregressive signal and the predicted signal is called the prediction
error. Ideally, this error is white noise.

For the case of autoregressive modeling, the intention is to determine an all-pole IIR filter, that when
excited with white noise produces a signal with the same statistics as the autoregressive process that
we are trying to model.

Generate an AR Signal using an All-Pole Filter with White Noise as Input

Here we use the LPC function and an FIR filter simply to come up with parameters we will use to
create the autoregressive signal we will work with. The use of FIR1 and LPC are not critical here. For
example, we could replace d with something as simple as [1 1/2 1/3 1/4 1/5 1/6 1/7 1/8] and p0 with
something like 1e-6. But the shape of this filter is nicer so we use it instead.

b = fir1(1024, .5);
[d,p0] = lpc(b,7);

To generate the autoregressive signal, we will excite an all-pole filter with white Gaussian noise of
variance p0. Notice that to get variance p0, we must use SQRT(p0) as the 'gain' term in the noise
generator.

rng(0,'twister'); % Allow reproduction of exact experiment
u = sqrt(p0)*randn(8192,1); % White Gaussian noise with variance p0

We now use the white Gaussian noise signal and the all-pole filter to generate an AR signal.

x = filter(1,d,u);

Find AR Model from Signal using the Yule-Walker Method

Solving the Yule-Walker equations, we can determine the parameters for an all-pole filter that when
excited with white noise will produce an AR signal whose statistics match those of the given signal, x.
Once again, this is called autoregressive modeling. In order to solve the Yule-Walker equations, it is
necessary to estimate the autocorrelation function of x. The Levinson algorithm is used then to solve
the Yule-Walker equations in an efficient manner. The function ARYULE does all this for us.

[d1,p1] = aryule(x,7);

Compare AR Model with AR Signal

We now would like to compute the frequency response of the all-pole filter we have just used to model
the AR signal x. It is well-known that the power spectral density of the output of this filter, when the
filter is excited with white Gaussian noise is given by the magnitude-squared of its frequency
response multiplied by the variance of the white-noise input. One way to compute this output power
spectral density is by using FREQZ as follows:
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[H1,w1] = freqz(sqrt(p1),d1);

In order to get an idea of how well we have modeled the autoregressive signal x, we overlay the
power spectral density of the output of the model, computed using FREQZ, with the power spectral
density estimate of x, computed using PERIODOGRAM. Notice that the periodogram is scaled by 2*pi
and is one-sided. We need to adjust for this in order to compare.

periodogram(x)
hold on
hp = plot(w1/pi,20*log10(2*abs(H1)/(2*pi)),'r'); % Scale to make one-sided PSD
hp.LineWidth = 2;
xlabel('Normalized frequency (\times \pi rad/sample)')
ylabel('One-sided PSD (dB/rad/sample)')
legend('PSD estimate of x','PSD of model output')

Use LPC to Perform Linear Prediction

We now turn to the linear prediction problem. Here we try to determine an FIR prediction filter. We
use LPC to do so, but the result from LPC requires a little interpretation. LPC returns the coefficients
of the entire whitening filter A(z), this filter takes as input the autoregressive signal x and returns as
output the prediction error. However, A(z) has the prediction filter embedded in it, in the form B(z) =
1- A(z), where B(z) is the prediction filter. Note that the coefficients and error variance computed with
LPC are essentially the same as those computed with ARYULE, but their interpretation is different.

[d2,p2] = lpc(x,7);
[d1.',d2.']
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ans = 8×2

    1.0000    1.0000
   -3.5245   -3.5245
    6.9470    6.9470
   -9.2899   -9.2899
    8.9224    8.9224
   -6.1349   -6.1349
    2.8299    2.8299
   -0.6997   -0.6997

We now extract B(z) from A(z) as described above to use the FIR linear predictor filter to obtain an
estimate of future values of the autoregressive signal based on linear combinations of past values.

xh = filter(-d2(2:end),1,x);

Compare Actual and Predicted Signals

To get a feeling for what we have done with a 7-tap FIR prediction filter, we plot (200 samples) of the
original autoregressive signal along with the signal estimate resulting from the linear predictor
keeping in mind the one-sample delay in the prediction filter.

cla
stem([x(2:end),xh(1:end-1)])
xlabel('Sample time')
ylabel('Signal value')
legend('Original autoregressive signal','Signal estimate from linear predictor')
axis([0 200 -0.08 0.1])
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Compare Prediction Errors

The prediction error power (variance) is returned as the second output from LPC. Its value is
(theoretically) the same as the variance of the white noise driving the all-pole filter in the AR
modeling problem (p1). Another way of estimating this variance is from the prediction error itself:

p3 = norm(x(2:end)-xh(1:end-1),2)^2/(length(x)-1);

All of the following values are theoretically the same. The differences are due to the various
computation and approximation errors herein.

[p0 p1 p2 p3]

ans = 1×4
10-5 ×

    0.5127    0.5305    0.5305    0.5068

See Also
aryule | lpc
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Classify ECG Signals Using Long Short-Term Memory Networks
This example shows how to classify heartbeat electrocardiogram (ECG) data from the PhysioNet 2017
Challenge using deep learning and signal processing. In particular, the example uses Long Short-
Term Memory networks and time-frequency analysis.

Introduction

ECGs record the electrical activity of a person's heart over a period of time. Physicians use ECGs to
detect visually if a patient's heartbeat is normal or irregular.

Atrial fibrillation (AFib) is a type of irregular heartbeat that occurs when the heart's upper chambers,
the atria, beat out of coordination with the lower chambers, the ventricles.

This example uses ECG data from the PhysioNet 2017 Challenge [1 on page 24-0 ], [2 on page 24-
0 ], [3 on page 24-0 ], which is available at https://physionet.org/challenge/2017/. The data
consists of a set of ECG signals sampled at 300 Hz and divided by a group of experts into four
different classes: Normal (N), AFib (A), Other Rhythm (O), and Noisy Recording (~). This example
shows how to automate the classification process using deep learning. The procedure explores a
binary classifier that can differentiate Normal ECG signals from signals showing signs of AFib.

This example uses long short-term memory (LSTM) networks, a type of recurrent neural network
(RNN) well-suited to study sequence and time-series data. An LSTM network can learn long-term
dependencies between time steps of a sequence. The LSTM layer (lstmLayer (Deep Learning
Toolbox)) can look at the time sequence in the forward direction, while the bidirectional LSTM layer
(bilstmLayer (Deep Learning Toolbox)) can look at the time sequence in both forward and
backward directions. This example uses a bidirectional LSTM layer.

To accelerate the training process, run this example on a machine with a GPU. If your machine has a
GPU and Parallel Computing Toolbox™, then MATLAB® automatically uses the GPU for training;
otherwise, it uses the CPU.

Load and Examine the Data

Run the ReadPhysionetData script to download the data from the PhysioNet website and generate
a MAT-file (PhysionetData.mat) that contains the ECG signals in the appropriate format.
Downloading the data might take a few minutes.

ReadPhysionetData
load PhysionetData

The loading operation adds two variables to the workspace: Signals and Labels. Signals is a cell
array that holds the ECG signals. Labels is a categorical array that holds the corresponding ground-
truth labels of the signals.

Signals(1:5)

ans=5×1 cell array
    {1×9000  double}
    {1×9000  double}
    {1×18000 double}
    {1×9000  double}
    {1×18000 double}

Labels(1:5)
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ans = 5×1 categorical
     N 
     N 
     N 
     A 
     A 

Use the summary function to see how many AFib signals and Normal signals are contained in the
data.

summary(Labels)

     A       738 
     N      5050 

Generate a histogram of signal lengths. Most of the signals are 9000 samples long.

L = cellfun(@length,Signals);
h = histogram(L);
xticks(0:3000:18000);
xticklabels(0:3000:18000);
title('Signal Lengths')
xlabel('Length')
ylabel('Count')

Visualize a segment of one signal from each class. AFib heartbeats are spaced out at irregular
intervals while Normal heartbeats occur regularly. AFib heartbeat signals also often lack a P wave,
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which pulses before the QRS complex in a Normal heartbeat signal. The plot of the Normal signal
shows a P wave and a QRS complex.

normal = Signals{1};
aFib = Signals{4};

subplot(2,1,1)
plot(normal)
title('Normal Rhythm')
xlim([4000,5200])
ylabel('Amplitude (mV)')
text(4330,150,'P','HorizontalAlignment','center')
text(4370,850,'QRS','HorizontalAlignment','center')

subplot(2,1,2)
plot(aFib)
title('Atrial Fibrillation')
xlim([4000,5200])
xlabel('Samples')
ylabel('Amplitude (mV)')

Prepare the Data for Training

During training, the trainNetwork function splits the data into mini-batches. The function then pads
or truncates signals in the same mini-batch so they all have the same length. Too much padding or
truncating can have a negative effect on the performance of the network, because the network might
interpret a signal incorrectly based on the added or removed information.
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To avoid excessive padding or truncating, apply the segmentSignals function to the ECG signals so
they are all 9000 samples long. The function ignores signals with fewer than 9000 samples. If a signal
has more than 9000 samples, segmentSignals breaks it into as many 9000-sample segments as
possible and ignores the remaining samples. For example, a signal with 18500 samples becomes two
9000-sample signals, and the remaining 500 samples are ignored.

[Signals,Labels] = segmentSignals(Signals,Labels);

View the first five elements of the Signals array to verify that each entry is now 9000 samples long.

Signals(1:5)

ans=5×1 cell array
    {1×9000 double}
    {1×9000 double}
    {1×9000 double}
    {1×9000 double}
    {1×9000 double}

Train the Classifier Using Raw Signal Data

To design the classifier, use the raw signals generated in the previous section. Split the signals into a
training set to train the classifier and a testing set to test the accuracy of the classifier on new data.

Use the summary function to show that the ratio of AFib signals to Normal signals is 718:4937, or
approximately 1:7.

summary(Labels)

     A       718 
     N      4937 

Because about 7/8 of the signals are Normal, the classifier would learn that it can achieve a high
accuracy simply by classifying all signals as Normal. To avoid this bias, augment the AFib data by
duplicating AFib signals in the dataset so that there is the same number of Normal and AFib signals.
This duplication, commonly called oversampling, is one form of data augmentation used in deep
learning.

Split the signals according to their class.

afibX = Signals(Labels=='A');
afibY = Labels(Labels=='A');

normalX = Signals(Labels=='N');
normalY = Labels(Labels=='N');

Next, use dividerand to divide targets from each class randomly into training and testing sets.

[trainIndA,~,testIndA] = dividerand(718,0.9,0.0,0.1);
[trainIndN,~,testIndN] = dividerand(4937,0.9,0.0,0.1);

XTrainA = afibX(trainIndA);
YTrainA = afibY(trainIndA);

XTrainN = normalX(trainIndN);
YTrainN = normalY(trainIndN);
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XTestA = afibX(testIndA);
YTestA = afibY(testIndA);

XTestN = normalX(testIndN);
YTestN = normalY(testIndN);

Now there are 646 AFib signals and 4443 Normal signals for training. To achieve the same number of
signals in each class, use the first 4438 Normal signals, and then use repmat to repeat the first 634
AFib signals seven times.

For testing, there are 72 AFib signals and 494 Normal signals. Use the first 490 Normal signals, and
then use repmat to repeat the first 70 AFib signals seven times. By default, the neural network
randomly shuffles the data before training, ensuring that contiguous signals do not all have the same
label.

XTrain = [repmat(XTrainA(1:634),7,1); XTrainN(1:4438)];
YTrain = [repmat(YTrainA(1:634),7,1); YTrainN(1:4438)];

XTest = [repmat(XTestA(1:70),7,1); XTestN(1:490)];
YTest = [repmat(YTestA(1:70),7,1); YTestN(1:490);];

The distribution between Normal and AFib signals is now evenly balanced in both the training set and
the testing set.

summary(YTrain)

     A      4438 
     N      4438 

summary(YTest)

     A      490 
     N      490 

Define the LSTM Network Architecture

LSTM networks can learn long-term dependencies between time steps of sequence data. This
example uses the bidirectional LSTM layer bilstmLayer, as it looks at the sequence in both forward
and backward directions.

Because the input signals have one dimension each, specify the input size to be sequences of size 1.
Specify a bidirectional LSTM layer with an output size of 100 and output the last element of the
sequence. This command instructs the bidirectional LSTM layer to map the input time series into 100
features and then prepares the output for the fully connected layer. Finally, specify two classes by
including a fully connected layer of size 2, followed by a softmax layer and a classification layer.

layers = [ ...
    sequenceInputLayer(1)
    bilstmLayer(100,'OutputMode','last')
    fullyConnectedLayer(2)
    softmaxLayer
    classificationLayer
    ]

layers = 
  5x1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 1 dimensions
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     2   ''   BiLSTM                  BiLSTM with 100 hidden units
     3   ''   Fully Connected         2 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Next specify the training options for the classifier. Set the 'MaxEpochs' to 10 to allow the network
to make 10 passes through the training data. A 'MiniBatchSize' of 150 directs the network to look
at 150 training signals at a time. An 'InitialLearnRate' of 0.01 helps speed up the training
process. Specify a 'SequenceLength' of 1000 to break the signal into smaller pieces so that the
machine does not run out of memory by looking at too much data at one time. Set
'GradientThreshold' to 1 to stabilize the training process by preventing gradients from getting too
large. Specify 'Plots' as 'training-progress' to generate plots that show a graphic of the
training progress as the number of iterations increases. Set 'Verbose' to false to suppress the
table output that corresponds to the data shown in the plot. If you want to see this table, set
'Verbose' to true.

This example uses the adaptive moment estimation (ADAM) solver. ADAM performs better with RNNs
like LSTMs than the default stochastic gradient descent with momentum (SGDM) solver.

options = trainingOptions('adam', ...
    'MaxEpochs',10, ...
    'MiniBatchSize', 150, ...
    'InitialLearnRate', 0.01, ...
    'SequenceLength', 1000, ...
    'GradientThreshold', 1, ...
    'ExecutionEnvironment',"auto",...
    'plots','training-progress', ...
    'Verbose',false);

Train the LSTM Network

Train the LSTM network with the specified training options and layer architecture by using
trainNetwork. Because the training set is large, the training process can take several minutes.

net = trainNetwork(XTrain,YTrain,layers,options);
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The top subplot of the training-progress plot represents the training accuracy, which is the
classification accuracy on each mini-batch. When training progresses successfully, this value typically
increases towards 100%. The bottom subplot displays the training loss, which is the cross-entropy
loss on each mini-batch. When training progresses successfully, this value typically decreases towards
zero.

If the training is not converging, the plots might oscillate between values without trending in a
certain upward or downward direction. This oscillation means that the training accuracy is not
improving and the training loss is not decreasing. This situation can occur from the start of training,
or the plots might plateau after some preliminary improvement in training accuracy. In many cases,
changing the training options can help the network achieve convergence. Decreasing
MiniBatchSize or decreasing InitialLearnRate might result in a longer training time, but it can
help the network learn better.

The classifier's training accuracy oscillates between about 50% and about 60%, and at the end of 10
epochs, it already has taken several minutes to train.

Visualize the Training and Testing Accuracy

Calculate the training accuracy, which represents the accuracy of the classifier on the signals on
which it was trained. First, classify the training data.

trainPred = classify(net,XTrain,'SequenceLength',1000);

In classification problems, confusion matrices are used to visualize the performance of a classifier on
a set of data for which the true values are known. The Target Class is the ground-truth label of the
signal, and the Output Class is the label assigned to the signal by the network. The axes labels
represent the class labels, AFib (A) and Normal (N).
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Use the confusionchart command to calculate the overall classification accuracy for the testing
data predictions. Specify 'RowSummary' as 'row-normalized' to display the true positive rates
and false positive rates in the row summary. Also, specify 'ColumnSummary' as 'column-
normalized' to display the positive predictive values and false discovery rates in the column
summary.

LSTMAccuracy = sum(trainPred == YTrain)/numel(YTrain)*100

LSTMAccuracy = 61.7283

figure
confusionchart(YTrain,trainPred,'ColumnSummary','column-normalized',...
              'RowSummary','row-normalized','Title','Confusion Chart for LSTM');

Now classify the testing data with the same network.

testPred = classify(net,XTest,'SequenceLength',1000);

Calculate the testing accuracy and visualize the classification performance as a confusion matrix.

LSTMAccuracy = sum(testPred == YTest)/numel(YTest)*100

LSTMAccuracy = 66.2245

figure
confusionchart(YTest,testPred,'ColumnSummary','column-normalized',...
              'RowSummary','row-normalized','Title','Confusion Chart for LSTM');
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Improve the Performance with Feature Extraction

Feature extraction from the data can help improve the training and testing accuracies of the
classifier. To decide which features to extract, this example adapts an approach that computes time-
frequency images, such as spectrograms, and uses them to train convolutional neural networks
(CNNs) [4 on page 24-0 ], [5 on page 24-0 ].

Visualize the spectrogram of each type of signal.

fs = 300;

figure
subplot(2,1,1);
pspectrum(normal,fs,'spectrogram','TimeResolution',0.5)
title('Normal Signal')

subplot(2,1,2);
pspectrum(aFib,fs,'spectrogram','TimeResolution',0.5)
title('AFib Signal')
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Because this example uses an LSTM instead of a CNN, it is important to translate the approach so it
applies to one-dimensional signals. Time-frequency (TF) moments extract information from the
spectrograms. Each moment can be used as a one-dimensional feature to input to the LSTM.

Explore two TF moments in the time domain:

• Instantaneous frequency (instfreq)
• Spectral entropy (pentropy)

The instfreq function estimates the time-dependent frequency of a signal as the first moment of the
power spectrogram. The function computes a spectrogram using short-time Fourier transforms over
time windows. In this example, the function uses 255 time windows. The time outputs of the function
correspond to the centers of the time windows.

Visualize the instantaneous frequency for each type of signal.

[instFreqA,tA] = instfreq(aFib,fs);
[instFreqN,tN] = instfreq(normal,fs);

figure
subplot(2,1,1);
plot(tN,instFreqN)
title('Normal Signal')
xlabel('Time (s)')
ylabel('Instantaneous Frequency')
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subplot(2,1,2);
plot(tA,instFreqA)
title('AFib Signal')
xlabel('Time (s)')
ylabel('Instantaneous Frequency')

Use cellfun to apply the instfreq function to every cell in the training and testing sets.

instfreqTrain = cellfun(@(x)instfreq(x,fs)',XTrain,'UniformOutput',false);
instfreqTest = cellfun(@(x)instfreq(x,fs)',XTest,'UniformOutput',false);

The spectral entropy measures how spiky flat the spectrum of a signal is. A signal with a spiky
spectrum, like a sum of sinusoids, has low spectral entropy. A signal with a flat spectrum, like white
noise, has high spectral entropy. The pentropy function estimates the spectral entropy based on a
power spectrogram. As with the instantaneous frequency estimation case, pentropy uses 255 time
windows to compute the spectrogram. The time outputs of the function correspond to the center of
the time windows.

Visualize the spectral entropy for each type of signal.

[pentropyA,tA2] = pentropy(aFib,fs);
[pentropyN,tN2] = pentropy(normal,fs);

figure

subplot(2,1,1)
plot(tN2,pentropyN)
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title('Normal Signal')
ylabel('Spectral Entropy')

subplot(2,1,2)
plot(tA2,pentropyA)
title('AFib Signal')
xlabel('Time (s)')
ylabel('Spectral Entropy')

Use cellfun to apply the pentropy function to every cell in the training and testing sets.

pentropyTrain = cellfun(@(x)pentropy(x,fs)',XTrain,'UniformOutput',false);
pentropyTest = cellfun(@(x)pentropy(x,fs)',XTest,'UniformOutput',false);

Concatenate the features such that each cell in the new training and testing sets has two dimensions,
or two features.

XTrain2 = cellfun(@(x,y)[x;y],instfreqTrain,pentropyTrain,'UniformOutput',false);
XTest2 = cellfun(@(x,y)[x;y],instfreqTest,pentropyTest,'UniformOutput',false);

Visualize the format of the new inputs. Each cell no longer contains one 9000-sample-long signal; now
it contains two 255-sample-long features.

XTrain2(1:5)

ans=5×1 cell array
    {2×255 double}
    {2×255 double}
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    {2×255 double}
    {2×255 double}
    {2×255 double}

Standardize the Data

The instantaneous frequency and the spectral entropy have means that differ by almost one order of
magnitude. Furthermore, the instantaneous frequency mean might be too high for the LSTM to learn
effectively. When a network is fit on data with a large mean and a large range of values, large inputs
could slow down the learning and convergence of the network [6 on page 24-0 ].

mean(instFreqN)

ans = 5.5615

mean(pentropyN)

ans = 0.6326

Use the training set mean and standard deviation to standardize the training and testing sets.
Standardization, or z-scoring, is a popular way to improve network performance during training.

XV = [XTrain2{:}];
mu = mean(XV,2);
sg = std(XV,[],2);

XTrainSD = XTrain2;
XTrainSD = cellfun(@(x)(x-mu)./sg,XTrainSD,'UniformOutput',false);

XTestSD = XTest2;
XTestSD = cellfun(@(x)(x-mu)./sg,XTestSD,'UniformOutput',false);

Show the means of the standardized instantaneous frequency and spectral entropy.

instFreqNSD = XTrainSD{1}(1,:);
pentropyNSD = XTrainSD{1}(2,:);

mean(instFreqNSD)

ans = -0.3211

mean(pentropyNSD)

ans = -0.2416

Modify the LSTM Network Architecture

Now that the signals each have two dimensions, it is necessary to modify the network architecture by
specifying the input sequence size as 2. Specify a bidirectional LSTM layer with an output size of 100,
and output the last element of the sequence. Specify two classes by including a fully connected layer
of size 2, followed by a softmax layer and a classification layer.

layers = [ ...
    sequenceInputLayer(2)
    bilstmLayer(100,'OutputMode','last')
    fullyConnectedLayer(2)
    softmaxLayer
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    classificationLayer
    ]

layers = 
  5x1 Layer array with layers:

     1   ''   Sequence Input          Sequence input with 2 dimensions
     2   ''   BiLSTM                  BiLSTM with 100 hidden units
     3   ''   Fully Connected         2 fully connected layer
     4   ''   Softmax                 softmax
     5   ''   Classification Output   crossentropyex

Specify the training options. Set the maximum number of epochs to 30 to allow the network to make
30 passes through the training data.

options = trainingOptions('adam', ...
    'MaxEpochs',30, ...
    'MiniBatchSize', 150, ...
    'InitialLearnRate', 0.01, ...
    'GradientThreshold', 1, ...
    'ExecutionEnvironment',"auto",...
    'plots','training-progress', ...
    'Verbose',false);

Train the LSTM Network with Time-Frequency Features

Train the LSTM network with the specified training options and layer architecture by using
trainNetwork.

net2 = trainNetwork(XTrainSD,YTrain,layers,options);
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There is a great improvement in the training accuracy. The cross-entropy loss trends towards 0.
Furthermore, the time required for training decreases because the TF moments are shorter than the
raw sequences.

Visualize the Training and Testing Accuracy

Classify the training data using the updated LSTM network. Visualize the classification performance
as a confusion matrix.

trainPred2 = classify(net2,XTrainSD);
LSTMAccuracy = sum(trainPred2 == YTrain)/numel(YTrain)*100

LSTMAccuracy = 83.5962

figure
confusionchart(YTrain,trainPred2,'ColumnSummary','column-normalized',...
              'RowSummary','row-normalized','Title','Confusion Chart for LSTM');

Classify the testing data with the updated network. Plot the confusion matrix to examine the testing
accuracy.

testPred2 = classify(net2,XTestSD);

LSTMAccuracy = sum(testPred2 == YTest)/numel(YTest)*100

LSTMAccuracy = 80.1020
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figure
confusionchart(YTest,testPred2,'ColumnSummary','column-normalized',...
              'RowSummary','row-normalized','Title','Confusion Chart for LSTM');

Conclusion

This example shows how to build a classifier to detect atrial fibrillation in ECG signals using an LSTM
network. The procedure uses oversampling to avoid the classification bias that occurs when one tries
to detect abnormal conditions in populations composed mainly of healthy patients. Training the LSTM
network using raw signal data results in a poor classification accuracy. Training the network using
two time-frequency-moment features for each signal significantly improves the classification
performance and also decreases the training time.
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Waveform Segmentation Using Deep Learning
This example shows how to segment human electrocardiogram (ECG) signals using recurrent deep
learning networks and time-frequency analysis.

Introduction

The electrical activity in the human heart can be measured as a sequence of amplitudes away from a
baseline signal. For a single normal heartbeat cycle, the ECG signal can be divided into the following
beat morphologies [1 on page 24-0 ]:

• P wave — A small deflection before the QRS complex representing atrial depolarization
• QRS complex — Largest-amplitude portion of the heartbeat
• T wave — A small deflection after the QRS complex representing ventricular repolarization

The segmentation of these regions of ECG waveforms can provide the basis for measurements useful
for assessing the overall health of the human heart and the presence of abnormalities [2 on page 24-
0 ]. Manually annotating each region of the ECG signal can be a tedious and time-consuming task.
Signal processing and deep learning methods potentially can help streamline and automate region-of-
interest annotation.

This example uses ECG signals from the publicly available QT Database [3 on page 24-0 ] [4 on
page 24-0 ]. The data consists of roughly 15 minutes of ECG recordings, with a sample rate of 250
Hz, measured from a total of 105 patients. To obtain each recording, the examiners placed two
electrodes on different locations on a patient's chest, resulting in a two-channel signal. The database
provides signal region labels generated by an automated expert system [2 on page 24-0 ]. This
example aims to use a deep learning solution to provide a label for every ECG signal sample
according to the region where the sample is located. This process of labeling regions of interest
across a signal is often referred to as waveform segmentation.

To train a deep neural network to classify signal regions, you can use a Long Short-Term Memory
(LSTM) network. This example shows how signal preprocessing techniques and time-frequency
analysis can be used to improve LSTM segmentation performance. In particular, the example uses the
Fourier synchrosqueezed transform to represent the nonstationary behavior of the ECG signal.

Download and Prepare the Data

Each channel of the 105 two-channel ECG signals was labeled independently by the automated expert
system and is treated independently, for a total of 210 ECG signals that were stored together with the
region labels in 210 MAT-files. The files are available at the following location: https://
www.mathworks.com/supportfiles/SPT/data/QTDatabaseECGData.zip.

Download the data files into your temporary directory, whose location is specified by MATLAB®'s
tempdir command. If you want to place the data files in a folder different from tempdir, change the
directory name in the subsequent instructions.

% Download the data
dataURL = 'https://www.mathworks.com/supportfiles/SPT/data/QTDatabaseECGData1.zip';
datasetFolder = fullfile(tempdir,'QTDataset');
zipFile = fullfile(tempdir,'QTDatabaseECGData.zip');
if ~exist(datasetFolder,'dir')
     websave(zipFile,dataURL);
     unzip(zipFile,tempdir);
end
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The unzip operation creates the QTDatabaseECGData folder in your temporary directory with 210
MAT-files in it. Each file contains an ECG signal in variable ecgSignal and a table of region labels in
variable signalRegionLabels. Each file also contains the sample rate of the signal in variable Fs.
In this example all signals have a sample rate of 250 Hz.

Create a signal datastore to access the data in the files. This example assumes the dataset has been
stored in your temporary directory under the QTDatabaseECGData folder. If this is not the case,
change the path to the data in the code below. Specify the signal variable names you want to read
from each file using the SignalVariableNames parameter.

sds = signalDatastore(datasetFolder,'SignalVariableNames',["ecgSignal","signalRegionLabels"])

sds = 
  signalDatastore with properties:

                       Files:{
                             '/tmp/QTDataset/ecg1.mat';
                             '/tmp/QTDataset/ecg10.mat';
                             '/tmp/QTDataset/ecg100.mat'
                              ... and 207 more
                             }
    AlternateFileSystemRoots: [0×0 string]
                    ReadSize: 1
         SignalVariableNames: ["ecgSignal"    "signalRegionLabels"]

The datastore returns a two-element cell array with an ECG signal and a table of region labels each
time you call the read function. Use the preview function of the datastore to see that the content of
the first file is a 225,000 samples long ECG signal and a table containing 3385 region labels.

data = preview(sds)

data=2×1 cell array
    {225000×1 double}
    {  3385×2 table }

Look at the first few rows of the region labels table and observe that each row contains the region
limit indices and the region class value (P, T, or QRS).

head(data{2})

ans=8×2 table
    ROILimits     Value
    __________    _____

     83    117     P   
    130    153     QRS 
    201    246     T   
    285    319     P   
    332    357     QRS 
    412    457     T   
    477    507     P   
    524    547     QRS 

Visualize the labels for the first 1000 samples using a signalMask object.
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M = signalMask(data{2});
plotsigroi(M,data{1}(1:1000))

The usual machine learning classification procedure is the following:

1 Divide the database into training and testing datasets.
2 Train the network using the training dataset.
3 Use the trained network to make predictions on the testing dataset.

The network is trained with 70% of the data and tested with the remaining 30%.

For reproducible results, reset the random number generator. Use the dividerand function to get
random indices to shuffle the files, and the subset function of signalDatastore to divide the data
into training and testing datastores.

rng default
[trainIdx,~,testIdx] = dividerand(numel(sds.Files),0.7,0,0.3);
trainDs = subset(sds,trainIdx);
testDs = subset(sds,testIdx);

In this segmentation problem, the input to the LSTM network is an ECG signal and the output is a
sequence or mask of labels with the same length as the input signal. The network task is to label each
signal sample with the name of the region it belongs to. For this reason, it is necessary to transform
the region labels on the dataset to sequences containing one label per signal sample. Use a
transformed datastore and the getmask helper function to transform the region labels. The getmask
function adds a label category, "n/a", to label samples that do not belong to any region of interest.

24 Featured Examples

24-332



type getmask.m

function outputCell = getmask(inputCell)
%GETMASK Convert region labels to a mask of labels of size equal to the
%size of the input ECG signal.
%
%   inputCell is a two-element cell array containing an ECG signal vector
%   and a table of region labels. 
%
%   outputCell is a two-element cell array containing the ECG signal vector
%   and a categorical label vector mask of the same length as the signal. 

% Copyright 2020 The MathWorks, Inc.

sig = inputCell{1};
roiTable = inputCell{2};
L = length(sig);
M = signalMask(roiTable);

% Get categorical mask and give priority to QRS regions when there is overlap
mask = catmask(M,L,'OverlapAction','prioritizeByList','PriorityList',[2 1 3]);

% Set missing values to "n/a"
mask(ismissing(mask)) = "n/a";

outputCell = {sig,mask};
end

Preview the transformed datastore to observe that it returns a signal vector and a label vector of
equal lengths. Plot the first 1000 element of the categorical mask vector.

trainDs = transform(trainDs, @getmask);
testDs = transform(testDs, @getmask);

transformedData = preview(trainDs)

transformedData=1×2 cell array
    {224993×1 double}    {224993×1 categorical}

plot(transformedData{2}(1:1000))
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Passing very long input signals into the LSTM network can result in estimation performance
degradation and excessive memory usage. To avoid these effects, break the ECG signals and their
corresponding label masks using a transformed datastore and the resizeData helper function. The
helper function creates as many 5000-sample segments as possible and discards the remaining
samples. A preview of the output of the transformed datastore shows that the first ECG signal and its
label mask are broken into 5000-sample segments. Note that preview of the transformed datastore
only shows the first 8 elements of the otherwise floor(224993/5000) = 44 element cell array that
would result if we called the datastore read function.

trainDs = transform(trainDs,@resizeData);
testDs = transform(testDs,@resizeData);
preview(trainDs)

ans=8×2 cell array
    {1×5000 double}    {1×5000 categorical}
    {1×5000 double}    {1×5000 categorical}
    {1×5000 double}    {1×5000 categorical}
    {1×5000 double}    {1×5000 categorical}
    {1×5000 double}    {1×5000 categorical}
    {1×5000 double}    {1×5000 categorical}
    {1×5000 double}    {1×5000 categorical}
    {1×5000 double}    {1×5000 categorical}
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Choose to Train Networks or Download Pre-Trained Networks

The next sections of this example compare three different approaches to train LSTM networks. Due to
the large size of the dataset, the training process of each network may take several minutes. If your
machine has a GPU and Parallel Computing Toolbox™, then MATLAB automatically uses the GPU for
faster training. Otherwise, it uses the CPU.

You can skip the training steps and download the pre-trained networks using the selector below. If
you want to train the networks as the example runs, select 'Train Networks'. If you want to skip the
training steps, select 'Download Networks' and a file containing all three pre-trained networks -
rawNet, filteredNet, and fsstNet- will be downloaded into your temporary directory, whose
location is specified by MATLAB®'s tempdir command. If you want to place the downloaded file in a
folder different from tempdir, change the directory name in the subsequent instructions.

actionFlag = ;
if actionFlag == "Download networks"
    % Download the pre-trained networks
    dataURL = 'https://ssd.mathworks.com/supportfiles/SPT/data/QTDatabaseECGSegmentationNetworks.zip'; %#ok<*UNRCH>
    modelsFolder = fullfile(tempdir,'QTDatabaseECGSegmentationNetworks');
    modelsFile = fullfile(modelsFolder,'trainedNetworks.mat');
    zipFile = fullfile(tempdir,'QTDatabaseECGSegmentationNetworks.zip');
    if ~exist(modelsFolder,'dir')
        websave(zipFile,dataURL);
        unzip(zipFile,fullfile(tempdir,'QTDatabaseECGSegmentationNetworks'));
    end
    load(modelsFile)
end

Results between the downloaded networks and newly trained networks may vary slightly since the
networks are trained using random initial weights.

Input Raw ECG Signals Directly into the LSTM Network

First, train an LSTM network using the raw ECG signals from the training dataset.

Define the network architecture before training. Specify a sequenceInputLayer of size 1 to accept
one-dimensional time series. Specify an LSTM layer with the 'sequence' output mode to provide
classification for each sample in the signal. Use 200 hidden nodes for optimal performance. Specify a
fullyConnectedLayer with an output size of 4, one for each of the waveform classes. Add a
softmaxLayer and a classificationLayer to output the estimated labels.

layers = [ ...
    sequenceInputLayer(1)
    lstmLayer(200,'OutputMode','sequence')
    fullyConnectedLayer(4)
    softmaxLayer
    classificationLayer];

Choose options for the training process that ensure good network performance. Refer to the
trainingOptions (Deep Learning Toolbox) documentation for a description of each parameter.

options = trainingOptions('adam', ...
    'MaxEpochs',10, ...
    'MiniBatchSize',50, ...
    'InitialLearnRate',0.01, ...
    'LearnRateDropPeriod',3, ...
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    'LearnRateSchedule','piecewise', ...
    'GradientThreshold',1, ...
    'Plots','training-progress',...
    'shuffle','every-epoch',...
    'Verbose',0,...
    'DispatchInBackground',true);

Because the entire training dataset fits in memory, it is possible to use the tall function of the
datastore to transform the data in parallel, if Parallel Computing Toolbox™ is available, and then
gather it into the workspace. Neural network training is iterative. At every iteration, the datastore
reads data from files and transforms the data before updating the network coefficients. If the data fits
into the memory of your computer, importing the data into the workspace enables faster training
because the data is read and transformed only once. Note that if the data does not fit in memory, you
must to pass the datastore into the training function, and the transformations are performed at every
training epoch.

Create tall arrays for both the training and test sets. Depending on your system, the number of
workers in the parallel pool that MATLAB creates may be different.

tallTrainSet = tall(trainDs);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 8).

tallTestSet = tall(testDs);

Now call the gather function of the tall arrays to compute the transformations over the entire
dataset and obtain cell arrays with the training and test signals and labels.

 trainData = gather(tallTrainSet);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 11 sec
Evaluation completed in 12 sec

 trainData(1,:)

ans=1×2 cell array
    {1×5000 double}    {1×5000 categorical}

 testData = gather(tallTestSet);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 2.9 sec
Evaluation completed in 3.1 sec

Train Network

Use the trainNetwork command to train the LSTM network.

if actionFlag == "Train networks"
     rawNet = trainNetwork(trainData(:,1),trainData(:,2),layers,options);
end
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The training accuracy and loss subplots in the figure track the training progress across all iterations.
Using the raw signal data, the network correctly classifies about 77% of the samples as belonging to
a P wave, a QRS complex, a T wave, or an unlabeled region "n/a".

Classify Testing Data

Classify the testing data using the trained LSTM network and the classify command. Specify a
mini-batch size of 50 to match the training options.

predTest = classify(rawNet,testData(:,1),'MiniBatchSize',50);

A confusion matrix provides an intuitive and informative means to visualize classification
performance. Use the confusionchart command to calculate the overall classification accuracy for
the testing data predictions. For each input, convert the cell array of categorical labels to a row
vector. Specify a column-normalized display to view results as percentages of samples for each class.

confusionchart([predTest{:}],[testData{:,2}],'Normalization','column-normalized');
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Using the raw ECG signal as input to the network, only about 60% of T-wave samples, 40% of P-wave
samples, and 60% of QRS-complex samples were correct. To improve performance, apply some
knowledge of the ECG signal characteristics prior to input to the deep learning network, for instance
the baseline wandering caused by a patient's respiratory motion.

Apply Filtering Methods to Remove Baseline Wander and High-Frequency Noise

The three beat morphologies occupy different frequency bands. The spectrum of the QRS complex
typically has a center frequency around 10–25 Hz, and its components lie below 40 Hz. The P and T
waves occur at even lower frequencies: P-wave components are below 20 Hz, and T-wave components
are below 10 Hz [5 on page 24-0 ].

Baseline wander is a low-frequency (< 0.5 Hz) oscillation caused by the patient's breathing motion.
This oscillation is independent from the beat morphologies and does not provide meaningful
information [6 on page 24-0 ].

Design a bandpass filter with passband frequency range of [0.5, 40] Hz to remove the wander and
any high frequency noise. Removing these components improves the LSTM training because the
network does not learn irrelevant features. Use cellfun on the tall data cell arrays to filter the
dataset in parallel.

% Bandpass filter design
hFilt = designfilt('bandpassiir', 'StopbandFrequency1',0.4215,'PassbandFrequency1', 0.5, ...
    'PassbandFrequency2',40,'StopbandFrequency2',53.345,...
    'StopbandAttenuation1',60,'PassbandRipple',0.1,'StopbandAttenuation2',60,...
    'SampleRate',250,'DesignMethod','ellip');
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% Create tall arrays from the transformed datastores and filter the signals
tallTrainSet = tall(trainDs);
tallTestSet = tall(testDs);

filteredTrainSignals = gather(cellfun(@(x)filter(hFilt,x),tallTrainSet(:,1),'UniformOutput',false));

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 0% complete
Evaluation 0% complete

- Pass 1 of 1: Completed in 13 sec
Evaluation completed in 14 sec

trainLabels = gather(tallTrainSet(:,2));

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 3.6 sec
Evaluation completed in 4 sec

filteredTestSignals = gather(cellfun(@(x)filter(hFilt,x),tallTestSet(:,1),'UniformOutput',false));

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 2.4 sec
Evaluation completed in 2.5 sec

testLabels = gather(tallTestSet(:,2));

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1.9 sec
Evaluation completed in 2 sec

Plot the raw and filtered signals for a typical case.

trainData = gather(tallTrainSet);
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Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 4 sec
Evaluation completed in 4.2 sec

figure
subplot(2,1,1)
plot(trainData{95,1}(2001:3000))
title('Raw')
grid
subplot(2,1,2)
plot(filteredTrainSignals{95}(2001:3000))
title('Filtered')
grid

Even though the baseline of the filtered signals may confuse a physician that is used to traditional
ECG measurements on medical devices, the network will actually benefit from the wandering
removal.

Train Network with Filtered ECG Signals

Train the LSTM network on the filtered ECG signals using the same network architecture as before.

if actionFlag == "Train networks"
    filteredNet = trainNetwork(filteredTrainSignals,trainLabels,layers,options);
end
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Preprocessing the signals improves the training accuracy to better than 80%.
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Classify Filtered ECG Signals

Classify the preprocessed test data with the updated LSTM network.

predFilteredTest = classify(filteredNet,filteredTestSignals,'MiniBatchSize',50);

Visualize the classification performance as a confusion matrix.

figure
confusionchart([predFilteredTest{:}],[testLabels{:}],'Normalization','column-normalized');

Simple preprocessing improves T-wave classification by about 15%, and QRS-complex and P-wave
classification by about 10%.

Time-Frequency Representation of ECG Signals

A common approach for successful classification of time-series data is to extract time-frequency
features and feed them to the network instead of the original data. The network then learns patterns
across time and frequency simultaneously [7 on page 24-0 ].

The Fourier synchrosqueezed transform (FSST) computes a frequency spectrum for each signal
sample so it is ideal for the segmentation problem at hand where we need to maintain the same time
resolution as the original signals. Use the fsst function to inspect the transform of one of the
training signals. Specify a Kaiser window of length 128 to provide adequate frequency resolution.
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data =  preview(trainDs);
figure
fsst(data{1,1},250,kaiser(128),'yaxis')

Calculate the FSST of each signal in the training dataset over the frequency range of interest, [0.5,
40] Hz. Treat the real and imaginary parts of the FSST as separate features and feed both
components into the network. Furthermore, standardize the training features by subtracting the
mean and dividing by the standard deviation. Use a transformed datastore, the
extractFSSTFeatures helper function, and the tall function to process the data in parallel.

fsstTrainDs = transform(trainDs,@(x)extractFSSTFeatures(x,250));
fsstTallTrainSet = tall(fsstTrainDs);
fsstTrainData = gather(fsstTallTrainSet);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 0% complete
Evaluation 0% complete
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- Pass 1 of 1: Completed in 2 min 35 sec
Evaluation completed in 2 min 35 sec

Repeat this procedure for the testing data.

fsstTTestDs = transform(testDs,@(x)extractFSSTFeatures(x,250));
fsstTallTestSet = tall(fsstTTestDs);
fsstTestData = gather(fsstTallTestSet);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1 min 4 sec
Evaluation completed in 1 min 4 sec

Adjust Network Architecture

Modify the LSTM architecture so that the network accepts a frequency spectrum for each sample
instead of a single value. Inspect the size of the FSST to see the number of frequencies.

size(fsstTrainData{1,1})

ans = 1×2

          40        5000

Specify a sequenceInputLayer of 40 input features. Keep the rest of the network parameters
unchanged.

layers = [ ...
    sequenceInputLayer(40)
    lstmLayer(200,'OutputMode','sequence')
    fullyConnectedLayer(4)
    softmaxLayer
    classificationLayer];
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Train Network with FSST of ECG Signals

Train the updated LSTM network with the transformed dataset.

if actionFlag == "Train networks"
    fsstNet = trainNetwork(fsstTrainData(:,1),fsstTrainData(:,2),layers,options);
end

Using time-frequency features improves the training accuracy, which now exceeds 90%.

Classify Test Data with FSST

Using the updated LSTM network and extracted FSST features, classify the testing data.

predFsstTest = classify(fsstNet,fsstTestData(:,1),'MiniBatchSize',50);

Visualize the classification performance as a confusion matrix.

confusionchart([predFsstTest{:}],[fsstTestData{:,2}],'Normalization','column-normalized');
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Using a time-frequency representation improves T-wave classification by about 25%, P-wave
classification by about 40%, and QRS-complex classification by 30%, when compared to the raw data
results.

Use a signalMask object to compare the network prediction to the ground truth labels for a single
ECG signal. Ignore the "n/a" labels when plotting the regions of interest.

testData = gather(tall(testDs));

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 0% complete
Evaluation 0% complete
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- Pass 1 of 1: Completed in 37 sec
Evaluation completed in 37 sec

Mtest = signalMask(testData{1,2}(3000:4000));
Mtest.SpecifySelectedCategories = true;
Mtest.SelectedCategories = find(Mtest.Categories ~= "n/a");

figure
subplot(2,1,1)
plotsigroi(Mtest,testData{1,1}(3000:4000))
title('Ground Truth')

Mpred = signalMask(predFsstTest{1}(3000:4000));
Mpred.SpecifySelectedCategories = true;
Mpred.SelectedCategories = find(Mpred.Categories ~= "n/a");

subplot(2,1,2)
plotsigroi(Mpred,testData{1,1}(3000:4000))
title('Predicted')
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Conclusion

This example showed how signal preprocessing and time-frequency analysis can improve LSTM
waveform segmentation performance. Bandpass filtering and Fourier-based synchrosqueezing result
in an average improvement across all output classes from 55% to around 85%.
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Deploy Signal Segmentation Deep Network on Raspberry Pi
This example details the workflow for waveform segmentation of an electrocardiogram (ECG) signal
using short-time Fourier transform and a bidirectional long short-term memory (BiLSTM) network.
The example also provides information on how to generate and deploy the code and the trained
BiLSTM network for segmentation on a Raspberry Pi™ target (ARM®-based device).

The pretrained network in the example is similar to the “Waveform Segmentation Using Deep
Learning” on page 24-330 example.

This example details:

• Processor-in-the-loop (PIL) based workflow to verify generated code deployed and running on a
Raspberry Pi from MATLAB™

• Generation of a standalone executable

The PIL verification process is a crucial part of the design cycle to check that the behavior of the
generated code matches the design before deploying a standalone executable.

ECG Dataset

This example uses ECG signals from the publicly available QT Database [1 on page 24-0 ] [2 on
page 24-0 ]. The data consists of roughly 15 minutes of labeled ECG recordings, with a sample rate
of 250 Hz, measured from a total of 105 patients.

The ECG signal can be divided into the following beat morphologies [3 on page 24-0 ]:

• P wave — A small deflection before the QRS complex representing atrial depolarization
• QRS complex — Largest amplitude portion of the heartbeat
• T wave — A small deflection after the QRS complex representing ventricular repolarization

The segmentation of these regions of ECG waveforms can provide the basis for measurements that
assess the overall health of the human heart and the presence of abnormalities.

Prerequistes

• ARM processor that supports the NEON extension
• ARM Compute Library (on the target ARM hardware)
• MATLAB® Coder™
• Embedded Coder™
• Deep Learning Toolbox™
• Deep Learning Support for MATLAB Coder
• MATLAB Support Package for Raspberry Pi™

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder) (MATLAB Coder).

Functionality of Generated Code

The core function in the generated executable:
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• Uses 15,000 samples of single-precision ECG data as input.
• Computes the short-time Fourier transform of the signal.
• Standardizes and normalizes the output.
• Labels regions of the signal using the pretrained BiLSTM network.
• Generates an output file with the labels.

waveformSegmentation Function

An entry-point function, also known as the top-level or primary function, is a function you define for
code generation. You must define an entry-point function that calls code-generation-enabled functions
and generates C/C++ code from the entry-point function. All functions within the entry-point function
must support code generation.

In this example, waveformSegmentation is the entry-point function. It takes an ECG signal as an
input and passes it to the trained BiLSTM network for prediction. The performPreprocessing
function preprocesses the raw signal and applies the short-time Fourier transform. The
genClassifiedResults function passes the preprocessed signal to the network for prediction and
dislays the classification results.

type waveformSegmentation

function out = waveformSegmentation(in)
%#codegen
persistent net;

if isempty(net)
    net = coder.loadDeepLearningNetwork('trained-network-STFTBILSTM.mat', 'net');
end

preprocessedSignal = performPreprocessing(in);
out = cell(3,1);

for indx = 1:3
  out{indx,1} =  genClassifedResults(net.predict(preprocessedSignal{1,indx}));
end

end

Create a Connection to the Raspberry Pi

Use the MATLAB Support Package for Raspberry Pi function, raspi, to create a connection to the
Raspberry Pi. In the following code, replace:

• 'raspiname' with the name of your Raspberry Pi
• 'pi' with your username
• 'password' with your password

r = raspi('raspiname','pi','password');
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The example shows the PIL-based wokflow for verification of code and design and then creates and
deploys a standalone executable. Optionally, if you want to directly deploy a standalone executable,
you can skip PIL execution and go to creating a standalone execution.

Generate PIL MEX Function

The first step shows a PIL-based workflow to generate a MEX function for the
waveformSegmentation function.

Set Up Code Generation Configuration Object for a Static Library

Create a code configuration object for a static library and set the verification mode to 'PIL'. Set the
target language to 'C++'.

cfg = coder.config('lib','ecoder',true);
cfg.VerificationMode = 'PIL';
cfg.TargetLang = 'C++'; 

Set Up Configuration Object for Deep Learning Code Generation

Create a coder.ARMNEONConfig object. Specify the version of the ARM Compute library as the one
on the Raspberry Pi. Specify the architecture of the Raspberry Pi. (This example requires ARM
Compute Library v19.05).

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmComputeVersion = '19.05';
dlcfg.ArmArchitecture = 'armv7';

Set the DeepLearningConfig property of the code generation configuration object to the deep
learning configuration object. Set the configuration object with MATLAB Source Comments visible in
the codegen.

cfg.DeepLearningConfig = dlcfg;
cfg.MATLABSourceComments = 1;

Configure Code Generation Hardware Parameters for Raspberry Pi

Create a coder.Hardware object for the Raspberry Pi and attach it to the code generation
configuration object.

hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Specify the build folder on the Raspberry Pi.

cfg.Hardware.BuildDir = '~/waveformSegmentation';

Generate Source C++ Code Using codegen Function

Use the codegen function to generate the C++ code. When codegen is used with MATLAB Support
Package for Raspberry Pi Hardware, the generated code is downloaded to the board and compiled
there. A PIL MEX function is generated to communicate between MATLAB and the generated code
running on the Raspberry Pi.

Make sure to set the environment variables ARM_COMPUTELIB and LD_LIBRARY_PATH on the
Raspberry Pi. See “Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder) (MATLAB
Coder).
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codegen -config cfg waveformSegmentation -args {coder.typeof(single(ones(1,15000)),[1,15000],[0,0])} -report

### Target device has no native communication support. Checking connectivity configuration registrations...
 Deploying code. This may take a few minutes. 
### Target device has no native communication support. Checking connectivity configuration registrations...
### Connectivity configuration for function 'waveformSegmentation': 'Raspberry Pi'
Location of the generated elf : /home/pi/waveformSegmentation/MATLAB_ws/R2020b/C/Users/eshashah/OneDrive_-_MathWorks/Documents/MATLAB/Examples/deeplearning_shared-ex28372959/codegen/lib/waveformSegmentation/pil
Code generation successful: View report

Run the Executable Program on Raspberry Pi

Load the MAT-file ecgsignal_test. The file stores a sample ECG signal on which you can test the
generated code.

Run the generated waveformSegmentation_pil MEX function on the test signal.

load ecgsignal_test.mat;
out = waveformSegmentation_pil(test);

### Starting application: 'codegen\lib\waveformSegmentation\pil\waveformSegmentation.elf'
    To terminate execution: clear waveformSegmentation_pil
### Launching application waveformSegmentation.elf...

Display the signals with predicted labels.

labels = categorical(out{1}(1,2000:3000));
msk = signalMask(labels);
plotsigroi(msk,test(1,2000:3000))
title('Predicted Labels')
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After the verifying the output of the PIL MEX function, you can create a standalone executable for the
waveformSegmentation function.

The next part shows the code generation workflow to create a generate and deploy a standalone
executable in the code for prediction on a Raspberry Pi using the MATLAB Coder App.

Create a Standalone Executable Using the MATLAB Coder App

The MATLAB Coder app generates C or C++ code from MATLAB® code. The workflow-based user
interface steps you through the code generation process. The following steps describe a brief
workflow using the MATLAB Coder app. For more details, see MATLAB Coder (MATLAB Coder) and
“Generate C Code by Using the MATLAB Coder App” (MATLAB Coder).

Select the Entry-Point Function File

On the Apps tab, click the down arrow on the far right of the toolstrip to expand the apps gallery.
Under Code Generation, click MATLAB Coder. The app opens the Select Source Files page.
Enter or select the name of the entry-point function, waveformSegmentation.
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Click Next to go to the Define Input Types page.

Define Input Types

1. Select Let me enter input or global types directly and set the value of the input in as single
(1x15000).

2. Click Next to go to the Generate Code step. Skip the Check for Run-Time Issues step because
MEX generation is not supported for code generation with the ARM Compute Library.

Generate Code

1. Set values in the generate code dialog box:

• Set Build Type to Executable (.exe)
• Set Language to C++
• Set Hardware Board as Raspberry Pi

2. Click the More Settings button:
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• In the Custom Code pane, in additional source files, browse and select
ecgsegmentation_main.cpp. For more information on writing a C/C++ main function, refer to
“Structure of Generated Example C/C++ Main Function” (MATLAB Coder).

• In the Hardware pane, set the username and password for the Raspberry Pi board.
• In the Deep Learning pane, set Target library to ARM Compute. Specify ARM Compute

Library version and ARM Compute Architecture.

3. Close the Settings window and generate code.

4. Click Next to go to the Finish Workflow page.

Fetch Generated Executable Directory

Once the code generation is completed the following lines of code to test the generated code on the
Raspberry Pi, copy the input ECG signal to the generated code directory. You can find this directory
manually or by using the raspi.utils.getRemoteBuildDirectory API. This function lists the
directories of the binary files that are generated by using the codegen function. Assuming that the
binary is found in only one directory, enter:

applicationDirPaths =...
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raspi.utils.getRemoteBuildDirectory('applicationName','waveformSegmentation')
;

targetDirPath = applicationDirPaths{1}.directory;

Copy Input Files to the Raspberry Pi

To copy files required to run the executable program, use putFile, which is available with the
MATLAB Support Package for Raspberry Pi Hardware. The input.csv file contains a sample ECG
signal that is used to test the deployed code.

r.putFile('input.csv', targetDirPath);

input = dlmread('input.csv');

Run Executable program on Raspberry Pi

Run the executable program on the Raspberry Pi from MATLAB and get the output file to MATLAB.
Input file name should be passed as the command line argument for the executable.

exeName = 'waveformSegmentation.elf'; % Executable name

command = ['cd ' targetDirPath ';./' exeName];

system(r,command)

outputPath = strcat(targetDirPath,'/*.txt');

getFile(r,outputPath)

Display the signals with predicted labels. The output is depicted in the figure.

load ecgsignal_test.mat;

labels = categorical(textread('out.txt','%s')');

msk = signalMask(labels(1,2000:3000));

plotsigroi(msk,test(1,2000:3000))

title('Predicted Labels')
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More About
• “Long Short-Term Memory Networks” (Deep Learning Toolbox)
• “Generate C Code by Using the MATLAB Coder App” (MATLAB Coder)
• “Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder)
• “Structure of Generated Example C/C++ Main Function” (MATLAB Coder)
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Iterative Approach for Creating Labeled Signal Sets with
Reduced Human Effort

This example presents an iterative deep learning-based workflow to label signals with reduced human
labeling effort.

Labeling signal data is a tedious and expensive task that requires much human effort. Finding ways
to reduce this effort can significantly speed up the development of deep learning solutions for signal
processing problems.

Consider the task of labeling regions of interest in a signal data set. A first approach consists of
labeling the data by hand. This approach requires much time and effort. An alternative approach,
explored in this example, treats the labeling process iteratively. At each iteration, a subset of signals
is selected from the unlabeled data set and is sent to a pretrained deep network for automated
labeling. A human labeler examines the resulting labels and corrects wrong labels. The validated
labeled signals are added to a training data set to retrain the deep network with the extended
training data.

At each iteration, the human labeler still has to visit and examine all the signals labeled by the
network. However, the task changes from labeling signals from scratch to correcting inaccurate
labels generated by a reliable network. This latter task requires considerably less human labeling
effort. At each new iteration, the network is trained with more and more data, causing the prediction
and labeling performance of the network to improve. Hence, at each iteration, less and less human
intervention is required to correct labels.

Data

This example considers the labeling of ECG signal regions using data publicly available in the QT
Database [1 on page 24-0 ] [2 on page 24-0 ]. The data consists of roughly 15 minutes of ECG
recordings from a total of 105 patients. To obtain each recording, the examiners placed two
electrodes on different locations on a patient's chest, resulting in a two-channel signal. The database
provides signal region labels generated by an automated expert system [3 on page 24-0 ]. The
labels correspond to the locations of P wave, T wave, and QRS complex regions in the ECG
measurements. This example follows the procedure presented in “Waveform Segmentation Using
Deep Learning” on page 24-330 to train a bidirectional long short-term memory (BiLSTM) network
that can classify ECG signal samples as belonging to one of the three regions of interest.

Download the data from the GitHub Repository. This example assumes that you have put the file in
your temporary directory, whose location is specified by MATLAB®'s tempdir command. Unzip the
datafile and load the data.

unzip(fullfile(tempdir,'QT_Database-master.zip'),tempdir)
load(fullfile(tempdir,'QT_Database-master','QTData.mat'))

Use the displayWaveformLabels helper function to plot the first 1000 samples of the ECG signal
from the first patient, with the regions labeled by the expert system overlaid in different colors. The
dataset contains an extra label, 'N/A', that is used to identify signal samples that do not belong to any
of the three regions of interest.

patientID = 1;
signalVals = getSignal(QTData,patientID);
labelVals = getLabelValues(QTData,patientID,'WaveformLabels_Chan1');

displayWaveformLabels(signalVals(1,1:1000),labelVals.Value(1:1000)) 
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Use the resizeSignals helper function to break the ECG signals and label vectors into frames,
each of them 5000 samples long. The function then shuffles the frames and divides them into a
training data set containing 70% of the data and a test data set containing 30% of the data.

rng default
[testFrames,testLabels,ecgFrames,ecgLabels,testInfo,ecgInfo] = resizeSignals(QTData,0.3);

ecgFrames contains 6543 frames and testFrames contains 2768 frames. The variable ecgInfo
stores the patient ID, the channel ID, and the sample index of each frame of the training data set.
testInfo stores the same information for the test data set.

Transform the ECG frames to the time-frequency domain. Use the featureExtraction helper
function to compute the Fourier synchrosqueezed transform of the ECG signal frames over the
frequency range of interest, [0.5, 40] Hz, and standardize the resulting transforms by subtracting the
mean and dividing by the standard deviation.

Fs = QTData.SampleRate;
testFrames = featureExtraction(testFrames,Fs);
ecgFrames = featureExtraction(ecgFrames,Fs);

This example shows that it is possible to decrease the human effort involved in signal labeling by
iteratively training a deep network. At each iteration:

1 The network labels a subset of unlabeled data frames using previously labeled frames.
2 A human labeler corrects any labeling errors by hand.
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3 The corrected labeling is added to the previously labeled frames.
4 The expanded set of labeled signals is used to train the network for the next iteration.

To make quantitative comparisons, simulate two scenarios:

• For the baseline scenario, in which a human being labels the entire dataset from scratch, train the
network using the full labeled ecgFrames set.

• For the second scenario, pretend that the ecgFrames data is unlabeled and label it using the
iterative method.

Prediction Performance Using Fully Labeled ECG Data Set

Build a BiLSTM network and train it with the full labeled ecgFrames set to get a prediction-
performance upper bound. As mentioned above, this approach requires brute-force labeling of the
whole data set and hence the largest human labeling effort. Train the network with the labeled
ecgFrames set and calculate the prediction accuracy on the test data set.

Network Architecture

Create a BiLSTM network using deep learning layers.

• Specify a sequenceInputLayer with a size as the number of features in the FSST of the signals,
which is the total number of frequency-domain samples (40 in this example).

• Specify a bilstmLayer with 200 hidden nodes and set the OutputMode to sequence since each
signal sample has a label.

• Specify a fullyConnectedLayer with an output size of 4 corresponding to the four categories, P
wave, QRS complex, T wave, and N/A.

• Add a softmaxLayer and a classificationLayer to output the estimated labels.

% Training with the full emulated unlabeled data set
layers = [ ...
    sequenceInputLayer(size(ecgFrames{1},1))
    bilstmLayer(200,'OutputMode','sequence')
    fullyConnectedLayer(4)
    softmaxLayer
    classificationLayer];

Use traningOptions to specify the optimization solver and the hyperparameters to train the
network. This example uses the ADAM optimizer and a mini-batch size of 50. Train the network using
either a CPU or GPU. Using a GPU requires Parallel Computing Toolbox™ and a CUDA® enabled
NVIDIA® GPU with compute capability 3.0 or higher. For information on other parameters, see
trainingOptions (Deep Learning Toolbox). This example uses a GPU for training using the
'ExecutionEnvironment' name-value pair.

options = trainingOptions('adam', ...
    'MaxEpochs',10, ...
    'MiniBatchSize',50, ...
    'ExecutionEnvironment','gpu', ...
    'InitialLearnRate',0.01, ...
    'LearnRateDropPeriod',6, ...
    'LearnRateSchedule','piecewise', ...
    'GradientThreshold',1, ...
    'Shuffle','every-epoch',...
    'Plots','training-progress',...
    'Verbose',0);

24 Featured Examples

24-362



Train the network with the fully labeled ecgFrames data set.

baselineNet = trainNetwork(ecgFrames,ecgLabels,layers,options);

Classify the test frames using the trained network and compute the mean prediction accuracy. The
baseline prediction accuracy is about 95%.

predictLabelsAll = classify(baselineNet,testFrames,'MiniBatchSize',50);
accuracyAll = mean(cellfun(@(x,y)mean(x==y),predictLabelsAll,testLabels));
fprintf('The baseline prediction accuracy is %2.1f%%.\n',accuracyAll*100);

The baseline prediction accuracy is 94.2%.

Iterative Labeling with Human in the Loop

To reduce the labeling effort, try an iterative approach: Pretend that the ecgFrames data set is
initially unlabeled and that the data are labeled manually. In reality, the example uses the ground
truth labels provided by the data set.

Train an Initial Network

Start by selecting 25 frames from the ecgFrames set and labeling them manually. Train a BiLSTM
network with this initial labeled set to serve as the initial step of the iterative process.

numInitFrames = 25;

currentTrainingSet = ecgFrames(1:numInitFrames,1);
currentTrainingLabels = ecgLabels(1:numInitFrames);

Set the training options to have more training epochs and a smaller mini-batch size because there are
only 25 frames within the initial training data set.

options = trainingOptions('adam', ...
    'MaxEpochs',20, ...
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    'MiniBatchSize',5, ...
    'ExecutionEnvironment','gpu', ...
    'InitialLearnRate',0.01, ...
    'LearnRateDropPeriod',6, ...
    'LearnRateSchedule','piecewise', ...
    'GradientThreshold',1, ...
    'Shuffle','every-epoch', ...
    'Plots','none',...
    'Verbose',0);

Train the BiLSTM network with the initial training data set and predict labels using the same test
data set used to establish the performance baseline. The prediction accuracy of the networks is less
than about 80%.

initNet = trainNetwork(currentTrainingSet,currentTrainingLabels,layers,options);
initPrediction = classify(initNet,testFrames,'MiniBatchSize',50); 
initAccuracy = mean(cellfun(@(x,y)mean(x==y),initPrediction,testLabels));
fprintf('The prediction accuracy is %2.1f%%.\n',initAccuracy*100);

The prediction accuracy is 78.3%.

Labeling

In the next step, select 200 new data frames from the ecgFrames set and feed them to the pretrained
network, initNet, to label the signals automatically.

iteration = 1;
% Number of frames to label at each iteration
numFrames = 200; 
% Select the next set of frames to label
indexNext = numInitFrames+1:numInitFrames+numFrames;
currentPrediction = classify(initNet,ecgFrames(indexNext),'MiniBatchSize',50);

Evaluate the labeling results generated by the network and compare them to the ground truth. Use
the third of the selected 200-sample data frames as example: Plot its first 750 samples overlaid with
the ground-truth labels and the labels predicted by the network.

idx = 3;
info = ecgInfo{indexNext(idx)};
signal = QTData.Source{info.patientID}(info.channelID,info.indexID);
groundTruthLabels = ecgLabels{indexNext(idx)};
predictedLabels = currentPrediction{idx};

subplot(2,1,1)
displayWaveformLabels(signal,groundTruthLabels)
xlim([1 750])
title('Ground Truth')

subplot(2,1,2)
displayWaveformLabels(signal,predictedLabels)
xlim([1 750])
title('Labeling by Network')
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The network did a good job labeling this frame. As a result, a human inspecting the results of the
network can correct the predicted labels with little effort.

However, there are cases when the labeling performance of the network is not as strong. Consider
the results obtained with the sixth of the selected 200-sample data frames.

idx = 6;
info = ecgInfo{indexNext(idx)};
signal = QTData.Source{info.patientID}(info.channelID,info.indexID);
groundTruthLabels = ecgLabels{indexNext(idx)};
predictedLabels = currentPrediction{idx};

figure
subplot(2,1,1)
displayWaveformLabels(signal,groundTruthLabels)
xlim([1 750])
title('Ground Truth')

subplot(2,1,2)
displayWaveformLabels(signal,predictedLabels)
xlim([1 750])
title('Labeling by Network')
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The performance of the network on this signal is not as good. To inspect the results, a human labeler
has to make several corrections to the predicted labels.

To quantify the correction effort for the 200 data frames, calculate the labeling error rate of the
network and the average number of samples per frame that must be corrected by the human labeler.

numSamplesPerFrame = 5000;
networkLabelingErrorRate(iteration) = 1-mean(cellfun(@(x,y)mean(x==y),currentPrediction,ecgLabels(indexNext)));
averageNumOfCorrectionsPerFrame(iteration) = networkLabelingErrorRate(iteration) * numSamplesPerFrame;
fprintf('The average number of corrections per frame is %2.1f.\n',averageNumOfCorrectionsPerFrame(iteration));

The average number of corrections per frame is 1077.4.

For the first iteration, there are on average about 1000 samples per frame that must be corrected by
a human.

At the end of the first iteration, the human will inspect the 200 frames and modify any label with
incorrect values. With the help of the network and the human labeler, the data frames have correct
labels at the end of the iteration.

On the next iteration, the 200 newly labeled frames can be added to the currentTrainingSet set
to retrain the network and repeat the labeling iteration. This chart illustrates the workflow in each
iteration after the first iteration:
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Repeat Labeling Iterations

Extend the training set by adding the newly corrected labeled frames, select another 200 data frames
to be labeled, and repeat the labeling iteration until the performance is satisfactory.

% Include the initial training set and the 200 newly labeled data frames
maxIter = 15;
indexTraining = 1:numInitFrames+numFrames;

networkAccuracy = zeros(1,15);
networkAccuracy(iteration) = initAccuracy;

options = trainingOptions('adam', ...
    'MaxEpochs',20, ...
    'MiniBatchSize',50, ...
    'ExecutionEnvironment','gpu', ...
    'InitialLearnRate',0.01, ...
    'LearnRateDropPeriod',6, ...
    'LearnRateSchedule','piecewise', ...
    'GradientThreshold',1, ...
    'Shuffle','every-epoch', ...
    'Plots','none', ...
    'Verbose',0);

for iteration = 2:maxIter
    % Extended training data set
    currentTrainingSet = ecgFrames(indexTraining,1);    
    % Emulate human correction by assigning ground-truth labels to the
    % extended training set
    currentTrainingLabels = ecgLabels(indexTraining);

    % Train network with extended training set
    currentNet = trainNetwork(currentTrainingSet,currentTrainingLabels,layers,options);
    
    % Predict labels for the test data set and calculate the accuracy to
    % compare to baseline performance
    currentTestSetPrediction = classify(currentNet,testFrames,'MiniBatchSize',50);
    networkAccuracy(iteration) = mean(cellfun(@(x,y)mean(x==y),currentTestSetPrediction,testLabels));
    
    % Get another numFrames data frames for human labeler
    indexNext = indexTraining(end)+1:indexTraining(end)+numFrames;
    
    % Measure average number of human corrections per frame in this iteration
    currentPrediction = classify(currentNet,ecgFrames(indexNext),'MiniBatchSize',50);
    networkLabelingErrorRate(iteration) = 1-mean(cellfun(@(x,y)mean(x==y),currentPrediction,ecgLabels(indexNext)));
    averageNumOfCorrectionsPerFrame(iteration) = networkLabelingErrorRate(iteration) * numSamplesPerFrame;
    
    indexTraining = 1:indexNext(end);
end
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Labeling Performance

After 15 labeling iterations, there are 2825 data frames in currentTrainingSet, corresponding to
about half of the 6543 data frames contained in the full ecgDataset set. The prediction accuracy of
the network trained with 2825 frames is only about 1% lower than the baseline accuracy.

accuDiff = accuracyAll-networkAccuracy(end);
fprintf('The accuracy difference is %2.1f%%.\n',accuDiff*100);

The accuracy difference is 0.8%.

Plot the network prediction accuracy for the test data set with respect to the size of the training data
set at each iteration. Show the upper bound of the accuracy obtained with the fully labeled data set.
As more data frames are validated, the prediction accuracy of the network improves.

figure
examinedDataSize = 25:200:2825;
plot(examinedDataSize,networkAccuracy,'*-')
hold on
% Prediction accuracy upper bound
plot(examinedDataSize,ones(1,15)*accuracyAll,'r--')
grid on
xlabel('Training set size')
title('Accuracy for the test data set')
xlim([25 2825])
legend('Labeling Network','Upper Bound','Location','southeast')
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At the end of each iteration, the average number of human corrections per frame decreases as the
size of the training dataset increases. As more data frames are validated and used to train the
network, less human effort is required to correct the labels of the selected frames. At the last
iteration, there is an average of 300 samples per frame that require human correction.

figure
plot(examinedDataSize,averageNumOfCorrectionsPerFrame,'*-')
grid on
xlabel('Training set size')
title('Average number of human corrections per frame')
xlim([25 2825])

Throughout all 15 labeling iterations, an average of about 500 signal samples per frame required
human corrections.

fprintf('The average number of corrections per frame is %2.1f.\n',mean(averageNumOfCorrectionsPerFrame));

The average number of corrections per frame is 465.7.

Conclusion

This example showed that labeling only half of an ECG data set allows a deep network to achieve a
prediction accuracy similar to that achieved by the same network when trained with the fully labeled
data set. With the proposed iterative labeling workflow, a human labeler needs to look at only half of
the data set and correct an average of 500 signal samples per frame. On the other hand, brute-force
labeling requires looking at every frame in the data set and labeling all of its samples from scratch.
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Generate Synthetic Signals Using Conditional Generative
Adversarial Network

This example shows how to generate synthetic pump signals using a conditional generative
adversarial network.

Generative adversarial networks (GANs) can be used to produce synthetic data that resembles real
data input to the networks. GANs are useful when simulations are computationally expensive or
experiments are costly. Conditional GANs (CGANs) can use data labels during the training process to
generate data belonging to specific categories.

This example treats simulated signals obtained by a pump Simulink™ model as the "real" data that
plays the role of training data set for a CGAN. The CGAN uses 1-D convolutional networks and is
trained using a custom training loop and a deep learning array. In addition, this example uses
principal component analysis (PCA) to visually compare the characteristics of generated and real
signals.

CGAN for Signal Synthesis

CGANs consist of two networks that train together as adversaries:

1 Generator network — Given a label and random array as input, this network generates data with
the same structure as the training data observations corresponding to the same label. The
objective of the generator is to generate labeled data that the discriminator classifies as "real."

2 Discriminator network — Given batches of labeled data containing observations from both
training data and generated data from the generator, this network attempts to classify the
observations as "real" or "generated." The objective of the discriminator is to not be "fooled" by
the generator when given batches of both real and generated labeled data.

Ideally, these strategies result in a generator that generates convincingly realistic data corresponding
to the input labels and a discriminator that has learned strong features characteristic of the training
data for each label.

Load Data

The simulated data is generated by the pump Simulink model presented in the “Multi-Class Fault
Detection Using Simulated Data” (Predictive Maintenance Toolbox) example. The Simulink model is
configured to model three types of faults: cylinder leaks, blocked inlets, and increased bearing
friction. The data set contains 1575 pump output flow signals, of which 760 are healthy signals and
815 have a single fault, combinations of two faults, or combinations of three faults. Each signal has
1201 signal samples with a sample rate of 1000 Hz.
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Download and unzip the data in your temporary directory, whose location is specified by MATLAB®
tempdir command. If you have the data in a folder different from that specified by tempdir, change
the directory name in the following code.

% Download the data
dataURL = 'https://ssd.mathworks.com/supportfiles/SPT/data/PumpSignalGAN.zip';
saveFolder = fullfile(tempdir,'PumpSignalGAN'); 
zipFile = fullfile(tempdir,'PumpSignalGAN.zip');
if ~exist(saveFolder,'dir')
    websave(zipFile,dataURL);
end

% Unzip the data
unzip(zipFile,saveFolder)

The zip file contains the training data set and a pretrained CGAN:

• simulatedDataset — Simulated signals and their corresponding categorical labels
• GANModel — Generator and discriminator trained on the simulated data

Load the training data set and standardize the signals to have zero mean and unit variance.

load(fullfile(saveFolder,'simulatedDataset.mat')) % load data set
meanFlow = mean(flow,2);
flowNormalized = flow-meanFlow;
stdFlow = std(flowNormalized(:));
flowNormalized = flowNormalized/stdFlow;

Healthy signals are labeled as 1 and faulty signals are labeled as 2.

Define Generator Network

Define the following two-input network, which generates flow signals given 1-by-1-by-100 arrays of
random values and corresponding labels.

The network:

• Projects and reshapes the 1-by-1-by-100 arrays of noise to 4-by-1-by-1024 arrays by a custom
layer.

• Converts the categorical labels to embedding vectors and reshapes them to a 4-by-1-by-1 arrays.
• Concatenates the results from the two inputs along the channel dimension. The output is a 4-by-1-

by-1025 array.
• Upsamples the resulting arrays to 1201-by-1-by-1 arrays using a series of 1-D transposed

convolution layers with batch normalization and ReLU layers.

To project and reshape the noise input, use the custom layer projectAndReshapeLayer, attached
to this example as a supporting file. The projectAndReshapeLayer object upscales the input using
a fully connected layer and reshapes the output to the specified size.

To input the labels into the network, use an imageInputLayer object and specify a size of 1-by-1. To
embed and reshape the label input, use the custom layer embedAndReshapeLayer, attached to this
example as a supporting file. The embedAndReshapeLayer object converts a categorical label to a
one-channel array of the specified size using an embedding and a fully connected operation. For
categorical inputs, use an embedding dimension of 100.
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% Generator Network

numFilters = 64;
numLatentInputs = 100;
projectionSize = [4 1 1024];
numClasses = 2;
embeddingDimension = 100;

layersGenerator = [
    imageInputLayer([1 1 numLatentInputs],'Normalization','none','Name','in')
    projectAndReshapeLayer(projectionSize,numLatentInputs,'proj');
    concatenationLayer(3,2,'Name','cat');
    transposedConv2dLayer([5 1],8*numFilters,'Name','tconv1')
    batchNormalizationLayer('Name','bn1','Epsilon',5e-5)
    reluLayer('Name','relu1')
    transposedConv2dLayer([10 1],4*numFilters,'Stride',4,'Cropping',[1 0],'Name','tconv2')
    batchNormalizationLayer('Name','bn2','Epsilon',5e-5)
    reluLayer('Name','relu2')
    transposedConv2dLayer([12 1],2*numFilters,'Stride',4,'Cropping',[1 0],'Name','tconv3')
    batchNormalizationLayer('Name','bn3','Epsilon',5e-5)
    reluLayer('Name','relu3')
    transposedConv2dLayer([5 1],numFilters,'Stride',4,'Cropping',[1 0],'Name','tconv4')
    batchNormalizationLayer('Name','bn4','Epsilon',5e-5)
    reluLayer('Name','relu4')
    transposedConv2dLayer([7 1],1,'Stride',2,'Cropping',[1 0],'Name','tconv5')
    ];

lgraphGenerator = layerGraph(layersGenerator);

layers = [
    imageInputLayer([1 1],'Name','labels','Normalization','none')
    embedAndReshapeLayer(projectionSize(1:2),embeddingDimension,numClasses,'emb')];

lgraphGenerator = addLayers(lgraphGenerator,layers);
lgraphGenerator = connectLayers(lgraphGenerator,'emb','cat/in2');

Plot the network structure for the generator.

plot(lgraphGenerator)
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To train the network with a custom training loop and enable automatic differentiation, convert the
layer graph to a dlnetwork object.

dlnetGenerator = dlnetwork(lgraphGenerator);

Define Discriminator Network

Define the following two-input network, which classifies real and generated 1201-by-1 signals given a
set of signals and their corresponding labels.

This network:

• Takes 1201-by-1-by-1 signals as input.
• Converts categorical labels to embedding vectors and reshapes them to a 1201-by-1-by-1 arrays.
• Concatenates the results from the two inputs along the channel dimension. The output is a 1201-

by-1-by-1025 array.
• Downsamples the resulting arrays to scalar prediction scores, which are 1-by-1-by-1 arrays, using

a series of 1-D convolution layers with leaky ReLU layers with a scale of 0.2.

% Discriminator Network

scale = 0.2;
inputSize = [1201 1 1];

layersDiscriminator = [
    imageInputLayer(inputSize,'Normalization','none','Name','in')
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    concatenationLayer(3,2,'Name','cat')
    convolution2dLayer([17 1],8*numFilters,'Stride',2,'Padding',[1 0],'Name','conv1')
    leakyReluLayer(scale,'Name','lrelu1')
    convolution2dLayer([16 1],4*numFilters,'Stride',4,'Padding',[1 0],'Name','conv2')
    leakyReluLayer(scale,'Name','lrelu2')
    convolution2dLayer([16 1],2*numFilters,'Stride',4,'Padding',[1 0],'Name','conv3')
    leakyReluLayer(scale,'Name','lrelu3')
    convolution2dLayer([8 1],numFilters,'Stride',4,'Padding',[1 0],'Name','conv4')
    leakyReluLayer(scale,'Name','lrelu4')
    convolution2dLayer([8 1],1,'Name','conv5')];

lgraphDiscriminator = layerGraph(layersDiscriminator);

layers = [
    imageInputLayer([1 1],'Name','labels','Normalization','none')
    embedAndReshapeLayer(inputSize,embeddingDimension,numClasses,'emb')];

lgraphDiscriminator = addLayers(lgraphDiscriminator,layers);
lgraphDiscriminator = connectLayers(lgraphDiscriminator,'emb','cat/in2');

Plot the network structure for the discriminator.

plot(lgraphDiscriminator)

To train the network with a custom training loop and enable automatic differentiation, convert the
layer graph to a dlnetwork object.

dlnetDiscriminator = dlnetwork(lgraphDiscriminator);
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Train Model

Train the CGAN model using a custom training loop. Loop over the training data and update the
network parameters at each iteration. To monitor the training progress, display generated healthy
and faulty signals using two fixed arrays of random values to input into the generator as well as a plot
of the scores of the two networks.

For each epoch, shuffle the training data and loop over mini-batches of data.

For each mini-batch:

• Generate a dlarray (Deep Learning Toolbox) object containing an array of random values for the
generator network.

• For GPU training, convert the data to a gpuArray (Parallel Computing Toolbox) object.
• Evaluate the model gradients using dlfeval (Deep Learning Toolbox) and the helper function

modelGradients.
• Update the network parameters using the adamupdate (Deep Learning Toolbox) function.

The helper function modelGradients takes as input the generator and discriminator networks, a
mini-batch of input data, and an array of random values, and returns the gradients of the loss with
respect to the learnable parameters in the networks and the scores of the two networks. The loss
function is defined in the helper function ganLoss.

Specify Training Options

Set the training parameters.

params.numLatentInputs = numLatentInputs;
params.numClasses = numClasses;
params.sizeData = [inputSize length(labels)];
params.numEpochs = 1000;
params.miniBatchSize = 256;

% Specify the options for Adam optimizer
params.learnRate = 0.0002;
params.gradientDecayFactor = 0.5;
params.squaredGradientDecayFactor = 0.999;

Set the execution environment to run the CGANs on the CPU. To run the CGANs on the GPU, set
executionEnvironment to "gpu" or select the "Run on GPU" option in Live Editor. Using a GPU
requires Parallel Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU with compute capability
3.0 or higher.

executionEnvironment = ;
params.executionEnvironment = executionEnvironment;

Skip the training process by loading the pretrained network. To train the network on your computer,
set trainNow to true or select the "Train CGAN now" option in Live Editor.

trainNow = ;
if trainNow
    % Train the CGAN
    [dlnetGenerator,dlnetDiscriminator] = trainGAN(dlnetGenerator, ...
        dlnetDiscriminator,flowNormalized,labels,params); %#ok
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else
    % Use pretrained CGAN (default)
    load(fullfile(tempdir,'PumpSignalGAN','GANModel.mat')) % load data set
end

The training plot below shows an example of scores of the generator and discriminator networks. To
learn more about how to interpret the network scores, see “Monitor GAN Training Progress and
Identify Common Failure Modes” (Deep Learning Toolbox). In this example, the scores of both the
generator and discriminator converge close to 0.5, indicating that the training performance is good.

Synthesize Flow Signals

Create a dlarray object containing a batch of 2000 1-by-1-by-100 arrays of random values to input
into the generator network. Reset the random number generator for reproducible results.
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rng default

numTests = 2000;
ZNew = randn(1,1,numLatentInputs,numTests,'single');
dlZNew = dlarray(ZNew,'SSCB');

Specify that the first 1000 random arrays are healthy and the rest are faulty.

TNew = ones(1,1,1,numTests,'single');
TNew(1,1,1,numTests/2+1:end) = single(2);
dlTNew = dlarray(TNew,'SSCB');

To generate signals using the GPU, convert the data to gpuArray objects.

if executionEnvironment == "gpu"
    dlZNew = gpuArray(dlZNew);
    dlTNew = gpuArray(dlTNew);
end

Use the predict function on the generator with the batch of 1-by-1-by-100 arrays of random values
and labels to generate synthetic signals and revert the standardization step that you performed on
the original flow signals.

dlXGeneratedNew = predict(dlnetGenerator,dlZNew,dlTNew)*stdFlow+meanFlow;

Signal Feature Visualization

Unlike images and audio signals, general signals have characteristics that make them difficult for
human perception to tell apart. To compare real and generated signals or healthy and faulty signals,
you can apply principal component analysis (PCA) to the statistical features of the real signals and
then project the features of the generated signals to the same PCA subspace.

Feature Extraction

Combine the original real signal and the generated signals in one data matrix. Use the helper
function extractFeature to extract the feature including common signal statistics such as the
mean and variance as well as spectral characteristics.

idxGenerated = 1:numTests;
idxReal = numTests+1:numTests+size(flow,2);

XGeneratedNew = squeeze(extractdata(gather(dlXGeneratedNew)));
x = [XGeneratedNew single(flow)];

features = zeros(size(x,2),14,'like',x);

for ii = 1:size(x,2)
    features(ii,:) = extractFeatures(x(:,ii));
end

Each row of features corresponds to the features of one signal.

Modify the labels for the generated healthy and faulty signals as well as real healthy and faulty
signals.

L = [squeeze(TNew)+2;labels.'];

The labels now have these definitions:
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• 1 — Generated healthy signals
• 2 — Generated faulty signals
• 3 — Real healthy signals
• 4 — Real faulty signals

Principal Component Analysis

Perform PCA on the features of the real signals and project the features of the generated signals to
the same PCA subspace. W is the coefficient and Y is the score.

% PCA via svd
featuresReal = features(idxReal,:);
mu = mean(featuresReal,1);
[~,S,W] = svd(featuresReal-mu);
S = diag(S);
Y = (features-mu)*W;

From the singular vector S, the first three singular values make up 99% of the energy in S. You can
visualize the signal features by taking advantage of the first three principal components.

sum(S(1:3))/sum(S)

ans = single
    0.9923

Plot the features of all the signals using the first three principal components. In the PCA subspace,
the distribution of the generated signals is similar to the distribution of the real signals.

idxHealthyR = L==1;
idxFaultR = L==2;

idxHealthyG = L==3;
idxFaultG = L==4;

pp = Y(:,1:3);

figure
scatter3(pp(idxHealthyR,1),pp(idxHealthyR,2),pp(idxHealthyR,3),'o')
xlabel('1st Principal Component')
ylabel('2nd Principal Component')
zlabel('3rd Principal Component')
hold on
scatter3(pp(idxFaultR,1),pp(idxFaultR,2),pp(idxFaultR,3),'d')
scatter3(pp(idxHealthyG,1),pp(idxHealthyG,2),pp(idxHealthyG,3),'s')
scatter3(pp(idxFaultG,1),pp(idxFaultG,2),pp(idxFaultG,3),'+')
view(-10,20)
legend('Real healthy','Real faulty','Generated healthy','Generated faulty', ...
    'Location','Best')
hold off
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To better capture the difference between the real signals and generated signals, plot the subspace
using the first two principal components.

view(2)
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Healthy and faulty signals lie in the same area of the PCA subspace regardless of their being real or
generated, demonstrating that the generated signals have features similar to those of the real
signals.

Predict Labels of Real Signals

To further illustrate the performance of the CGAN, train an SVM classifier based on the generated
signals and then predict whether a real signal is healthy or faulty.

Set the generated signals as the training data set and the real signals as the test data set. Change the
numeric labels to character vectors.

LABELS = {'Healthy','Faulty'};
strL = LABELS([squeeze(TNew);labels.']).';

dataTrain = features(idxGenerated,:);
dataTest = features(idxReal,:);

labelTrain = strL(idxGenerated);
labelTest = strL(idxReal);

predictors = dataTrain; 
response = labelTrain;
cvp = cvpartition(size(predictors,1),'KFold',5);

Train an SVM classifier using the generated signals.
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SVMClassifier = fitcsvm( ...
    predictors(cvp.training(1),:), ...
    response(cvp.training(1)),'KernelFunction','polynomial', ...
    'PolynomialOrder',2, ...
    'KernelScale','auto', ...
    'BoxConstraint',1, ...
    'ClassNames',LABELS, ...
    'Standardize',true);

Use the trained classifier to obtain the predicted labels for the real signals. The classifier achieves a
prediction accuracy above 90%.

actualValue = labelTest;
predictedValue = predict(SVMClassifier,dataTest);
predictAccuracy = mean(cellfun(@strcmp,actualValue,predictedValue))

predictAccuracy = 0.9460

Use a confusion matrix to view detailed information about prediction performance for each category.
The confusion matrix shows that, in each category, the classifier trained based on the generated
signals achieves a high degree of accuracy.

figure
confusionchart(actualValue,predictedValue)
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Case Study

Compare the spectral characteristics of real and generated signals. Due to the nondeterministic
behavior of GPU training, if you train the CGAN model yourself, your results might differ from the
results in this example.

The pump motor speed is 950 rpm, or 15.833 Hz, and since the pump has three cylinders the flow is
expected to have a fundamental at 3 times 15.833 Hz, or 47.5 Hz, and harmonics at multiples of 47.5
Hz. Plot the spectrum for one case of the real and generated healthy signals. From the plot, the
generated healthy signal has relatively high power values at 47.5 Hz and 2 times 47.5 Hz, which is
exactly the same as the real healthy signal.

Fs = 1000;
pspectrum([x(:,1) x(:,2006)],Fs)
set(gca,'XScale','log')
legend('Generated healthy','Real healthy')

If faults exist, resonances will occur at the pump motor speed, 15.833 Hz, and its harmonics. Plot the
spectra for one case of real and generated faulty signals. The generated signal has relatively high
power values at around 15.833 Hz and its harmonics, which is similar to the real faulty signal.

pspectrum([x(:,1011) x(:,2100)],Fs)
set(gca,'XScale','log')
legend('Generated faulty','Real faulty')
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Plot spectra for another case of real and generated faulty signals. The spectral characteristics of the
generated faulty signals do not match the theoretical analysis very well and are different from the
real faulty signal. The CGAN can still be possibly improved by tuning the network structure or
hyperparameters.

pspectrum([x(:,1001) x(:,2600)],Fs)
set(gca,'XScale','log')
legend('Generated faulty','Real faulty')

24 Featured Examples

24-384



Computation Time

The Simulink simulation takes about 14 hours to generate 2000 pump flow signals. This duration can
be reduced to about 1.7 hours with eight parallel workers if you have Parallel Computing Toolbox™.

The CGAN takes 1.5 hours to train and 70 seconds to generate the same amount of synthetic data
with an NVIDIA Titan V GPU.

See Also
adamupdate | dlarray | dlfeval | gpuArray

More About
• “Train Conditional Generative Adversarial Network (CGAN)” (Deep Learning Toolbox)
• “Monitor GAN Training Progress and Identify Common Failure Modes” (Deep Learning Toolbox)
• “Multi-Class Fault Detection Using Simulated Data” (Predictive Maintenance Toolbox)

 Generate Synthetic Signals Using Conditional Generative Adversarial Network

24-385



Classify Time Series Using Wavelet Analysis and Deep Learning
This example shows how to classify human electrocardiogram (ECG) signals using the continuous
wavelet transform (CWT) and a deep convolutional neural network (CNN).

Training a deep CNN from scratch is computationally expensive and requires a large amount of
training data. In various applications, a sufficient amount of training data is not available, and
synthesizing new realistic training examples is not feasible. In these cases, leveraging existing neural
networks that have been trained on large data sets for conceptually similar tasks is desirable. This
leveraging of existing neural networks is called transfer learning. In this example we adapt two deep
CNNs, GoogLeNet and SqueezeNet, pretrained for image recognition to classify ECG waveforms
based on a time-frequency representation.

GoogLeNet and SqueezeNet are deep CNNs originally designed to classify images in 1000 categories.
We reuse the network architecture of the CNN to classify ECG signals based on images from the CWT
of the time series data. The data used in this example are publicly available from PhysioNet.

Data Description

In this example, you use ECG data obtained from three groups of people: persons with cardiac
arrhythmia (ARR), persons with congestive heart failure (CHF), and persons with normal sinus
rhythms (NSR). In total you use 162 ECG recordings from three PhysioNet databases: MIT-BIH
Arrhythmia Database [3][7], MIT-BIH Normal Sinus Rhythm Database [3], and The BIDMC Congestive
Heart Failure Database [1][3]. More specifically, 96 recordings from persons with arrhythmia, 30
recordings from persons with congestive heart failure, and 36 recordings from persons with normal
sinus rhythms. The goal is to train a classifier to distinguish between ARR, CHF, and NSR.

Download Data

The first step is to download the data from the GitHub repository. To download the data from the
website, click Clone or download and select Download ZIP. Save the file
physionet_ECG_data-master.zip in a folder where you have write permission. The instructions
for this example assume you have downloaded the file to your temporary directory, tempdir, in
MATLAB. Modify the subsequent instructions for unzipping and loading the data if you choose to
download the data in folder different from tempdir. If you are familiar with Git, you can download
the latest version of the tools (git) and obtain the data from a system command prompt using git
clone https://github.com/mathworks/physionet_ECG_data/.

After downloading the data from GitHub, unzip the file in your temporary directory.

unzip(fullfile(tempdir,'physionet_ECG_data-master.zip'),tempdir)

Unzipping creates the folder physionet-ECG_data-master in your temporary directory. This folder
contains the text file README.md and ECGData.zip. The ECGData.zip file contains

• ECGData.mat
• Modified_physionet_data.txt
• License.txt

ECGData.mat holds the data used in this example. The text file, Modified_physionet_data.txt,
is required by PhysioNet's copying policy and provides the source attributions for the data as well as
a description of the preprocessing steps applied to each ECG recording.
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Unzip ECGData.zip in physionet-ECG_data-master. Load the data file into your MATLAB
workspace.

unzip(fullfile(tempdir,'physionet_ECG_data-master','ECGData.zip'),...
    fullfile(tempdir,'physionet_ECG_data-master'))
load(fullfile(tempdir,'physionet_ECG_data-master','ECGData.mat'))

ECGData is a structure array with two fields: Data and Labels. The Data field is a 162-by-65536
matrix where each row is an ECG recording sampled at 128 hertz. Labels is a 162-by-1 cell array of
diagnostic labels, one for each row of Data. The three diagnostic categories are: 'ARR', 'CHF', and
'NSR'.

To store the preprocessed data of each category, first create an ECG data directory dataDir inside
tempdir. Then create three subdirectories in 'data' named after each ECG category. The helper
function helperCreateECGDirectories does this. helperCreateECGDirectories accepts
ECGData, the name of an ECG data directory, and the name of a parent directory as input arguments.
You can replace tempdir with another directory where you have write permission. You can find the
source code for this helper function in the Supporting Functions section at the end of this example.

parentDir = tempdir;
dataDir = 'data';
helperCreateECGDirectories(ECGData,parentDir,dataDir)

Plot a representative of each ECG category. The helper function helperPlotReps does this.
helperPlotReps accepts ECGData as input. You can find the source code for this helper function in
the Supporting Functions section at the end of this example.

helperPlotReps(ECGData)
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Create Time-Frequency Representations

After making the folders, create time-frequency representations of the ECG signals. These
representations are called scalograms. A scalogram is the absolute value of the CWT coefficients of a
signal.

To create the scalograms, precompute a CWT filter bank. Precomputing the CWT filter bank is the
preferred method when obtaining the CWT of many signals using the same parameters.

Before generating the scalograms, examine one of them. Create a CWT filter bank using
cwtfilterbank (Wavelet Toolbox) for a signal with 1000 samples. Use the filter bank to take the
CWT of the first 1000 samples of the signal and obtain the scalogram from the coefficients.

Fs = 128;
fb = cwtfilterbank('SignalLength',1000,...
    'SamplingFrequency',Fs,...
    'VoicesPerOctave',12);
sig = ECGData.Data(1,1:1000);
[cfs,frq] = wt(fb,sig);
t = (0:999)/Fs;figure;pcolor(t,frq,abs(cfs))
set(gca,'yscale','log');shading interp;axis tight;
title('Scalogram');xlabel('Time (s)');ylabel('Frequency (Hz)')
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Use the helper function helperCreateRGBfromTF to create the scalograms as RGB images and
write them to the appropriate subdirectory in dataDir. The source code for this helper function is in
the Supporting Functions section at the end of this example. To be compatible with the GoogLeNet
architecture, each RGB image is an array of size 224-by-224-by-3.

helperCreateRGBfromTF(ECGData,parentDir,dataDir)

Divide into Training and Validation Data

Load the scalogram images as an image datastore. The imageDatastore function automatically
labels the images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and
efficiently read batches of images during training of a CNN.

allImages = imageDatastore(fullfile(parentDir,dataDir),...
    'IncludeSubfolders',true,...
    'LabelSource','foldernames');

Randomly divide the images into two groups, one for training and the other for validation. Use 80% of
the images for training, and the remainder for validation. For purposes of reproducibility, we set the
random seed to the default value.

rng default
[imgsTrain,imgsValidation] = splitEachLabel(allImages,0.8,'randomized');
disp(['Number of training images: ',num2str(numel(imgsTrain.Files))]);

Number of training images: 130
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disp(['Number of validation images: ',num2str(numel(imgsValidation.Files))]);

Number of validation images: 32

GoogLeNet

Load

Load the pretrained GoogLeNet neural network. If Deep Learning Toolbox™ Model for GoogLeNet
Network support package is not installed, the software provides a link to the required support
package in the Add-On Explorer. To install the support package, click the link, and then click Install.

net = googlenet;

Extract and display the layer graph from the network.

lgraph = layerGraph(net);
numberOfLayers = numel(lgraph.Layers);
figure('Units','normalized','Position',[0.1 0.1 0.8 0.8]);
plot(lgraph)
title(['GoogLeNet Layer Graph: ',num2str(numberOfLayers),' Layers']);

Inspect the first element of the network Layers property. Confirm that GoogLeNet requires RGB
images of size 224-by-224-by-3.

net.Layers(1)
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ans = 
  ImageInputLayer with properties:

                Name: 'data'
           InputSize: [224 224 3]

   Hyperparameters
    DataAugmentation: 'none'
       Normalization: 'zerocenter'
                Mean: [224×224×3 single]

Modify GoogLeNet Network Parameters

Each layer in the network architecture can be considered a filter. The earlier layers identify more
common features of images, such as blobs, edges, and colors. Subsequent layers focus on more
specific features in order to differentiate categories. GoogLeNet is pretrained to classify images into
1000 object categories. You must retrain GoogLeNet for our ECG classification problem.

To prevent overfitting, a dropout layer is used. A dropout layer randomly sets input elements to zero
with a given probability. See dropoutLayer (Deep Learning Toolbox) for more information. The
default probability is 0.5. Replace the final dropout layer in the network, 'pool5-drop_7x7_s1',
with a dropout layer of probability 0.6.

newDropoutLayer = dropoutLayer(0.6,'Name','new_Dropout');
lgraph = replaceLayer(lgraph,'pool5-drop_7x7_s1',newDropoutLayer);

The convolutional layers of the network extract image features that the last learnable layer and final
classification layer use to classify the input image. These two layers, 'loss3-classifier' and
'output' in GoogLeNet, contain information on how to combine the features that the network
extracts into class probabilities, a loss value, and predicted labels. To retrain GoogLeNet to classify
the RGB images, replace these two layers with new layers adapted to the data.

Replace the fully connected layer 'loss3-classifier' with a new fully connected layer with the
number of filters equal to the number of classes. To learn faster in the new layers than in the
transferred layers, increase the learning rate factors of the fully connected layer.

numClasses = numel(categories(imgsTrain.Labels));
newConnectedLayer = fullyConnectedLayer(numClasses,'Name','new_fc',...
    'WeightLearnRateFactor',5,'BiasLearnRateFactor',5);
lgraph = replaceLayer(lgraph,'loss3-classifier',newConnectedLayer);

The classification layer specifies the output classes of the network. Replace the classification layer
with a new one without class labels. trainNetwork automatically sets the output classes of the layer
at training time.

newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'output',newClassLayer);

Set Training Options and Train GoogLeNet

Training a neural network is an iterative process that involves minimizing a loss function. To minimize
the loss function, a gradient descent algorithm is used. In each iteration, the gradient of the loss
function is evaluated and the descent algorithm weights are updated.

Training can be tuned by setting various options. InitialLearnRate specifies the initial step size in
the direction of the negative gradient of the loss function. MiniBatchSize specifies how large of a
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subset of the training set to use in each iteration. One epoch is a full pass of the training algorithm
over the entire training set. MaxEpochs specifies the maximum number of epochs to use for training.
Choosing the right number of epochs is not a trivial task. Decreasing the number of epochs has the
effect of underfitting the model, and increasing the number of epochs results in overfitting.

Use the trainingOptions (Deep Learning Toolbox) function to specify the training options. Set
MiniBatchSize to 10, MaxEpochs to 10, and InitialLearnRate to 0.0001. Visualize training
progress by setting Plots to training-progress. Use the stochastic gradient descent with
momentum optimizer. By default, training is done on a GPU if one is available (requires Parallel
Computing Toolbox™ and a CUDA® enabled GPU with compute capability 3.0 or higher). For
purposes of reproducibility, set ExecutionEnvironment to cpu so that trainNetwork used the
CPU. Set the random seed to the default value. Run times will be faster if you are able to use a GPU.

options = trainingOptions('sgdm',...
    'MiniBatchSize',15,...
    'MaxEpochs',20,...
    'InitialLearnRate',1e-4,...
    'ValidationData',imgsValidation,...
    'ValidationFrequency',10,...
    'Verbose',1,...
    'ExecutionEnvironment','cpu',...
    'Plots','training-progress');
rng default

Train the network. The training process usually takes 1-5 minutes on a desktop CPU. The command
window displays training information during the run. Results include epoch number, iteration
number, time elapsed, mini-batch accuracy, validation accuracy, and loss function value for the
validation data.

trainedGN = trainNetwork(imgsTrain,lgraph,options);
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Initializing input data normalization.
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:03 |        6.67% |       18.75% |       4.9207 |       2.4141 |      1.0000e-04 |
|       2 |          10 |       00:00:23 |       66.67% |       62.50% |       0.9589 |       1.3191 |      1.0000e-04 |
|       3 |          20 |       00:00:43 |       46.67% |       75.00% |       1.2973 |       0.5928 |      1.0000e-04 |
|       4 |          30 |       00:01:04 |       60.00% |       78.13% |       0.7219 |       0.4576 |      1.0000e-04 |
|       5 |          40 |       00:01:25 |       73.33% |       84.38% |       0.4750 |       0.3367 |      1.0000e-04 |
|       7 |          50 |       00:01:46 |       93.33% |       84.38% |       0.2714 |       0.2892 |      1.0000e-04 |
|       8 |          60 |       00:02:07 |       80.00% |       87.50% |       0.3617 |       0.2433 |      1.0000e-04 |
|       9 |          70 |       00:02:29 |       86.67% |       87.50% |       0.3246 |       0.2526 |      1.0000e-04 |
|      10 |          80 |       00:02:50 |      100.00% |       96.88% |       0.0701 |       0.1876 |      1.0000e-04 |
|      12 |          90 |       00:03:11 |       86.67% |      100.00% |       0.2836 |       0.1681 |      1.0000e-04 |
|      13 |         100 |       00:03:32 |       86.67% |       96.88% |       0.4160 |       0.1607 |      1.0000e-04 |
|      14 |         110 |       00:03:53 |       86.67% |       96.88% |       0.3237 |       0.1565 |      1.0000e-04 |
|      15 |         120 |       00:04:14 |       93.33% |       96.88% |       0.1646 |       0.1476 |      1.0000e-04 |
|      17 |         130 |       00:04:35 |      100.00% |       96.88% |       0.0551 |       0.1330 |      1.0000e-04 |
|      18 |         140 |       00:04:57 |       93.33% |       96.88% |       0.0927 |       0.1347 |      1.0000e-04 |
|      19 |         150 |       00:05:18 |       93.33% |       93.75% |       0.1666 |       0.1325 |      1.0000e-04 |
|      20 |         160 |       00:05:39 |       93.33% |       96.88% |       0.0873 |       0.1164 |      1.0000e-04 |
|======================================================================================================================|

Inspect the last layer of the trained network. Confirm the Classification Output layer includes the
three classes.

trainedGN.Layers(end)

 Classify Time Series Using Wavelet Analysis and Deep Learning

24-393



ans = 
  ClassificationOutputLayer with properties:

            Name: 'new_classoutput'
         Classes: [ARR    CHF    NSR]
      OutputSize: 3

   Hyperparameters
    LossFunction: 'crossentropyex'

Evaluate GoogLeNet Accuracy

Evaluate the network using the validation data.

[YPred,probs] = classify(trainedGN,imgsValidation);
accuracy = mean(YPred==imgsValidation.Labels);
disp(['GoogLeNet Accuracy: ',num2str(100*accuracy),'%'])

GoogLeNet Accuracy: 96.875%

The accuracy is identical to the validation accuracy reported on the training visualization figure. The
scalograms were split into training and validation collections. Both collections were used to train
GoogLeNet. The ideal way to evaluate the result of the training is to have the network classify data it
has not seen. Since there is an insufficient amount of data to divide into training, validation, and
testing, we treat the computed validation accuracy as the network accuracy.

Explore GoogLeNet Activations

Each layer of a CNN produces a response, or activation, to an input image. However, there are only a
few layers within a CNN that are suitable for image feature extraction. The layers at the beginning of
the network capture basic image features, such as edges and blobs. To see this, visualize the network
filter weights from the first convolutional layer. There are 64 individual sets of weights in the first
layer.

wghts = trainedGN.Layers(2).Weights;
wghts = rescale(wghts);
wghts = imresize(wghts,5);
figure
montage(wghts)
title('First Convolutional Layer Weights')
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You can examine the activations and discover which features GoogLeNet learns by comparing areas
of activation with the original image. For more information, see “Visualize Activations of a
Convolutional Neural Network” (Deep Learning Toolbox) and “Visualize Features of a Convolutional
Neural Network” (Deep Learning Toolbox).

Examine which areas in the convolutional layers activate on an image from the ARR class. Compare
with the corresponding areas in the original image. Each layer of a convolutional neural network
consists of many 2-D arrays called channels. Pass the image through the network and examine the
output activations of the first convolutional layer, 'conv1-7x7_s2'.

convLayer = 'conv1-7x7_s2';
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imgClass = 'ARR';
imgName = 'ARR_10.jpg';
imarr = imread(fullfile(parentDir,dataDir,imgClass,imgName));

trainingFeaturesARR = activations(trainedGN,imarr,convLayer);
sz = size(trainingFeaturesARR);
trainingFeaturesARR = reshape(trainingFeaturesARR,[sz(1) sz(2) 1 sz(3)]);
figure
montage(rescale(trainingFeaturesARR),'Size',[8 8])
title([imgClass,' Activations'])

Find the strongest channel for this image. Compare the strongest channel with the original image.
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imgSize = size(imarr);
imgSize = imgSize(1:2);
[~,maxValueIndex] = max(max(max(trainingFeaturesARR)));
arrMax = trainingFeaturesARR(:,:,:,maxValueIndex);
arrMax = rescale(arrMax);
arrMax = imresize(arrMax,imgSize);
figure;
imshowpair(imarr,arrMax,'montage')
title(['Strongest ',imgClass,' Channel: ',num2str(maxValueIndex)])

SqueezeNet

SqueezeNet is a deep CNN whose architecture supports images of size 227-by-227-by-3. Even though
the image dimensions are different for GoogLeNet, you do not have to generate new RGB images at
the SqueezeNet dimensions. You can use the original RGB images.

Load

Load the pretrained SqueezeNet neural network. If Deep Learning Toolbox™ Model for SqueezeNet
Network support package is not installed, the software provides a link to the required support
package in the Add-On Explorer. To install the support package, click the link, and then click Install.

sqz = squeezenet;

Extract the layer graph from the network. Confirm SqueezeNet has fewer layers than GoogLeNet.
Also confirm that SqueezeNet is configured for images of size 227-by-227-by-3

lgraphSqz = layerGraph(sqz);
disp(['Number of Layers: ',num2str(numel(lgraphSqz.Layers))])

Number of Layers: 68

disp(lgraphSqz.Layers(1).InputSize)

   227   227     3
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Modify SqueezeNet Network Parameters

To retrain SqueezeNet to classify new images, make changes similar to those made for GoogLeNet.

Inspect the last six network layers.

lgraphSqz.Layers(end-5:end)

ans = 
  6x1 Layer array with layers:

     1   'drop9'                             Dropout                 50% dropout
     2   'conv10'                            Convolution             1000 1x1x512 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'relu_conv10'                       ReLU                    ReLU
     4   'pool10'                            Average Pooling         14x14 average pooling with stride [1  1] and padding [0  0  0  0]
     5   'prob'                              Softmax                 softmax
     6   'ClassificationLayer_predictions'   Classification Output   crossentropyex with 'tench' and 999 other classes

Replace the 'drop9' layer, the last dropout layer in the network, with a dropout layer of probability
0.6.

tmpLayer = lgraphSqz.Layers(end-5);
newDropoutLayer = dropoutLayer(0.6,'Name','new_dropout');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newDropoutLayer);

Unlike GoogLeNet, the last learnable layer in SqueezeNet is a 1-by-1 convolutional layer, 'conv10',
and not a fully connected layer. Replace the 'conv10' layer with a new convolutional layer with the
number of filters equal to the number of classes. As was done with GoogLeNet, increase the learning
rate factors of the new layer.

numClasses = numel(categories(imgsTrain.Labels));
tmpLayer = lgraphSqz.Layers(end-4);
newLearnableLayer = convolution2dLayer(1,numClasses, ...
        'Name','new_conv', ...
        'WeightLearnRateFactor',10, ...
        'BiasLearnRateFactor',10);
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newLearnableLayer);

Replace the classification layer with a new one without class labels.

tmpLayer = lgraphSqz.Layers(end);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newClassLayer);

Inspect the last six layers of the network. Confirm the dropout, convolutional, and output layers have
been changed.

lgraphSqz.Layers(63:68)

ans = 
  6x1 Layer array with layers:

     1   'new_dropout'       Dropout                 60% dropout
     2   'new_conv'          Convolution             3 1x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'relu_conv10'       ReLU                    ReLU
     4   'pool10'            Average Pooling         14x14 average pooling with stride [1  1] and padding [0  0  0  0]
     5   'prob'              Softmax                 softmax
     6   'new_classoutput'   Classification Output   crossentropyex
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Prepare RGB Data for SqueezeNet

The RGB images have dimensions appropriate for the GoogLeNet architecture. Create augmented
image datastores that automatically resize the existing RGB images for the SqueezeNet architecture.
For more information, see augmentedImageDatastore (Deep Learning Toolbox).

augimgsTrain = augmentedImageDatastore([227 227],imgsTrain);
augimgsValidation = augmentedImageDatastore([227 227],imgsValidation);

Set Training Options and Train SqueezeNet

Create a new set of training options to use with SqueezeNet. Set the random seed to the default value
and train the network. The training process usually takes 1-5 minutes on a desktop CPU.

ilr = 3e-4;
miniBatchSize = 10;
maxEpochs = 15;
valFreq = floor(numel(augimgsTrain.Files)/miniBatchSize);
opts = trainingOptions('sgdm',...
    'MiniBatchSize',miniBatchSize,...
    'MaxEpochs',maxEpochs,...
    'InitialLearnRate',ilr,...
    'ValidationData',augimgsValidation,...
    'ValidationFrequency',valFreq,...
    'Verbose',1,...
    'ExecutionEnvironment','cpu',...
    'Plots','training-progress');

rng default
trainedSN = trainNetwork(augimgsTrain,lgraphSqz,opts);
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Initializing input data normalization.
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:01 |       20.00% |       43.75% |       5.2508 |       1.2540 |          0.0003 |
|       1 |          13 |       00:00:11 |       60.00% |       50.00% |       0.9912 |       1.0519 |          0.0003 |
|       2 |          26 |       00:00:20 |       60.00% |       59.38% |       0.8554 |       0.8497 |          0.0003 |
|       3 |          39 |       00:00:30 |       60.00% |       59.38% |       0.8120 |       0.8328 |          0.0003 |
|       4 |          50 |       00:00:38 |       50.00% |              |       0.7885 |              |          0.0003 |
|       4 |          52 |       00:00:40 |       60.00% |       65.63% |       0.7091 |       0.7314 |          0.0003 |
|       5 |          65 |       00:00:49 |       90.00% |       87.50% |       0.4639 |       0.5893 |          0.0003 |
|       6 |          78 |       00:00:59 |       70.00% |       87.50% |       0.6021 |       0.4355 |          0.0003 |
|       7 |          91 |       00:01:08 |       90.00% |       90.63% |       0.2307 |       0.2945 |          0.0003 |
|       8 |         100 |       00:01:15 |       90.00% |              |       0.1827 |              |          0.0003 |
|       8 |         104 |       00:01:18 |       90.00% |       93.75% |       0.2139 |       0.2153 |          0.0003 |
|       9 |         117 |       00:01:28 |      100.00% |       90.63% |       0.0521 |       0.1964 |          0.0003 |
|      10 |         130 |       00:01:38 |       90.00% |       90.63% |       0.1134 |       0.2214 |          0.0003 |
|      11 |         143 |       00:01:47 |      100.00% |       90.63% |       0.0855 |       0.2095 |          0.0003 |
|      12 |         150 |       00:01:52 |       90.00% |              |       0.2394 |              |          0.0003 |
|      12 |         156 |       00:01:57 |      100.00% |       90.63% |       0.0606 |       0.1849 |          0.0003 |
|      13 |         169 |       00:02:06 |      100.00% |       90.63% |       0.0090 |       0.2071 |          0.0003 |
|      14 |         182 |       00:02:16 |      100.00% |       93.75% |       0.0127 |       0.3597 |          0.0003 |
|      15 |         195 |       00:02:25 |      100.00% |       93.75% |       0.0016 |       0.3414 |          0.0003 |
|======================================================================================================================|

Inspect the last layer of the network. Confirm the Classification Output layer includes the three
classes.
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trainedSN.Layers(end)

ans = 
  ClassificationOutputLayer with properties:

            Name: 'new_classoutput'
         Classes: [ARR    CHF    NSR]
      OutputSize: 3

   Hyperparameters
    LossFunction: 'crossentropyex'

Evaluate SqueezeNet Accuracy

Evaluate the network using the validation data.

[YPred,probs] = classify(trainedSN,augimgsValidation);
accuracy = mean(YPred==imgsValidation.Labels);
disp(['SqueezeNet Accuracy: ',num2str(100*accuracy),'%'])

SqueezeNet Accuracy: 93.75%

Conclusion

This example shows how to use transfer learning and continuous wavelet analysis to classify three
classes of ECG signals by leveraging the pretrained CNNs GoogLeNet and SqueezeNet. Wavelet-
based time-frequency representations of ECG signals are used to create scalograms. RGB images of
the scalograms are generated. The images are used to fine-tune both deep CNNs. Activations of
different network layers were also explored.

This example illustrates one possible workflow you can use for classifying signals using pretrained
CNN models. Other workflows are possible. “Deploy Signal Classifier on NVIDIA Jetson Using
Wavelet Analysis and Deep Learning” (Wavelet Toolbox) and “Deploy Signal Classifier Using Wavelets
and Deep Learning on Raspberry Pi” (Wavelet Toolbox) show how to deploy code onto hardware for
signal classification. GoogLeNet and SqueezeNet are models pretrained on a subset of the ImageNet
database [10], which is used in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [8].
The ImageNet collection contains images of real-world objects such as fish, birds, appliances, and
fungi. Scalograms fall outside the class of real-world objects. In order to fit into the GoogLeNet and
SqueezeNet architecture, the scalograms also underwent data reduction. Instead of fine-tuning
pretrained CNNs to distinguish different classes of scalograms, training a CNN from scratch at the
original scalogram dimensions is an option.
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Supporting Functions

helperCreateECGDataDirectories creates a data directory inside a parent directory, then creates
three subdirectories inside the data directory. The subdirectories are named after each class of ECG
signal found in ECGData.

function helperCreateECGDirectories(ECGData,parentFolder,dataFolder)
% This function is only intended to support the ECGAndDeepLearningExample.
% It may change or be removed in a future release.

rootFolder = parentFolder;
localFolder = dataFolder;
mkdir(fullfile(rootFolder,localFolder))

folderLabels = unique(ECGData.Labels);
for i = 1:numel(folderLabels)
    mkdir(fullfile(rootFolder,localFolder,char(folderLabels(i))));
end
end

helperPlotReps plots the first thousand samples of a representative of each class of ECG signal
found in ECGData.

function helperPlotReps(ECGData)
% This function is only intended to support the ECGAndDeepLearningExample.
% It may change or be removed in a future release.

folderLabels = unique(ECGData.Labels);

for k=1:3
    ecgType = folderLabels{k};
    ind = find(ismember(ECGData.Labels,ecgType));
    subplot(3,1,k)
    plot(ECGData.Data(ind(1),1:1000));
    grid on
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    title(ecgType)
end
end

helperCreateRGBfromTF uses cwtfilterbank (Wavelet Toolbox) to obtain the continuous wavelet
transform of the ECG signals and generates the scalograms from the wavelet coefficients. The helper
function resizes the scalograms and writes them to disk as jpeg images.

function helperCreateRGBfromTF(ECGData,parentFolder,childFolder)
% This function is only intended to support the ECGAndDeepLearningExample.
% It may change or be removed in a future release.

imageRoot = fullfile(parentFolder,childFolder);

data = ECGData.Data;
labels = ECGData.Labels;

[~,signalLength] = size(data);

fb = cwtfilterbank('SignalLength',signalLength,'VoicesPerOctave',12);
r = size(data,1);

for ii = 1:r
    cfs = abs(fb.wt(data(ii,:)));
    im = ind2rgb(im2uint8(rescale(cfs)),jet(128));
    
    imgLoc = fullfile(imageRoot,char(labels(ii)));
    imFileName = strcat(char(labels(ii)),'_',num2str(ii),'.jpg');
    imwrite(imresize(im,[224 224]),fullfile(imgLoc,imFileName));
end
end
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Denoise Speech Using Deep Learning Networks
This example shows how to denoise speech signals using deep learning networks. The example
compares two types of networks applied to the same task: fully connected, and convolutional.

Introduction

The aim of speech denoising is to remove noise from speech signals while enhancing the quality and
intelligibility of speech. This example showcases the removal of washing machine noise from speech
signals using deep learning networks. The example compares two types of networks applied to the
same task: fully connected, and convolutional.

Problem Summary

Consider the following speech signal sampled at 8 kHz.

[cleanAudio,fs] = audioread("SpeechDFT-16-8-mono-5secs.wav");
sound(cleanAudio,fs)

Add washing machine noise to the speech signal. Set the noise power such that the signal-to-noise
ratio (SNR) is zero dB.

noise = audioread("WashingMachine-16-8-mono-1000secs.mp3");

% Extract a noise segment from a random location in the noise file
ind = randi(numel(noise) - numel(cleanAudio) + 1, 1, 1);
noiseSegment = noise(ind:ind + numel(cleanAudio) - 1);

speechPower = sum(cleanAudio.^2);
noisePower = sum(noiseSegment.^2);
noisyAudio = cleanAudio + sqrt(speechPower/noisePower) * noiseSegment;

Listen to the noisy speech signal.

sound(noisyAudio,fs)

Visualize the original and noisy signals.

t = (1/fs) * (0:numel(cleanAudio)-1);

subplot(2,1,1)
plot(t,cleanAudio)
title("Clean Audio")
grid on

subplot(2,1,2)
plot(t,noisyAudio)
title("Noisy Audio")
xlabel("Time (s)")
grid on
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The objective of speech denoising is to remove the washing machine noise from the speech signal
while minimizing undesired artifacts in the output speech.

Examine the Dataset

This example uses a subset of the Mozilla Common Voice dataset [1 on page 24-0 ] to train and test
the deep learning networks. The data set contains 48 kHz recordings of subjects speaking short
sentences. Download the data set and unzip the downloaded file.

url = 'http://ssd.mathworks.com/supportfiles/audio/commonvoice.zip';
downloadFolder = tempdir;
dataFolder = fullfile(downloadFolder,'commonvoice');

if ~exist(dataFolder,'dir')
    disp('Downloading data set (956 MB) ...')
    unzip(url,downloadFolder)
end

Downloading data set (956 MB) ...

Use audioDatastore to create a datastore for the training set. To speed up the runtime of the
example at the cost of performance, set reduceDataset to true.

adsTrain = audioDatastore(fullfile(dataFolder,'train'),'IncludeSubfolders',true);

reduceDataset = ;
if reduceDataset
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    adsTrain = shuffle(adsTrain);
    adsTrain = subset(adsTrain,1:1000);
end

Use read to get the contents of the first file in the datastore.

[audio,adsTrainInfo] = read(adsTrain);

Listen to the speech signal.

sound(audio,adsTrainInfo.SampleRate)

Plot the speech signal.

figure
t = (1/adsTrainInfo.SampleRate) * (0:numel(audio)-1);
plot(t,audio)
title("Example Speech Signal")
xlabel("Time (s)")
grid on

Deep Learning System Overview

The basic deep learning training scheme is shown below. Note that, since speech generally falls
below 4 kHz, you first downsample the clean and noisy audio signals to 8 kHz to reduce the
computational load of the network. The predictor and target network signals are the magnitude
spectra of the noisy and clean audio signals, respectively. The network's output is the magnitude
spectrum of the denoised signal. The regression network uses the predictor input to minimize the
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mean square error between its output and the input target. The denoised audio is converted back to
the time domain using the output magnitude spectrum and the phase of the noisy signal [2 on page
24-0 ].

You transform the audio to the frequency domain using the Short-Time Fourier transform (STFT),
with a window length of 256 samples, an overlap of 75%, and a Hamming window. You reduce the size
of the spectral vector to 129 by dropping the frequency samples corresponding to negative
frequencies (because the time-domain speech signal is real, this does not lead to any information
loss). The predictor input consists of 8 consecutive noisy STFT vectors, so that each STFT output
estimate is computed based on the current noisy STFT and the 7 previous noisy STFT vectors.
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STFT Targets and Predictors

This section illustrates how to generate the target and predictor signals from one training file.

First, define system parameters:

windowLength = 256;
win = hamming(windowLength,"periodic");
overlap = round(0.75 * windowLength);
ffTLength = windowLength;
inputFs = 48e3;
fs = 8e3;
numFeatures = ffTLength/2 + 1;
numSegments = 8;

Create a dsp.SampleRateConverter (DSP System Toolbox) object to convert the 48 kHz audio to 8
kHz.

src = dsp.SampleRateConverter("InputSampleRate",inputFs, ...
                              "OutputSampleRate",fs, ...
                              "Bandwidth",7920);
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Use read to get the contents of an audio file from the datastore.

audio = read(adsTrain);

Make sure the audio length is a multiple of the sample rate converter decimation factor.

decimationFactor = inputFs/fs;
L = floor(numel(audio)/decimationFactor);
audio = audio(1:decimationFactor*L);

Convert the audio signal to 8 kHz.

audio = src(audio);
reset(src)

Create a random noise segment from the washing machine noise vector.

randind = randi(numel(noise) - numel(audio),[1 1]);
noiseSegment = noise(randind : randind + numel(audio) - 1);

Add noise to the speech signal such that the SNR is 0 dB.

noisePower = sum(noiseSegment.^2);
cleanPower = sum(audio.^2);
noiseSegment = noiseSegment .* sqrt(cleanPower/noisePower);
noisyAudio = audio + noiseSegment;

Use stft to generate magnitude STFT vectors from the original and noisy audio signals.

cleanSTFT = stft(audio,'Window',win,'OverlapLength',overlap,'FFTLength',ffTLength);
cleanSTFT = abs(cleanSTFT(numFeatures-1:end,:));
noisySTFT = stft(noisyAudio,'Window',win,'OverlapLength',overlap,'FFTLength',ffTLength);
noisySTFT = abs(noisySTFT(numFeatures-1:end,:));

Generate the 8-segment training predictor signals from the noisy STFT. The overlap between
consecutive predictors is 7 segments.

noisySTFT = [noisySTFT(:,1:numSegments - 1), noisySTFT];
stftSegments = zeros(numFeatures, numSegments , size(noisySTFT,2) - numSegments + 1);
for index = 1:size(noisySTFT,2) - numSegments + 1
    stftSegments(:,:,index) = (noisySTFT(:,index:index + numSegments - 1)); 
end

Set the targets and predictors. The last dimension of both variables corresponds to the number of
distinct predictor/target pairs generated by the audio file. Each predictor is 129-by-8, and each target
is 129-by-1.

targets = cleanSTFT;
size(targets)

ans = 1×2

   129   544

predictors = stftSegments;
size(predictors)

ans = 1×3
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   129     8   544

Extract Features Using Tall Arrays

To speed up processing, extract feature sequences from the speech segments of all audio files in the
datastore using tall arrays. Unlike in-memory arrays, tall arrays typically remain unevaluated until
you call the gather function. This deferred evaluation enables you to work quickly with large data
sets. When you eventually request output using gather, MATLAB combines the queued calculations
where possible and takes the minimum number of passes through the data. If you have Parallel
Computing Toolbox™, you can use tall arrays in your local MATLAB session, or on a local parallel
pool. You can also run tall array calculations on a cluster if you have MATLAB® Parallel Server™
installed.

First, convert the datastore to a tall array.

reset(adsTrain)
T = tall(adsTrain)

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

T =

  M×1 tall cell array

    {234480×1 double}
    {210288×1 double}
    {282864×1 double}
    {292080×1 double}
    {410736×1 double}
    {303600×1 double}
    {326640×1 double}
    {233328×1 double}
        :        :
        :        :

The display indicates that the number of rows (corresponding to the number of files in the datastore),
M, is not yet known. M is a placeholder until the calculation completes.

Extract the target and predictor magnitude STFT from the tall table. This action creates new tall
array variables to use in subsequent calculations. The function
HelperGenerateSpeechDenoisingFeatures performs the steps already highlighted in the STFT
Targets and Predictors on page 24-0  section. The cellfun command applies
HelperGenerateSpeechDenoisingFeatures to the contents of each audio file in the datastore.

[targets,predictors] = cellfun(@(x)HelperGenerateSpeechDenoisingFeatures(x,noise,src),T,"UniformOutput",false);

Use gather to evaluate the targets and predictors.

[targets,predictors] = gather(targets,predictors);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 49 sec
Evaluation completed in 2 min 11 sec

It is good practice to normalize all features to zero mean and unity standard deviation.
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Compute the mean and standard deviation of the predictors and targets, respectively, and use them to
normalize the data.

predictors = cat(3,predictors{:});
noisyMean = mean(predictors(:));
noisyStd = std(predictors(:));
predictors(:) = (predictors(:) - noisyMean)/noisyStd;

targets = cat(2,targets{:});
cleanMean = mean(targets(:));
cleanStd = std(targets(:));
targets(:) = (targets(:) - cleanMean)/cleanStd;

Reshape predictors and targets to the dimensions expected by the deep learning networks.

predictors = reshape(predictors,size(predictors,1),size(predictors,2),1,size(predictors,3));
targets = reshape(targets,1,1,size(targets,1),size(targets,2));

You will use 1% of the data for validation during training. Validation is useful to detect scenarios
where the network is overfitting the training data.

Randomly split the data into training and validation sets.

inds = randperm(size(predictors,4));
L = round(0.99 * size(predictors,4));

trainPredictors = predictors(:,:,:,inds(1:L));
trainTargets = targets(:,:,:,inds(1:L));

validatePredictors = predictors(:,:,:,inds(L+1:end));
validateTargets = targets(:,:,:,inds(L+1:end));

Speech Denoising with Fully Connected Layers

You first consider a denoising network comprised of fully connected layers. Each neuron in a fully
connected layer is connected to all activations from the previous layer. A fully connected layer
multiplies the input by a weight matrix and then adds a bias vector. The dimensions of the weight
matrix and bias vector are determined by the number of neurons in the layer and the number of
activations from the previous layer.
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Define the layers of the network. Specify the input size to be images of size NumFeatures-by-
NumSegments (129-by-8 in this example). Define two hidden fully connected layers, each with 1024
neurons. Since purely linear systems, follow each hidden fully connected layer with a Rectified Linear
Unit (ReLU) layer. The batch normalization layers normalize the means and standard deviations of the
outputs. Add a fully connected layer with 129 neurons, followed by a regression layer.

layers = [
    imageInputLayer([numFeatures,numSegments])
    fullyConnectedLayer(1024)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(1024)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numFeatures)
    regressionLayer
    ];

Next, specify the training options for the network. Set MaxEpochs to 3 so that the network makes 3
passes through the training data. Set MiniBatchSize of 128 so that the network looks at 128
training signals at a time. Specify Plots as "training-progress" to generate plots that show the
training progress as the number of iterations increases. Set Verbose to false to disable printing the
table output that corresponds to the data shown in the plot into the command line window. Specify
Shuffle as "every-epoch" to shuffle the training sequences at the beginning of each epoch.
Specify LearnRateSchedule to "piecewise" to decrease the learning rate by a specified factor
(0.9) every time a certain number of epochs (1) has passed. Set ValidationData to the validation
predictors and targets. Set ValidationFrequency such that the validation mean square error is
computed once per epoch. This example uses the adaptive moment estimation (Adam) solver.

miniBatchSize = 128;
options = trainingOptions("adam", ...
    "MaxEpochs",3, ...
    "InitialLearnRate",1e-5,...
    "MiniBatchSize",miniBatchSize, ...
    "Shuffle","every-epoch", ...
    "Plots","training-progress", ...
    "Verbose",false, ...
    "ValidationFrequency",floor(size(trainPredictors,4)/miniBatchSize), ...
    "LearnRateSchedule","piecewise", ...
    "LearnRateDropFactor",0.9, ...
    "LearnRateDropPeriod",1, ...
    "ValidationData",{validatePredictors,validateTargets});

Train the network with the specified training options and layer architecture using trainNetwork.
Because the training set is large, the training process can take several minutes. To load a pre-trained
network instead of training a network from scratch, set doTraining to false.

doTraining = ;
if doTraining
    denoiseNetFullyConnected = trainNetwork(trainPredictors,trainTargets,layers,options);
else
    s = load("denoisenet.mat");
    denoiseNetFullyConnected = s.denoiseNetFullyConnected;
    cleanMean = s.cleanMean;
    cleanStd = s.cleanStd;
    noisyMean = s.noisyMean;
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    noisyStd = s.noisyStd;
end

Count the number of weights in the fully connected layers of the network.

numWeights = 0;
for index = 1:numel(denoiseNetFullyConnected.Layers)
    if isa(denoiseNetFullyConnected.Layers(index),"nnet.cnn.layer.FullyConnectedLayer")
        numWeights = numWeights + numel(denoiseNetFullyConnected.Layers(index).Weights);
    end
end
fprintf("The number of weights is %d.\n",numWeights);

The number of weights is 2237440.

Speech Denoising with Convolutional Layers

Consider a network that uses convolutional layers instead of fully connected layers [3 on page 24-
0 ]. A 2-D convolutional layer applies sliding filters to the input. The layer convolves the input by
moving the filters along the input vertically and horizontally and computing the dot product of the
weights and the input, and then adding a bias term. Convolutional layers typically consist of fewer
parameters than fully connected layers.

Define the layers of the fully convolutional network described in [3 on page 24-0 ], comprising 16
convolutional layers. The first 15 convolutional layers are groups of 3 layers, repeated 5 times, with
filter widths of 9, 5, and 9, and number of filters of 18, 30 and 8, respectively. The last convolutional
layer has a filter width of 129 and 1 filter. In this network, convolutions are performed in only one
direction (along the frequency dimension), and the filter width along the time dimension is set to 1 for
all layers except the first one. Similar to the fully connected network, convolutional layers are
followed by ReLu and batch normalization layers.

layers = [imageInputLayer([numFeatures,numSegments])
          convolution2dLayer([9 8],18,"Stride",[1 100],"Padding","same")
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          batchNormalizationLayer
          reluLayer
          
          repmat( ...
          [convolution2dLayer([5 1],30,"Stride",[1 100],"Padding","same")
          batchNormalizationLayer
          reluLayer
          convolution2dLayer([9 1],8,"Stride",[1 100],"Padding","same")
          batchNormalizationLayer
          reluLayer
          convolution2dLayer([9 1],18,"Stride",[1 100],"Padding","same")
          batchNormalizationLayer
          reluLayer],4,1)
          
          convolution2dLayer([5 1],30,"Stride",[1 100],"Padding","same")
          batchNormalizationLayer
          reluLayer
          convolution2dLayer([9 1],8,"Stride",[1 100],"Padding","same")
          batchNormalizationLayer
          reluLayer
          
          convolution2dLayer([129 1],1,"Stride",[1 100],"Padding","same")
          
          regressionLayer
          ];

The training options are identical to the options for the fully connected network, except that the
dimensions of the validation target signals are permuted to be consistent with the dimensions
expected by the regression layer.

options = trainingOptions("adam", ...
    "MaxEpochs",3, ...
    "InitialLearnRate",1e-5, ...
    "MiniBatchSize",miniBatchSize, ...
    "Shuffle","every-epoch", ...
    "Plots","training-progress", ...
    "Verbose",false, ...
    "ValidationFrequency",floor(size(trainPredictors,4)/miniBatchSize), ...
    "LearnRateSchedule","piecewise", ...
    "LearnRateDropFactor",0.9, ...
    "LearnRateDropPeriod",1, ...
    "ValidationData",{validatePredictors,permute(validateTargets,[3 1 2 4])});

Train the network with the specified training options and layer architecture using trainNetwork.
Because the training set is large, the training process can take several minutes. To load a pre-trained
network instead of training a network from scratch, set doTraining to false.

doTraining = ;
if doTraining
    denoiseNetFullyConvolutional = trainNetwork(trainPredictors,permute(trainTargets,[3 1 2 4]),layers,options);
else
    s = load("denoisenet.mat");
    denoiseNetFullyConvolutional = s.denoiseNetFullyConvolutional;
    cleanMean = s.cleanMean;
    cleanStd = s.cleanStd;
    noisyMean = s.noisyMean;
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    noisyStd = s.noisyStd;
end

Count the number of weights in the fully connected layers of the network.

numWeights = 0;
for index = 1:numel(denoiseNetFullyConvolutional.Layers)
    if isa(denoiseNetFullyConvolutional.Layers(index),"nnet.cnn.layer.Convolution2DLayer")
        numWeights = numWeights + numel(denoiseNetFullyConvolutional.Layers(index).Weights);
    end
end
fprintf("The number of weights in convolutional layers is %d\n",numWeights);

The number of weights in convolutional layers is 31812

Test the Denoising Networks

Read in the test data set.

adsTest = audioDatastore(fullfile(dataFolder,'test'),'IncludeSubfolders',true);

Read the contents of a file from the datastore.

[cleanAudio,adsTestInfo] = read(adsTest);

Make sure the audio length is a multiple of the sample rate converter decimation factor.

L = floor(numel(cleanAudio)/decimationFactor);
cleanAudio = cleanAudio(1:decimationFactor*L);

Convert the audio signal to 8 kHz.

cleanAudio = src(cleanAudio);
reset(src)
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In this testing stage, you corrupt speech with washing machine noise not used in the training stage.

noise = audioread("WashingMachine-16-8-mono-200secs.mp3");

Create a random noise segment from the washing machine noise vector.

randind = randi(numel(noise) - numel(cleanAudio), [1 1]);
noiseSegment = noise(randind : randind + numel(cleanAudio) - 1);

Add noise to the speech signal such that the SNR is 0 dB.

noisePower = sum(noiseSegment.^2);
cleanPower = sum(cleanAudio.^2);
noiseSegment = noiseSegment .* sqrt(cleanPower/noisePower);
noisyAudio = cleanAudio + noiseSegment;

Use stft to generate magnitude STFT vectors from the noisy audio signals.

noisySTFT = stft(noisyAudio,'Window',win,'OverlapLength',overlap,'FFTLength',ffTLength);
noisyPhase = angle(noisySTFT(numFeatures-1:end,:));
noisySTFT = abs(noisySTFT(numFeatures-1:end,:));

Generate the 8-segment training predictor signals from the noisy STFT. The overlap between
consecutive predictors is 7 segments.

noisySTFT = [noisySTFT(:,1:numSegments-1) noisySTFT];
predictors = zeros( numFeatures, numSegments , size(noisySTFT,2) - numSegments + 1);
for index = 1:(size(noisySTFT,2) - numSegments + 1)
    predictors(:,:,index) = noisySTFT(:,index:index + numSegments - 1); 
end

Normalize the predictors by the mean and standard deviation computed in the training stage.

predictors(:) = (predictors(:) - noisyMean) / noisyStd;

Compute the denoised magnitude STFT by using predict with the two trained networks.

predictors = reshape(predictors, [numFeatures,numSegments,1,size(predictors,3)]);
STFTFullyConnected = predict(denoiseNetFullyConnected, predictors);
STFTFullyConvolutional = predict(denoiseNetFullyConvolutional, predictors);

Scale the outputs by the mean and standard deviation used in the training stage.

STFTFullyConnected(:) = cleanStd * STFTFullyConnected(:) + cleanMean;
STFTFullyConvolutional(:) = cleanStd * STFTFullyConvolutional(:) + cleanMean;

Convert the one-sided STFT to a centered STFT.

STFTFullyConnected = STFTFullyConnected.' .* exp(1j*noisyPhase);
STFTFullyConnected = [conj(STFTFullyConnected(end-1:-1:2,:)); STFTFullyConnected];
STFTFullyConvolutional = squeeze(STFTFullyConvolutional) .* exp(1j*noisyPhase);
STFTFullyConvolutional = [conj(STFTFullyConvolutional(end-1:-1:2,:)) ; STFTFullyConvolutional];

Compute the denoised speech signals. istft performs the inverse STFT. Use the phase of the noisy
STFT vectors to reconstruct the time-domain signal.

denoisedAudioFullyConnected = istft(STFTFullyConnected,  ...
                                    'Window',win,'OverlapLength',overlap, ...
                                    'FFTLength',ffTLength,'ConjugateSymmetric',true);

24 Featured Examples

24-416



                                
denoisedAudioFullyConvolutional = istft(STFTFullyConvolutional,  ...
                                        'Window',win,'OverlapLength',overlap, ...
                                        'FFTLength',ffTLength,'ConjugateSymmetric',true);

Plot the clean, noisy and denoised audio signals.

t = (1/fs) * (0:numel(denoisedAudioFullyConnected)-1);

figure

subplot(4,1,1)
plot(t,cleanAudio(1:numel(denoisedAudioFullyConnected)))
title("Clean Speech")
grid on

subplot(4,1,2)
plot(t,noisyAudio(1:numel(denoisedAudioFullyConnected)))
title("Noisy Speech")
grid on

subplot(4,1,3)
plot(t,denoisedAudioFullyConnected)
title("Denoised Speech (Fully Connected Layers)")
grid on

subplot(4,1,4)
plot(t,denoisedAudioFullyConvolutional)
title("Denoised Speech (Convolutional Layers)")
grid on
xlabel("Time (s)")
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Plot the clean, noisy, and denoised spectrograms.

h = figure;

subplot(4,1,1)
spectrogram(cleanAudio,win,overlap,ffTLength,fs);
title("Clean Speech")
grid on

subplot(4,1,2)
spectrogram(noisyAudio,win,overlap,ffTLength,fs);
title("Noisy Speech")
grid on

subplot(4,1,3)
spectrogram(denoisedAudioFullyConnected,win,overlap,ffTLength,fs);
title("Denoised Speech (Fully Connected Layers)")
grid on

subplot(4,1,4)
spectrogram(denoisedAudioFullyConvolutional,win,overlap,ffTLength,fs);
title("Denoised Speech (Convolutional Layers)")
grid on

p = get(h,'Position');
set(h,'Position',[p(1) 65 p(3) 800]);
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Listen to the noisy speech.
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sound(noisyAudio,fs)

Listen to the denoised speech from the network with fully connected layers.

sound(denoisedAudioFullyConnected,fs)

Listen to the denoised speech from the network with convolutional layers.

sound(denoisedAudioFullyConvolutional,fs)

Listen to clean speech.

sound(cleanAudio,fs)

You can test more files from the datastore by calling testDenoisingNets. The function produces
the time-domain and frequency-domain plots highlighted above, and also returns the clean, noisy, and
denoised audio signals.

[cleanAudio,noisyAudio,denoisedAudioFullyConnected,denoisedAudioFullyConvolutional] = testDenoisingNets(adsTest,denoiseNetFullyConnected,denoiseNetFullyConvolutional,noisyMean,noisyStd,cleanMean,cleanStd);

24 Featured Examples

24-420



 Denoise Speech Using Deep Learning Networks

24-421



Real-Time Application

The procedure in the previous section passes the entire spectrum of the noisy signal to predict.
This is not suitable for real-time applications where low latency is a requirement.

Run speechDenoisingRealtimeApp for an example of how to simulate a streaming, real-time
version of the denoising network. The app uses the network with fully connected layers. The audio
frame length is equal to the STFT hop size, which is 0.25 * 256 = 64 samples.

speechDenoisingRealtimeApp launches a User Interface (UI) designed to interact with the
simulation. The UI enables you to tune parameters and the results are reflected in the simulation
instantly. You can also enable/disable a noise gate that operates on the denoised output to further
reduce the noise, as well as tune the attack time, release time, and threshold of the noise gate. You
can listen to the noisy, clean or denoised audio from the UI.

The scope plots the clean, noisy and denoised signals, as well as the gain of the noise gate.
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Order Analysis of a Vibration Signal
This example shows how to analyze a vibration signal using order analysis. Order analysis is used to
quantify noise or vibration in rotating machinery whose rotational speed changes over time. An order
refers to a frequency that is a certain multiple of a reference rotational speed. For example, a
vibration signal with a frequency equal to twice the rotational frequency of a motor corresponds to an
order of two and, likewise, a vibration signal that has a frequency equal to 0.5 times the rotational
frequency of the motor corresponds to an order of 0.5. In this example, orders of large amplitude are
determined to investigate the source of unwanted vibration in a helicopter cabin.

Introduction

This example analyzes simulated vibration data from an accelerometer in the cabin of a helicopter
during a run-up and coast-down of the main motor. A helicopter has several rotating components,
including the engine, gearbox, and the main and tail rotors. Each component rotates at a known,
fixed rate with respect to the main motor, and each may contribute to unwanted vibration. The
frequency of dominant vibration components can be related to the rotational speed of the motor to
investigate the source of high-amplitude vibration. The helicopter in this example has four blades in
both the main and tail rotors. Important components of vibration from a helicopter rotor may be
found at integer multiples of the rotational frequency of the rotor when the vibration is generated by
the rotor blades.

The signal in this example is a time-dependent voltage, vib, sampled at a rate fs equal to 500 Hz.
The data include rpm, the angular speed of the turbine engine, and a vector t of time instants. The
ratio of rotor speed to engine speed for each rotor is stored in the variables
mainRotorEngineRatio and tailRotorEngineRatio.

A motor speed signal commonly consists of a sequence of tachometer pulses. tachorpm can be used
to extract an RPM signal from a tachometer pulse signal. tachorpm automatically identifies the pulse
locations of a bilevel tachometer waveform and computes the interval between pulses to estimate
rotational speed. In this example, the motor speed signal contains the rotational speed, rpm, and
hence no conversion is needed.

Plot the motor speed and vibration data as functions of time:

load helidata
vib = vib - mean(vib);  % Remove the DC component 

subplot(2,1,1) 
plot(t,rpm)             % Plot the engine rotational speed
xlabel('Time (s)') 
ylabel('Engine Speed (RPM)')
title('Engine speed')

subplot(2,1,2) 
plot(t,vib)             % Plot the vibration signal 
xlabel('Time (s)') 
ylabel('Voltage (mV)')
title('Accelerometer Vibration Data')
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The engine speed increases during the run-up and decreases during the coast-down. The vibration
amplitude changes as a function of rotational speed. This type of RPM profile is typical for analyzing
vibration in rotating machinery.

Visualizing Data Using An RPM-Frequency Map

The vibration signal can be visualized in the frequency domain using the function rpmfreqmap. This
function computes the short-time Fourier transform of the signal and generates an RPM-frequency
map. rpmfreqmap displays the map in an interactive plot window when output arguments are
omitted.

Generate and visualize an RPM-frequency map for the vibration data.

rpmfreqmap(vib,fs,rpm)
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The interactive figure window produced by rpmfreqmap contains an RPM-frequency map, an RPM
versus time curve corresponding to the map, and several numeric indicators that can be used to
quantify vibration components. The amplitude of the map represents root-mean-square (RMS)
amplitude by default. Other amplitude choices, including peak amplitude and power, can be specified
with optional arguments. The waterfall plot menu button generates a three-dimensional view:
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Many of the tracks in the RPM-frequency maps have frequencies that increase and decrease with the
motor speed. This suggests that the tracks are orders of the motor rotational frequency. There are
high-amplitude components near the RPM peak, with frequencies between 20 and 30 Hz. The
crosshair cursor can be placed on the map at this location to view the frequency, RPM value, time,
and map amplitude in the indicator boxes below the RPM curve.

By default, rpmfreqmap computes the resolution by dividing the sample rate by 128. The resolution
is displayed in the lower-right corner of the figure, and is equal to 3.906 Hz in this case. A Hann
window is used by default, but several other windows are available.

Pass a smaller the value of the resolution to rpmfreqmap to resolve certain frequency components
better. For example, low-frequency components are not separated at the peak RPM. At low RPM
values, the high-amplitude tracks appear to blend together.

Generate an RPM-frequency map with a resolution of 1 Hz to resolve these components.
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rpmfreqmap(vib,fs,rpm,1)

Low-frequency components can now be resolved at the peak RPM, but there is significant smearing
present when the rotational speed is changing more rapidly. Vibration orders change frequency
within each time window as the motor speed increases or decreases, producing a broader spectral
track. This smearing effect is more pronounced for a finer resolution because of the longer time
windows that are required. In this case, improving the spectral resolution resulted in increased
smearing artifacts during the run-up and coast-down phases. An order map can be generated to avoid
this trade-off.

Visualizing Data Using An RPM-Order Map

The function rpmordermap generates a spectral map of order versus RPM for order analysis. The
approach removes smearing artifacts by resampling the signal at constant phase increments,
producing a stationary sinusoid for each order. The resampled signal is analyzed using a short-time
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Fourier transform. Since each order is a fixed multiple of the reference rotational speed, an order
map contains a straight order track as a function of RPM for each order.

The function rpmordermap accepts the same arguments as rpmfreqmap and also produces an
interactive plot window when called with no output arguments. The resolution parameter is now
specified in orders, rather than in Hz, and the spectral axis of the map is now order, rather than
frequency. The function uses a flat-top window by default.

Visualize the order map of the helicopter data using rpmordermap. Specify an order resolution of
0.005 orders.

rpmordermap(vib,fs,rpm,0.005)
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The map contains a straight track for each order, indicating that the vibration occurs at a fixed
multiple of the motor rotational speed. Order maps make it easy to relate each spectral component to
the motor speed. Smearing artifacts are significantly reduced compared to the RPM-frequency map.

Determining Peak Orders Using an Average Order Spectrum

Next, determine the locations of the peaks of the order map. Look for orders that are integer
multiples of the order of the main and tail rotors, where vibration generated by these rotors would
occur. The function rpmordermap returns the map and corresponding order and RPM values as
outputs. Analyze the data to determine the orders of high-amplitude vibration in the helicopter cabin.

Compute and return an order map of the data.

[map,mapOrder,mapRPM,mapTime] = rpmordermap(vib,fs,rpm,0.005);

Next, use orderspectrum to compute and plot the average spectrum of map. The function takes the
order map generated by rpmordermap as input and averages it over time.

figure
orderspectrum(map,mapOrder)

Return the average spectrum and call findpeaks to return the locations of the two highest peaks.

[spec,specOrder] = orderspectrum(map,mapOrder);          
[~,peakOrders] = findpeaks(spec,specOrder,'SortStr','descend','NPeaks',2);
peakOrders = round(peakOrders,3)
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peakOrders = 2×1

    0.0520
    0.0660

Two closely spaced dominant peaks can be seen around order 0.05 in the plot. The orders are less
than one because the frequency of vibration is lower that the rotational speed of the motor.

Analyzing Peak Orders Over Time

Next, find the amplitudes of the peak orders as a function of time using ordertrack. Use map as an
input and plot the amplitude of the two peak orders by calling ordertrack with no output
arguments.

ordertrack(map,mapOrder,mapRPM,mapTime,peakOrders)

Both orders increase in amplitude as the rotational speed of the motor increases. Although orders can
be easily separated in this case, ordertrack can also separate crossing orders when multiple RPM
signals are present.

Next, extract a time-domain order waveform for each peak order using orderwaveform. Order
waveforms can be compared directly to the original vibration signal and played back as audio.
orderwaveform uses the Vold-Kalman filter to extract order waveforms for specified orders.
Compare the sum of two peak-order waveforms to the original signal.
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orderWaveforms = orderwaveform(vib,fs,rpm,peakOrders);
helperPlotOrderWaveforms(t,orderWaveforms,vib)

Reducing Cabin Vibration

To identify the sources of the cabin vibration, compare the order of each peak to the order of each of
the helicopter's rotors. The order of each rotor is equal to the fixed ratio of the rotor speed to the
engine speed.

mainRotorOrder = mainRotorEngineRatio; 
tailRotorOrder = tailRotorEngineRatio;

ratioMain = peakOrders/mainRotorOrder

ratioMain = 2×1

    4.0310
    5.1163

ratioTail = peakOrders/tailRotorOrder

ratioTail = 2×1

    0.7904
    1.0032
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The highest peak is located at order four of the main rotor speed, so the frequency of the maximum-
amplitude component is four times the frequency of the main rotor. The main rotor, which has four
blades, is a good candidate for the source of this vibration because, for a helicopter with N blades per
rotor, vibration at N times the rotor rotational speed is common. Likewise, the second largest
component is located at order one of the tail rotor speed, suggesting vibration may originate from the
tail rotor. Because the speeds of the rotors are not related by an integer factor, the order of the
second largest peak with respect to the main rotor speed is not an integer.

After making track and balance adjustments to the main and tail rotors, a new data set is collected.
Load it and compare the order spectra before and after the adjustment.

load helidataAfter
vib = vib - mean(vib);             % Remove the DC component 
[mapAfter,mapOrderAfter] = rpmordermap(vib,fs,rpm,0.005);
figure
hold on  
orderspectrum(map,mapOrder)
orderspectrum(mapAfter,mapOrderAfter)
legend('Before Adjustment','After Adjustment')

The amplitudes of the dominant peaks are now considerably lower.

Conclusions

This example used order analysis to identify the main and tail rotors of a helicopter as potential
sources of high-amplitude vibration in the cabin. First, rpmfreqmap and rpmordermap were used to
visualize orders. The RPM-order map provided order separation throughout the RPM range without
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the smearing artifacts present in the RPM-frequency map. rpmordermap was the best choice to
visualize vibration components at lower RPM during the engine run-up and coast-down.

Next, the example used orderspectrum to identify peak orders, ordertrack to visualize the
amplitude of the peak orders over time, and orderwaveform to extract time-domain waveforms for
the peak orders. The order of the largest amplitude vibration component was found at four times the
rotational frequency of the main rotor, indicating an imbalance in the main rotor blades. The second
largest component was found at the rotational frequency of the tail rotor. Adjustments to the rotors
resulted in reduced vibration levels.
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orderspectrum | ordertrack | orderwaveform | rpmfreqmap | rpmordermap
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Vibration Analysis of Rotating Machinery
This example shows how to analyze vibration signals from a gearbox using time-synchronous
averaging and envelope spectra. These functions are especially useful in the predictive maintenance
of gearboxes, which contain multiple rotating components: gears, shafts and bearings.

This example generates and analyzes vibration data for a gearbox whose shafts rotate at a fixed
speed. Time-synchronous averaging is used to isolate vibration components associated with a specific
shaft or gear and average out all other components. Envelope spectra are especially useful in
identifying localized bearing faults that cause high-frequency impacts.

Consider an idealized gearbox that consists of a 13-tooth pinion meshing with a 35-tooth gear. The
pinion is coupled to an input shaft connected to a prime mover. The gear is connected to an output
shaft. The shafts are supported by roller bearings on the gearbox housing. Two accelerometers, A1
and A2, are placed on the bearing and gearbox housings, respectively. The accelerometers operate at
a sample rate of 20 kHz.

The pinion rotates at a rate fPinion = 22.5 Hz or 1350 rpm. The rotating speed of the gear and output
shaft is

fGear = fPinion ×
Number of pinion teeth Np
Number of gear teeth Ng

 .
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The tooth-mesh frequency, also called gear-mesh frequency, is the rate at which gear and pinion teeth
periodically engage:

fMesh = fPinion × Np = fGear × Ng .

fs = 20E3;          % Sample Rate (Hz)

Np = 13;            % Number of teeth on pinion
Ng = 35;            % Number of teeth on gear

fPin = 22.5;        % Pinion (Input) shaft frequency (Hz)

fGear = fPin*Np/Ng; % Gear (Output) shaft frequency (Hz)

fMesh = fPin*Np;    % Gear Mesh frequency (Hz)

Generate vibration waveforms for the pinion and the gear. Model the vibrations as sinusoids
occurring at primary shaft gear mesh frequencies. Analyze 20 seconds of vibration data.

The gear-mesh waveform is responsible for transmitting load and thus possesses the highest vibration
amplitude. A2 records vibration contributions from the two shafts and the gear-mesh. For this
experiment, the contributions of the bearing rolling elements to the vibration signals recorded by A2
are considered negligible. Visualize a section of noise-free vibration signal.

t = 0:1/fs:20-1/fs;

vfIn = 0.4*sin(2*pi*fPin*t);    % Pinion waveform     
vfOut = 0.2*sin(2*pi*fGear*t);  % Gear waveform

vMesh = sin(2*pi*fMesh*t);      % Gear-mesh waveform

plot(t, vfIn + vfOut + vMesh)
xlim([0 0.25])
xlabel('Time (s)')
ylabel('Acceleration')
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Generate High-Frequency Impacts Caused by a Local Fault on a Gear Tooth

Assume that one of the teeth of the gear is suffering from a local fault such as a spall. This results in a
high-frequency impact occurring once per rotation of the gear.
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The local fault causes an impact that has a duration shorter than the duration of tooth mesh. A dent
on the tooth surface of the gear generates high-frequency oscillations over the duration of the impact.
The frequency of impact is dependent on gearbox component properties and its natural frequencies.
In this example, it is arbitrarily assumed that the impact causes a 2 kHz vibration signal and occurs
over a duration of about 8% of 1/fMesh, or 0.25 milliseconds. The impact repeats once per rotation
of the gear.

ipf = fGear;
fImpact = 2000;         

tImpact = 0:1/fs:2.5e-4-1/fs; 
xImpact = sin(2*pi*fImpact*tImpact)/3;

Make the impact periodic by convolving it with a comb function.

xComb = zeros(size(t));

Ind = (0.25*fs/fMesh):(fs/ipf):length(t);
Ind = round(Ind);
xComb(Ind) = 1;

xPer = 2*conv(xComb,xImpact,'same');
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Add the fault signal xPer to the shaft signal. Add white Gaussian noise to the output signals for both
the fault-free and the faulty gear to model the output from A2 .

vNoFault = vfIn + vfOut + vMesh;
vFault = vNoFault + xPer;                              

vNoFaultNoisy = vNoFault + randn(size(t))/5;
vFaultNoisy = vFault + randn(size(t))/5;

Visualize a segment of the time history. The impact locations are indicated on the plot for the faulty
gear by the inverted red triangles. They are almost indistinguishable.

subplot(2,1,1)
plot(t,vNoFaultNoisy)
xlabel('Time (s)')
ylabel('Acceleration')
xlim([0.0 0.3])
ylim([-2.5 2.5])
title('Noisy Signal for Healthy Gear')

subplot(2,1,2)
plot(t,vFaultNoisy)
xlabel('Time (s)')
ylabel('Acceleration')
xlim([0.0 0.3])
ylim([-2.5 2.5])
title('Noisy Signal for Faulty Gear')
hold on
MarkX = t(Ind(1:3));
MarkY = 2.5;
plot(MarkX,MarkY,'rv','MarkerFaceColor','red')
hold off
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Compare Power Spectra for Both Signals

Localized tooth faults cause distributed sidebands to appear in the neighborhood of the gear mesh
frequency:

fsideband, Pinion = fMesh ± m × fPinion ∀ m ∈ 1, 2, 3, . .

fsideband, Gear = fMesh ± m × fGear ∀ m ∈ 1, 2, 3, . .

Calculate the spectrum of the healthy and faulty gears. Specify a frequency range that includes the
shaft frequencies at 8.35 Hz and 22.5 Hz and the gear-mesh frequency at 292.5 Hz.

[Spect,f] = pspectrum([vFaultNoisy' vNoFaultNoisy'],fs,'FrequencyResolution',0.2,'FrequencyLimits',[0 500]);

Plot the spectra. Because the fault is on the gear and not the pinion, sidebands are expected to
appear at fsideband, Gear and spaced fGear apart on the spectra. The spectra show the expected peaks
at fGear, fPin, and fMesh. However, the presence of noise in the signal makes the sideband peaks
at fsideband, Gear indistinguishable.

figure
plot(f,10*log10(Spect(:,1)),f,10*log10(Spect(:,2)),':')
xlabel('Frequency (Hz)')
ylabel('Power Spectrum (dB)')

hold on
plot(fGear,0,'rv','MarkerFaceColor','red')
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plot(fPin,0,'gv','MarkerFaceColor','green')
plot(fMesh,0,'bv','MarkerFaceColor','blue')
hold off

legend('Faulty','Healthy','f_{Gear}','f_{Pinion}','f_{Mesh}')

Zoom in on the neighborhood of the gear-mesh frequency. Create a grid of gear and pinion sidebands
at fsideband, Gear and fsideband, Pinion.

figure
p1 = plot(f,10*log10(Spect(:,1)));
xlabel('Frequency (Hz)')
ylabel('Power Spectrum (dB)')
xlim([250 340])
ylim([-70 -40])

hold on
p2 = plot(f,10*log10(Spect(:,2)));

harmonics = -5:5;
SBandsGear = (fMesh+fGear.*harmonics);
[X1,Y1] = meshgrid(SBandsGear,ylim);

SBandsPinion = (fMesh+fPin.*harmonics);
[X2,Y2] = meshgrid(SBandsPinion,ylim);

p3 = plot(X1,Y1,':r');
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p4 = plot(X2,Y2,':k');
hold off
legend([p1 p2 p3(1) p4(1)],{'Faulty Gear';'Healthy Gear';'f_{sideband,Gear}';'f_{sideband,Pinion}'})

It is not clear if the peaks align with the gear sidebands fsideband, Gear.

Apply Time-Synchronous Averaging to the Output Vibration Signal

Note that it is difficult to separate the peaks at the gear sidebands, fSideBand, Gear, and the pinion
sidebands, fSideBand, Pinion. The previous section demonstrated difficulty in separating peaks and
determining if the pinion or the gear is affected by faults. Time-synchronous averaging averages out
zero-mean random noise and any waveforms not associated with frequencies of the particular shaft.
This makes the process of fault detection easier.

Use the function tsa to generate time-synchronized waveforms for both the pinion and the gear.

Specify time-synchronized pulses for the pinion. Calculate the time-synchronous average for 10
rotations of the pinion.

tPulseIn = 0:1/fPin:max(t);
taPin = tsa(vFaultNoisy,fs,tPulseIn,'NumRotations',10);

Specify time-synchronized pulses for the gear. Calculate the time-synchronous average for 10
rotations of the gear.

tPulseOut = 0:1/fGear:max(t);
taGear = tsa(vFaultNoisy,fs,tPulseOut,'NumRotations',10);
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Visualize the time-synchronized signals for a single rotation. The impact is comparatively easier to
see on the time-synchronous averaged signal for the gear, while it is averaged out for the pinion
shaft. The location of the impact, indicated on the plot with a marker, has a higher amplitude than
neighboring gear-mesh peaks.

The tsa function without output arguments plots the time-synchronous average signal and the time-
domain signals corresponding to each signal segment in the current figure.

figure

subplot(2,1,1)
tsa(vFaultNoisy,fs,tPulseIn,'NumRotations',10)
xlim([0.5 1.5])
ylim([-2 2])
title('TSA Signal for Pinion')

subplot(2,1,2)
tsa(vFaultNoisy,fs,tPulseOut,'NumRotations',10)
xlim([0.5 1.5])
ylim([-2 2])
title('TSA Signal for Gear')
hold on
plot(1.006,2,'rv','MarkerFaceColor','red')
hold off
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Visualize the Power Spectra for Time-Synchronous Averaged Signals

Calculate the power spectrum of the time-synchronous averaged gear signal. Specify a frequency
range that covers 15 gear sidebands on either side of the gear mesh frequency of 292.5 Hz. Notice
the peaks at fsideband, Gear.

figure
pspectrum(taGear,fs,'FrequencyResolution',2.2,'FrequencyLimits',[200 400])

harmonics = -15:15;
SBandsGear=(fMesh+fGear.*harmonics);

[X1,Y1] = meshgrid(SBandsGear,ylim);
[XM,YM] = meshgrid(fMesh,ylim);

hold on
plot(XM,YM,'--k',X1,Y1,':r')
legend('Power Spectra','Gear-Mesh Frequency','f_{sideband,Gear}')
hold off

title('TSA Gear (Output Shaft)')

Visualize the power spectra of the time-synchronous averaged pinion signal in the same frequency
range. This time, plot grid lines at fsideband, Pinion frequency locations.

figure
pspectrum(taPin,fs,'FrequencyResolution',5.8,'FrequencyLimits',[200 400])
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SBandsPinion = (fMesh+fPin.*harmonics);

[X2,Y2] = meshgrid(SBandsPinion,ylim);
[XM,YM] = meshgrid(fMesh,ylim);

hold on
plot(XM,YM,'--b',X2,Y2,':k')
legend('Power Spectra','Gear-Mesh Frequency','f_{sideband,Pinion}')
hold off

title('TSA Pinion (Input Shaft)')

Notice the absence of prominent peaks at fsideband, Pinion in the plot.

The power spectra of the original signal contains waveforms from two different shafts, as well as
noise. It is difficult to distinguish the sideband harmonics. However, observe the prominent peaks at
the sideband locations on the spectrum of the time-synchronous averaged gear signal. Also observe
the nonuniformity in sideband magnitudes, which are an indicator of localized faults on the gear. On
the other hand, sideband peaks are absent from the spectrum of the time-synchronous averaged
pinion signal. This helps us conclude that the pinion is potentially healthy.

By averaging out the waveforms that are not relevant, the tsa function helps identify the faulty gear
by looking at sideband harmonics. This functionality is especially useful when it is desirable to extract
a vibration signal corresponding to a single shaft, from a gearbox with multiple shafts and gears.
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Add a Distributed Fault in the Pinion and Incorporate its Effects into the Vibration Signal

A distributed gear fault, such as eccentricity or gear misalignment [1], causes higher-level sidebands
that are narrowly grouped around integer multiples of the gear-mesh frequency.

To simulate a distributed fault, introduce three sideband components of decreasing amplitude on
either side of the gear-mesh frequency.

SideBands = -3:3;
SideBandAmp = [0.02 0.1 0.4 0 0.4 0.1 0.02];    % Sideband amplitudes
SideBandFreq = fMesh + SideBands*fPin;          % Sideband frequencies

vSideBands = SideBandAmp*sin(2*pi*SideBandFreq'.*t);

Add the sideband signals to the vibration signal. This results in amplitude modulation.

vPinFaultNoisy = vFaultNoisy + vSideBands;

Visualize a section of the time history for the gearbox affected by the distributed fault.

plot(t,vPinFaultNoisy)
xlim([0.6 0.85])
xlabel('Time (s)')
ylabel('Acceleration')
title('Effects of Sideband Modulation')
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Recompute the time-synchronous averaged signal for the pinion and the gear.

taPin = tsa(vPinFaultNoisy,fs,tPulseIn,'NumRotations',10);
taGear = tsa(vFaultNoisy,fs,tPulseOut,'NumRotations',10);

Visualize the power spectrum of the time-synchronous averaged signal. The three sidebands in the
time-synchronous averaged signal of the pinion are more pronounced which indicate the presence of
distributed faults. However, the spectrum of the time-synchronous averaged gear signal remains
unchanged.

subplot(2,1,1)
pspectrum(taPin,fs,'FrequencyResolution',5.8,'FrequencyLimits',[200 400])
hold on
plot(X2,Y2,':k')
legend('Power Spectrum','f_{sideband,Pinion}','Location','south')
hold off
title ('TSA Pinion (Input Shaft)')

subplot(2,1,2)
pspectrum(taGear,fs,'FrequencyResolution',2.2,'FrequencyLimits',[200 400])
hold on
plot(X1,Y1,':r')
legend('Power Spectrum','f_{sideband,Gear}')
hold off
title ('TSA Gear (Output Shaft)')
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In conclusion, the tsa function helps extract the gear and pinion contributions from the overall
vibration signal. This in turn helps identify the specific components that are affected by localized and
distributed faults.

Vibration Analysis of Rolling Element Bearing Faults

Localized faults in a rolling element bearing may occur in the outer race, the inner race, the cage, or
a rolling element. Each of these faults is characterized by its own frequency, which is usually listed by
the manufacturer or calculated from the bearing specifications. An impact from a localized fault
generates high-frequency vibrations in the gearbox structure between the bearing and response
transducer [2]. Assume that the gears in the gearbox are healthy and that one of the bearings
supporting the pinion shaft is affected by a localized fault in the inner race. Neglect the effects of
radial load in the analysis.
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The bearing, with a pitch diameter of 12 cm, has eight rolling elements. Each rolling element has a
diameter of 2 cm. The angle of contact θ is 15∘. It is common practice to place the accelerometer on a
bearing-housing while analyzing bearing vibration. Acceleration measurements are recorded byA1, an
accelerometer located on the faulty bearing housing.

Define the parameters for the bearing.

n = 8;         % Number of rolling element bearings
d = 0.02;      % Diameter of rolling elements 
p = 0.12;      % Pitch diameter of bearing
thetaDeg = 15; % Contact angle in degrees

The impacts occur whenever a rolling element passes the localized fault on the inner race. The rate at
which this happens is the ball pass frequency-inner race (BPFI). The BPFI can be calculated using

fBPFI =
n × fPin

2 1 + d
pcos θ .

bpfi = n*fPin/2*(1 + d/p*cosd(thetaDeg))

bpfi = 104.4889

Model each impact as a 3 kHz sinusoid windowed by a Kaiser window. The defect causes a series of 5-
millisecond impacts on the bearing. Impulses in the early stages of pits and spalls cover a wide
frequency range up to about 100 kHz [2].

fImpact = 3000;
tImpact = 0:1/fs:5e-3-1/fs;
xImpact = sin(2*pi*fImpact*tImpact).*kaiser(length(tImpact),40)';

Make the impact periodic by convolving it with a comb function. Since A1 is closer to the bearing,
adjust the amplitude of the impact such that it is prominent with respect to the gearbox vibration
signal recorded by A2.

xComb = zeros(size(t));
xComb(1:round(fs/bpfi):end) = 1;
xBper = 0.33*conv(xComb,xImpact,'same');
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Visualize the impact signal.

figure
plot(t,xBper)
xlim([0 0.05])
xlabel('Time (s)')
ylabel('Acceleration')
title('Impacts Due to Local Fault on the Inner Race of the Bearing')

Add the periodic bearing fault to the vibration signal from the healthy gearbox.

vNoBFaultNoisy = vNoFault + randn(size(t))/5;
vBFaultNoisy = xBper + vNoFault + randn(size(t))/5;

Compute the spectra of the signals. Visualize the spectrum at lower frequencies. Create a grid of the
first ten BPFI harmonics.

pspectrum([vBFaultNoisy' vNoBFaultNoisy' ],fs,'FrequencyResolution',1,'FrequencyLimits',[0 10*bpfi])
legend('Damaged','Healthy')
title('Bearing Vibration Spectra')
grid off

harmImpact = (0:10)*bpfi;
[X,Y] = meshgrid(harmImpact,ylim);

hold on
plot(X/1000,Y,':k')
legend('Healthy','Damaged','BPFI harmonics')
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xlim([0 10*bpfi]/1000)
hold off

At the lower end of the spectrum, the shaft and mesh frequencies and their orders obscure other
features. The spectrum of the healthy bearing and the spectrum of the damaged bearing are
indistinguishable. This flaw highlights the necessity for an approach that can isolate bearing faults.

BPFI is dependent on the ratio d/p and the cosine of the contact angle θ. An irrational expression for
BPFI implies that bearing impacts are not synchronous with an integer number of shaft rotations. The
tsa function is not useful in this case because it averages out the impacts. The impacts do not lie on
the same location in every averaged segment.

The function envspectrum (envelope spectrum) performs amplitude demodulation, and is useful in
extracting information about high-frequency impacts.

Compute and plot the envelope signals and their spectra. Compare the envelope spectra for the
signals with and without the bearing fault. Visualize the spectrum at lower frequencies. Create a grid
of the first ten BPFI harmonics.

figure
envspectrum([vNoBFaultNoisy' vBFaultNoisy'],fs)
xlim([0 10*bpfi]/1000)
[X,Y] = meshgrid(harmImpact,ylim);

hold on
plot(X/1000,Y,':k')
legend('Healthy','Damaged','BPFI harmonics')
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xlim([0 10*bpfi]/1000)
hold off

Observe that BPFI peaks are not prominent in the envelope spectrum because the signal is polluted
by noise. Recall that performing tsa to average out noise is not useful for bearing-fault analysis
because it also averages out the impact signals.

The envspectrum function offers a built-in filter that can be used to remove noise outside the band
of interest. Apply a bandpass filter of order 200 centered at 3.125 kHz and 4.167 kHz wide.

Fc = 3125;
BW = 4167;

envspectrum([vNoBFaultNoisy' vBFaultNoisy'],fs,'Method','hilbert','FilterOrder',200,'Band',[Fc-BW/2 Fc+BW/2])   

harmImpact = (0:10)*bpfi;
[X,Y] = meshgrid(harmImpact,ylim);

hold on
plot(X/1000,Y,':k')
legend('Healthy','Damaged','BPFI harmonics')
xlim([0 10*bpfi]/1000)
hold off
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The envelope spectrum effectively brings in the passband content to baseband, and therefore shows
the presence of prominent peaks at the BPFI harmonics below 1 kHz. This helps conclude that the
inner race of the bearing is potentially damaged.

In this case, the frequency spectrum of the faulty bearing clearly shows BPFI harmonics modulated
by the impact frequency. Visualize this phenomenon in the spectra, close to the impact frequency of 3
kHz.

figure 
pspectrum([vBFaultNoisy' vNoBFaultNoisy'],fs,'FrequencyResolution',1,'FrequencyLimits',(bpfi*[-10 10]+fImpact))
legend('Damaged','Healthy')
title('Bearing Vibration Spectra')
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Observe that the separation in frequency between peaks is equal to BPFI.

Conclusions

This example used time-synchronous averaging to separate vibration signals associated with both a
pinion and a gear. In addition, tsa also attenuated random noise. In cases of fluctuating speed (and
load [2]), order tracking can be used as a precursor to tsa to resample the signal in terms of shaft
rotation angle. Time-synchronous averaging is also used in experimental conditions to attenuate the
effects of small changes in shaft speed.

Broadband frequency analysis may be used as a good starting point in the fault analysis of bearings
[3]. However, its usefulness is limited when the spectra in the neighborhood of bearing impact
frequencies contain contributions from other components, such as higher harmonics of gear-mesh
frequencies in a gearbox. Envelope analysis is useful under such circumstances. The function
envspectrum can be used to extract envelope signals and spectra for faulty bearings, as an indicator
of bearing wear and damage.
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Modal Analysis of a Simulated System and a Wind Turbine
Blade

This example shows how to estimate frequency-response functions (FRFs) and modal parameters
from experimental data. The first section describes a simulated experiment that excites a three-
degree-of-freedom (3DOF) system with a sequence of hammer impacts and records the resulting
displacement. Frequency-response functions, natural frequencies, damping ratios, and mode shape
vectors are estimated for three modes of the structure. The second section estimates mode shape
vectors from frequency-response function estimates from a wind turbine blade experiment. The
turbine blade measurement configuration and resulting mode shapes are visualized. This example
requires System Identification Toolbox (TM).

Natural Frequency and Damping for a Simulated Beam

Single-Input/Single-Output Hammer Excitation

A series of hammer strikes excite a 3DOF system, and sensors record the resulting displacements.
The system is proportionally damped, such that the damping matrix is a linear combination of the
mass and stiffness matrices.

Import the data for two sets of measurements, including excitation signals, response signals, time
signals, and ground truth frequency-response functions. The first set of response signals, Y1,
measures the displacement of the first mass, and the second, Y2, measures the second mass. Each
excitation signal consists of ten concatenated hammer impacts, and each response signal contains the
corresponding displacement. The duration for each impact signal is 2.53 seconds. Additive noise is
present in the excitation and response signals. Visualize the first excitation and response channel of
the first measurement.

[t,fs,X1,X2,Y1,Y2,f0,H0] = helperImportModalData();
X0 = X1(:,1);
Y0 = Y1(:,1);
helperPlotModalAnalysisExample([t' X0 Y0]);
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Compute and plot the FRF for the first excitation and response channels in terms of dynamic
flexibility, which is a measure of displacement over force [1]. By default, the FRF is computed by
averaging spectra of windowed segments. Since each hammer excitation decays substantially before
the next excitation, a rectangular window can be used. Specify the sensor as displacement.

winLen = 2.5275*fs; % window length in samples
modalfrf(X0,Y0,fs,winLen,'Sensor','dis')
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The FRF, estimated using the default 'H1' estimator, contains three prominent peaks in the
measured frequency band, corresponding to three flexible modes of vibration. The coherence is close
to one near these peaks, and low in anti-resonance regions, where the signal-to-noise ratio of the
response measurement is low. Coherence near to one indicates a high quality estimate. The 'H1'
estimate is optimal where noise exists only at the output measurement, whereas the 'H2' estimator
is optimal when there is additive noise only on the input [2]. Compute the 'H1' and 'H2' estimates
for this FRF.

[FRF1,f1] = modalfrf(X0,Y0,fs,winLen,'Sensor','dis');  % Calculate FRF (H1)
[FRF2,f2] = modalfrf(X0,Y0,fs,winLen,'Sensor','dis','Estimator','H2');

When there is significant measurement noise or the excitation is poor, parametric methods can offer
additional options for accurately extracting the FRF from the data. The 'subspace' method first fits a
state-space model to the data [3] and then computes its frequency-response function. The order of the
state-space model (equal to the number of poles) and presence or lack of feedthrough can be
specified to configure the state-space estimation.

[FRF3,f3] = modalfrf(X0,Y0,fs,winLen,'Sensor','dis','Estimator','subspace','Feedthrough',true);

Here FRF3 is estimated by fitting a state-space model containing a feedthrough term and of the
optimal order in the range 1:10. Compare the estimated FRFs using 'H1', 'H2' and 'subspace'
methods to the theoretical FRF.

helperPlotModalAnalysisExample(f1,FRF1,f2,FRF2,f3,FRF3,f0,H0);
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The estimators perform comparably near response peaks, while the 'H2' estimator overestimates the
response at the antiresonances. The coherence is not affected by the choice of the estimator.

Next, estimate the natural frequency of each mode using the peak-picking algorithm. The peak-
picking algorithm is a simple and fast procedure for identifying peaks in the FRF. It is a local method,
since each estimate is generated from a single frequency-response function. It is also a single-degree-
of-freedom (SDOF) method, since the peak for each mode is considered independently. As a result, a
set of modal parameters is generated for each FRF. Based on the previous plot, specify a frequency
range from 200 to 1600 Hz, which contains the three peaks.

fn = modalfit(FRF1,f1,fs,3,'FitMethod','PP','FreqRange',[200 1600])

fn =

   1.0e+03 *

    0.3727
    0.8525
    1.3707

The natural frequencies are approximately 373, 853, and 1371 Hz. Plot a reconstructed FRF and
compare it to the measured data using modalfit. The FRF is reconstructed using the modal
parameters estimated from the frequency-response function matrix, FRF1. Call modalfit again with
no output arguments to produce a plot containing the reconstructed FRF.
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modalfit(FRF1,f1,fs,3,'FitMethod','PP','FreqRange',[200 1600])

The reconstructed FRF agrees with the measured FRF of the first excitation and response channels.
In the next section, two additional excitation locations are considered.

Roving Hammer Excitation

Compute and plot the FRFs for the responses of all three sensors using the default 'H1' estimator.
Specify the measurement type as 'rovinginput' since we have a roving hammer excitation.

modalfrf(X1,Y1,fs,winLen,'Sensor','dis','Measurement','rovinginput')
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In the previous section, a single set of modal parameters was computed from a single FRF. Now,
estimate modal parameters using the least-squares complex exponential (LSCE) algorithm. The LSCE
and LSRF algorithms generate a single set of modal parameters by analyzing multiple response
signals simultaneously. These are global, multiple-degree-of-freedom (MDOF) methods, since the
parameters for all modes are estimated simultaneously from multiple frequency-response functions.

The LSCE algorithm generates computational modes, which are not physically present in the
structure. Use a stabilization diagram to identify physical modes by examining the stability of poles as
the number of modes increases. The natural frequencies and damping ratios of physical modes tend
to remain in the same place, or are 'stable'. Create a stabilization diagram and output the natural
frequencies of those poles which are stable in frequency.

[FRF,f] = modalfrf(X1,Y1,fs,winLen,'Sensor','dis','Measurement','rovinginput');
fn = modalsd(FRF,f,fs,'MaxModes',20, 'FitMethod', 'lsce'); % Identify physical modes
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By default, poles are classified as stable in frequency if the natural frequency for the poles changes
by less than one percent. Poles which are stable in frequency are further classified as stable in
damping for a smaller than five percent change in damping ratio. Both criteria can be adjusted to
different values. Based on the location of the stable poles, choose natural frequencies of 373, 852.5,
and 1371 Hz. These frequencies are contained in the output fn of modalsd, along with natural
frequencies of other frequency-stable poles. A higher model order than the number of modes
physically present is generally needed to produce good modal parameters estimates using the LSCE
algorithm. In this case, a model order of four modes indicates three stable poles. The frequencies of
interest occur in the first three columns in the 4th row of fn.

physFreq = fn(4,[1 2 3]);

Estimate natural frequencies and damping and plot reconstructed and measured FRFs. Specify four
modes and physical frequencies determined from the stability diagram, 'PhysFreq'. modalfit
returns modal parameters only for the specified modes.

modalfit(FRF,f,fs,4,'PhysFreq',physFreq)
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[fn1,dr1] = modalfit(FRF,f,fs,4,'PhysFreq',physFreq)

fn1 =

   1.0e+03 *

    0.3727
    0.8525
    1.3706

dr1 =

    0.0008
    0.0018
    0.0029

Next, compute FRFs and plot a stabilization diagram for a second set of hammer impacts with the
sensor at a different location. Change the stability criterion to 0.1 percent for frequency and 2.5
percent for damping.

[FRF,f] = modalfrf(X2,Y2,fs,winLen,'Sensor','dis','Measurement','rovinginput');
fn = modalsd(FRF,f,fs,'MaxModes',20,'SCriteria',[0.001 0.025]);
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With the more stringent criteria, the majority of poles are classified as not stable in frequency. The
poles that are stable in frequency and damping align closely with the averaged FRF, suggesting they
are present in the measured data.

physFreq = fn(4,[1 2 3]);

Extract modal parameters for this set of measurements and compare to the modal parameters for the
first set of measurements. Specify the indices of the driving point FRF, corresponding to location
where the excitation and response measurements coincide. The natural frequencies agree to within a
fraction of a percent, and the damping ratios agree to within less than four percent, indicating that
the modal parameters are consistent from measurement to measurement.

[fn2,dr2] = modalfit(FRF,f,fs,4,'PhysFreq',physFreq,'DriveIndex',[1 2])

fn2 =

   1.0e+03 *

    0.3727
    0.8525
    1.3705

dr2 =

    0.0008
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    0.0018
    0.0029

Tdiff2 = table((fn1-fn2)./fn1,(dr1-dr2)./dr1,'VariableNames',{'diffFrequency','diffDamping'})

Tdiff2 =

  3x2 table

    diffFrequency    diffDamping
    _____________    ___________

      2.9972e-06      -0.031648 
     -5.9335e-06     -0.0099076 
       1.965e-05      0.0001186 

A parametric method for modal parameter estimation can provide a useful alternative to peak-picking
and the LSCE method when there is measurement noise in the FRF or the FRF shows high modal
density. The least-squares rational function (LSRF) approach fits a shared denominator transfer
function to the multi-input, multi-output FRF and thus obtains a single, global estimate of modal
parameters [4]. The procedure for using LSRF approach is similar to that for LSCE. You can use
stabilization diagram to identify stationary modes and extract modal parameters corresponding to the
identified physical frequencies.

[FRF,f] = modalfrf(X1,Y1,fs,winLen,'Sensor','dis','Measurement','rovinginput');
fn = modalsd(FRF,f,fs,'MaxModes',20, 'FitMethod', 'lsrf'); % Identify physical modes using lsfr
physFreq = fn(4,[1 2 3]);
[fn3,dr3] = modalfit(FRF,f,fs,4,'PhysFreq',physFreq,'DriveIndex',[1 2],'FitMethod','lsrf')

fn3 =

  372.6832
  372.9275
  852.4986

dr3 =

    0.0008
    0.0003
    0.0018
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Tdiff3 = table((fn1-fn3)./fn1,(dr1-dr3)./dr1,'VariableNames',{'diffFrequency','diffDamping'})

Tdiff3 =

  3x2 table

    diffFrequency    diffDamping
    _____________    ___________

     -7.8599e-06      0.007982  
         0.56255       0.83086  
         0.37799       0.37626  

A final note about parametric methods: the FRF estimation method ('subspace') and the modal
parameter estimation method ('lsrf') are similar to those used in System Identification Toolbox for
fitting dynamic models to time-domain signals or to the frequency-response functions. If you have this
toolbox available, you can identify models to fit your data using commands such as tfest and ssest.
You can assess the quality of the identified models using compare and resid commands. Once you
have validated the quality of the model, you can use them for extracting modal parameters. This is
shown briefly using a state-space estimator.

Ts = 1/fs; % sample time
% Create a data object to be used for model estimation.
EstimationData = iddata(Y0(1:1000), X0(1:1000), 1/fs);
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% Create a data object to be used for model validation
ValidationData = iddata(Y0(1001:2000), X0(1001:2000), 1/fs);

Identify a continuous-time state-space model of 6th order containing a feedthrough term.

sys = ssest(EstimationData, 6, 'Feedthrough', true)

sys =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
            x1       x2       x3       x4       x5       x6
   x1     4.05    -1765    149.8    -1880   -49.64     -358
   x2     1764  -0.3332     2197   -232.5   -438.3   -128.4
   x3   -152.4    -2198     2.85     4715    255.9    547.5
   x4     1879    228.2    -4713    -15.9    -1216   -28.79
   x5    59.42    440.9   -275.5     1217    35.05    -8508
   x6    363.7    120.2   -545.4   -44.02     8508   -92.45
 
  B = 
            u1
   x1  -0.1513
   x2   -1.911
   x3    4.439
   x4   -3.118
   x5  -0.9416
   x6   -8.039
 
  C = 
               x1          x2          x3          x4          x5          x6
   y1   3.135e-05   2.511e-06   8.634e-06  -1.416e-05   2.218e-06  -6.271e-06
 
  D = 
              u1
   y1  7.564e-09
 
  K = 
               y1
   x1   3.513e+07
   x2  -3.244e+06
   x3  -3.598e+07
   x4  -1.059e+07
   x5   1.724e+08
   x6   7.521e+06
 
Parameterization:
   FREE form (all coefficients in A, B, C free).
   Feedthrough: yes
   Disturbance component: estimate
   Number of free coefficients: 55
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                    
Estimated using SSEST on time domain data "EstimationData".
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Fit to estimation data: 99.3% (prediction focus)           
FPE: 1.235e-16, MSE: 1.189e-16                             

Assess the quality of the model by checking how well it fits the validation data.

clf
compare(ValidationData, sys)  % plot shows good fit

Use the model sys to compute modal parameters.

[fn4, dr4] = modalfit(sys, f, 3);

Mode Shape Vectors of a Wind Turbine Blade

Understanding the dynamic behavior of wind turbine blades is important to optimize operational
efficiency and predict blade failure. This section analyzes experimental modal analysis data for a wind
turbine blade and visualizes mode shapes of the blade. A hammer excites the turbine blade at 20
locations, and a reference accelerometer measures the responses at location 18. An aluminum block
is mounted at the base of the blade, and the blade is excited in the flap-wise orientation,
perpendicular to the flat part of the blade. An FRF is collected for each location. The FRF data are
kindly provided by the Structural Dynamics and Acoustics Systems Laboratory at the University of
Massachusetts, Lowell. First, visualize the spatial arrangement of the measurement locations.
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Load and plot the wind turbine blade FRF estimates for locations 18 and 20. Zoom in on the first few
peaks.

[FRF,f,fs] = helperImportModalData();
helperPlotModalAnalysisExample(FRF,f,[18 20]);
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The first two modes appear as peaks around 37 Hz and 111 Hz. Plot a stabilization diagram to
estimate the natural frequencies. The first two values returned for a model order of 14 are stable in
frequency and damping ratio.

fn = modalsd(FRF,f,fs,'MaxModes',20);
physFreq = fn(14,[1 2]);

Next, extract the mode shapes for the first two modes using modalfit. Limit the fit to the frequency
range from 0 to 250 Hz based on the previous plot.

[~,~,ms] = modalfit(FRF,f,fs,14,'PhysFreq',physFreq,'FreqRange',[0 250]);

Mode shapes quantify the amplitude of motion for each mode of a structure at each location. To
estimate a mode shape vector, one row or column of the frequency-response function matrix is
needed. In practice, this means that either an excitation is needed at every measurement location of
the structure (in this case, a roving hammer), or that a response measurement is needed at every
location. Mode shapes can be visualized by examining the imaginary part of the FRF. Plot a waterfall
diagram of the imaginary part of the FRF matrix for locations on one side of the blade. Limit the
frequency range to a maximum of 150 Hz to examine the first two modes. The peaks of the plot
represent mode shapes.

measlocs = [3 6 9 11 13 15 17 19 20]; % Measurement locations on blade edge
helperPlotModalAnalysisExample(FRF,f,measlocs,150);
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The shapes indicated in the plot by the contour of the peaks represent the first and second bending
moments of the blade. Next, plot the magnitude of mode shape vectors for the same measurement
locations.

helperPlotModalAnalysisExample(ms,measlocs);
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While the amplitudes are scaled differently (mode shape vectors are scaled to unity modal A), the
mode shape contours agree in shape. The shape of the first mode has a large tip displacement and
two nodes, where vibration amplitude is zero. The second mode also has a large tip displacement and
has three nodes.

Summary

This example analyzed and compared simulated modal analysis datasets for a 3DOF system excited
by a roving hammer. It estimated natural frequency and damping using a stabilization diagram and
the LSCE and LSRF algorithms. The modal parameters were consistent for two sets of measurements.
In a separate use case, mode shapes of a wind turbine blade were visualized using the imaginary part
of the FRF matrix and mode shape vectors.
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Accelerating Correlation with GPUs
This example shows how to use a GPU to accelerate cross-correlation. Many correlation problems
involve large data sets and can be solved much faster using a GPU. This example requires a Parallel
Computing Toolbox™ user license. Refer to “GPU Support by Release” (Parallel Computing Toolbox)
to see what GPUs are supported.

Introduction

Start by learning some basic information about the GPU in your machine. To access the GPU, use the
Parallel Computing Toolbox.

fprintf('Benchmarking GPU-accelerated Cross-Correlation.\n');

if ~(parallel.gpu.GPUDevice.isAvailable)
    fprintf(['\n\t**GPU not available. Stopping.**\n']);
    return;
else
    dev = gpuDevice;
    fprintf(...
    'GPU detected (%s, %d multiprocessors, Compute Capability %s)',...
    dev.Name, dev.MultiprocessorCount, dev.ComputeCapability);
end

Benchmarking GPU-accelerated Cross-Correlation.
GPU detected (TITAN Xp, 30 multiprocessors, Compute Capability 6.1)

Benchmarking Functions

Because code written for the CPU can be ported to run on the GPU, a single function can be used to
benchmark both the CPU and GPU. However, because code on the GPU executes asynchronously from
the CPU, special precaution should be taken when measuring performance. Before measuring the
time taken to execute a function, ensure that all GPU processing has finished by executing the 'wait'
method on the device. This extra call will have no effect on the CPU performance.

This example benchmarks three different types of cross-correlation.

Benchmark Simple Cross-Correlation

For the first case, two vectors of equal size are cross-correlated using the syntax xcorr(u,v). The
ratio of CPU execution time to GPU execution time is plotted against the size of the vectors.

fprintf('\n\n *** Benchmarking vector-vector cross-correlation*** \n\n');
fprintf('Benchmarking function :\n');
type('benchXcorrVec');
fprintf('\n\n');

sizes = [2000 1e4 1e5 5e5 1e6];
tc = zeros(1,numel(sizes));
tg = zeros(1,numel(sizes));
numruns = 10;

for s=1:numel(sizes);
    fprintf('Running xcorr of %d elements...\n', sizes(s));
    delchar = repmat('\b', 1,numruns);

    a = rand(sizes(s),1);
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    b = rand(sizes(s),1);
    tc(s) = benchXcorrVec(a, b, numruns);
    fprintf([delchar '\t\tCPU  time : %.2f ms\n'], 1000*tc(s));
    tg(s) = benchXcorrVec(gpuArray(a), gpuArray(b), numruns);
    fprintf([delchar '\t\tGPU time :  %.2f ms\n'], 1000*tg(s));
end

%Plot the results
fig = figure;
ax = axes('parent', fig);
semilogx(ax, sizes, tc./tg, 'r*-');
ylabel(ax, 'Speedup');
xlabel(ax, 'Vector size');
title(ax, 'GPU Acceleration of XCORR');
drawnow;

 *** Benchmarking vector-vector cross-correlation*** 

Benchmarking function :

function t = benchXcorrVec(u,v, numruns)
%Used to benchmark xcorr with vector inputs on the CPU and GPU.
    
%   Copyright 2012 The MathWorks, Inc.

    timevec = zeros(1,numruns);
    gdev = gpuDevice;
    for ii=1:numruns
        ts = tic;
        o = xcorr(u,v); %#ok<NASGU>
        wait(gdev)
        timevec(ii) = toc(ts);
        fprintf('.');
    end
    t = min(timevec);
end

Running xcorr of 2000 elements...
        CPU  time : 0.21 ms
        GPU time :  4.26 ms
Running xcorr of 10000 elements...
        CPU  time : 1.03 ms
        GPU time :  4.37 ms
Running xcorr of 100000 elements...
        CPU  time : 14.04 ms
        GPU time :  6.28 ms
Running xcorr of 500000 elements...
        CPU  time : 55.98 ms
        GPU time :  16.09 ms
Running xcorr of 1000000 elements...
        CPU  time : 169.00 ms
        GPU time :  25.60 ms
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Benchmarking Matrix Column Cross-Correlation

For the second case, the columns of a matrix A are pairwise cross-correlated to produce a large
matrix output of all correlations using the syntax xcorr(A). The ratio of CPU execution time to GPU
execution time is plotted against the size of the matrix A.

fprintf('\n\n *** Benchmarking matrix column cross-correlation*** \n\n');
fprintf('Benchmarking function :\n');
type('benchXcorrMatrix');
fprintf('\n\n');

sizes = floor(linspace(0,100, 11));
sizes(1) = [];
tc = zeros(1,numel(sizes));
tg = zeros(1,numel(sizes));
numruns = 10;

for s=1:numel(sizes);
    fprintf('Running xcorr (matrix) of a %d x %d matrix...\n', sizes(s), sizes(s));
    delchar = repmat('\b', 1,numruns);

    a = rand(sizes(s));
    tc(s) = benchXcorrMatrix(a, numruns);
    fprintf([delchar '\t\tCPU  time : %.2f ms\n'], 1000*tc(s));
    tg(s) = benchXcorrMatrix(gpuArray(a), numruns);
    fprintf([delchar '\t\tGPU time :  %.2f ms\n'], 1000*tg(s));
end
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%Plot the results
fig = figure;
ax = axes('parent', fig);
plot(ax, sizes.^2, tc./tg, 'r*-');
ylabel(ax, 'Speedup');
xlabel(ax, 'Matrix Elements');
title(ax, 'GPU Acceleration of XCORR (Matrix)');
drawnow;

 *** Benchmarking matrix column cross-correlation*** 

Benchmarking function :

function t = benchXcorrMatrix(A, numruns)
%Used to benchmark xcorr with Matrix input on CPU and GPU.
    
%   Copyright 2012 The MathWorks, Inc.

    timevec = zeros(1,numruns);
    gdev = gpuDevice;
    for ii=1:numruns,
        ts = tic;
        o = xcorr(A); %#ok<NASGU>
        wait(gdev)
        timevec(ii) = toc(ts);
        fprintf('.');
    end
    t = min(timevec);
end

Running xcorr (matrix) of a 10 x 10 matrix...
        CPU  time : 0.18 ms
        GPU time :  5.00 ms
Running xcorr (matrix) of a 20 x 20 matrix...
        CPU  time : 0.48 ms
        GPU time :  4.83 ms
Running xcorr (matrix) of a 30 x 30 matrix...
        CPU  time : 0.85 ms
        GPU time :  4.84 ms
Running xcorr (matrix) of a 40 x 40 matrix...
        CPU  time : 3.38 ms
        GPU time :  5.57 ms
Running xcorr (matrix) of a 50 x 50 matrix...
        CPU  time : 5.60 ms
        GPU time :  5.22 ms
Running xcorr (matrix) of a 60 x 60 matrix...
        CPU  time : 8.49 ms
        GPU time :  5.39 ms
Running xcorr (matrix) of a 70 x 70 matrix...
        CPU  time : 20.43 ms
        GPU time :  5.92 ms
Running xcorr (matrix) of a 80 x 80 matrix...
        CPU  time : 26.79 ms
        GPU time :  6.24 ms
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Running xcorr (matrix) of a 90 x 90 matrix...
        CPU  time : 40.04 ms
        GPU time :  6.89 ms
Running xcorr (matrix) of a 100 x 100 matrix...
        CPU  time : 49.69 ms
        GPU time :  7.32 ms

Benchmarking Two-Dimensional Cross-Correlation

For the final case, two matrices, X and Y, are cross correlated using xcorr2(X,Y). X is fixed in size
while Y is allowed to vary. The speedup is plotted against the size of the second matrix.

fprintf('\n\n *** Benchmarking 2-D cross-correlation*** \n\n');
fprintf('Benchmarking function :\n');
type('benchXcorr2');
fprintf('\n\n');

sizes = [100, 200, 500, 1000, 1500, 2000];
tc = zeros(1,numel(sizes));
tg = zeros(1,numel(sizes));
numruns = 4;
a = rand(100);

for s=1:numel(sizes);
    fprintf('Running xcorr2 of a 100x100 matrix and %d x %d matrix...\n', sizes(s), sizes(s));
    delchar = repmat('\b', 1,numruns);

    b = rand(sizes(s));

24 Featured Examples

24-478



    tc(s) = benchXcorr2(a, b, numruns);
    fprintf([delchar '\t\tCPU  time : %.2f ms\n'], 1000*tc(s));
    tg(s) = benchXcorr2(gpuArray(a), gpuArray(b), numruns);
    fprintf([delchar '\t\tGPU time :  %.2f ms\n'], 1000*tg(s));
end

%Plot the results
fig = figure;
ax =axes('parent', fig);
semilogx(ax, sizes.^2, tc./tg, 'r*-');
ylabel(ax, 'Speedup');
xlabel(ax, 'Matrix Elements');
title(ax, 'GPU Acceleration of XCORR2');
drawnow;

fprintf('\n\nBenchmarking completed.\n\n');

 *** Benchmarking 2-D cross-correlation*** 

Benchmarking function :

function t = benchXcorr2(X, Y, numruns)
%Used to benchmark xcorr2 on the CPU and GPU.

%   Copyright 2012 The MathWorks, Inc.
 
    timevec = zeros(1,numruns);
    gdev = gpuDevice;
    for ii=1:numruns,
        ts = tic;
        o = xcorr2(X,Y); %#ok<NASGU>
        wait(gdev)
        timevec(ii) = toc(ts);
        fprintf('.');
    end
    t = min(timevec);
end

Running xcorr2 of a 100x100 matrix and 100 x 100 matrix...
        CPU  time : 20.35 ms
        GPU time :  6.96 ms
Running xcorr2 of a 100x100 matrix and 200 x 200 matrix...
        CPU  time : 42.87 ms
        GPU time :  11.72 ms
Running xcorr2 of a 100x100 matrix and 500 x 500 matrix...
        CPU  time : 125.23 ms
        GPU time :  39.67 ms
Running xcorr2 of a 100x100 matrix and 1000 x 1000 matrix...
        CPU  time : 386.59 ms
        GPU time :  88.46 ms
Running xcorr2 of a 100x100 matrix and 1500 x 1500 matrix...
        CPU  time : 788.38 ms
        GPU time :  165.04 ms
Running xcorr2 of a 100x100 matrix and 2000 x 2000 matrix...
        CPU  time : 1523.05 ms
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        GPU time :  279.55 ms

Benchmarking completed.

Other GPU Accelerated Signal Processing Functions

There are several other signal processing functions that can be run on the GPU. These functions
include fft, ifft, conv, filter, fftfilt, and more. In some cases, you can achieve large acceleration relative
to the CPU. For a full list of GPU accelerated signal processing functions, see the “GPU Algorithm
Acceleration” section in the Signal Processing Toolbox™ documentation.

See Also
gather | gpuArray | xcorr
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